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Abstract

We show that any distribution on{−1,+1}n that isk-wise independent fools any halfs-
pace (a.k.a. threshold)h : {−1,+1}n → {−1,+1}, i.e., any function of the formh(x) =
sign(

∑n
i=1 wixi − θ) where thew1, . . . , wn, θ are arbitrary real numbers, with errorǫ for

k = O(ǫ−2 log2(1/ǫ)). Our result is tight up tolog(1/ǫ) factors. Using standard construc-
tions ofk-wise independent distributions, we obtain the first explicit pseudorandom generators
G : {−1,+1}s → {−1,+1}n that fool halfspaces. Specifically, we fool halfspaces witherror
ǫ and seed lengths = k · log n = O(log n · ǫ−2 log2(1/ǫ)).

Our approach combines classical tools from real approximation theory with structural re-
sults on halfspaces by Servedio (Comput. Complexity 2007).
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1 Introduction

Halfspaces, or threshold functions, are a central class of Boolean functions h : {−1, +1}n →
{−1, +1} of the form:

h(x) = sign(w1x1 + · · · + wnxn − θ),

where the weightsw1, . . . , wn and the thresholdθ are arbitrary real numbers. These functions have
been studied extensively in a variety of contexts. In computer science, the work on halfspaces dates
back to the study of switching functions, see for instance the books [Der65, Hu65, LC67, She69,
Mur71]. In computational complexity, much effort has been put into understanding constant-depth
circuits of halfspaces. On the one hand this has resulted in surprising inclusions (such as the
simulation of depth-d circuits of halfspaces by depth-(d + 1) circuits of majority gates [GHR92,
GK98]), but on the other hand many seemingly basic questions remain unsolved: for instance it is
conceivable that every function inNP is computable by a depth-2 circuit of halfspaces [HMP+93,
Kra91, KW91, FKL+01]. In learning theory, the problem of learning an unknown halfspace has
arguably been the most influential problem in the development of the field, with algorithms such
as Perceptron, Weighted Majority, Boosting, and Support Vector Machines emerging from this
study. Halfspaces (with non-negative weights) have also been studied extensively in game theory
and social choice theory, where they are referred to as “weighted majority games” and have been
analyzed as models for voting, see e.g., [Pen46, Isb69, DS79, TZ92].

In this work we make progress on a natural complexity-theoretic question about halfspaces.
We construct the first explicit pseudorandom generatorsG : {−1, +1}s → {−1, +1}n with short
seed lengths that fool any halfspaceh : {−1, +1}n → {−1, +1}, i.e. satisfy

|Ex∈{−1,+1}s [h(G(x))] −Ex∈{−1,+1}n [h(x)]| ≤ ǫ,

for a smallǫ. We actually prove that the class of distributions known ask-wise independent has
this “fooling” property for a suitablek; as pointed out below, a generator can then be obtained
using any of the standard explicit constructions of such distributions.

Definition 1.1. A distributionD on{−1, +1}n is k-wise independentif the projection ofD on any
k indices is uniformly distributed over{−1, +1}k.

Theorem 1.2 (Main). Let D be ak-wise independent distribution on{−1, +1}n, and leth :
{−1, +1}n → {−1, +1} be a halfspace. ThenD foolsh with errorǫ, i.e.,

|Ex←D[h(x)] − Ex←U [h(x)]| ≤ ǫ, provided k ≥ C

ǫ2
log2

(

1

ǫ

)

,

whereC is an absolute constant andU is the uniform distribution over{−1, +1}n.

Our Theorem1.2 is tight up tolog(1/ǫ) factors, as can be seen by considering the halfspace
h(x) := sign(

∑

i≤k+1 xi) and thek-wise independent distribution(x1, x2, . . . , xk,
∏

i≤k xi, xk+2, . . . , xn)
where the variablesxi are independent and uniform in{−1, +1}.

Standard explicit constructions ofk-wise independent distributions over{−1, +1}n have seed
lengthO(k · log n) [CG89, ABI86], which is optimal up to constant factors [CGH+85]. Plugging
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these in Theorem1.2, we obtain explicit pseudorandom generatorsG : {−1, +1}s → {−1, +1}n

that fool any halfspaceh : {−1, +1}n → {−1, +1} with errorǫ and have seed lengths = O(log n·
ǫ−2 log2(ǫ−1)).

Discussion and comparison with previous explicit generators. The literature is rich with explicit
generators for various classes, such as small constant-depth circuits with various gates [AW85,
Nis91, LVW93, Vio07, Baz07, Bra09], low-degree polynomials [NN93, AGHP92, BV07, Lov08,
Vio08], and one-way small-space algorithms [Nis92]. Many of these classes (such as low-degree
polynomials and AC0 circuits) provably cannot implement halfspaces, and it is not known how to
implement an arbitrary halfspace in any of these classes, sonone of these results gives Theorem
1.2. However, some of these results [Nis92, LVW93, Vio07] give generators for therestricted class
of halfspaces given byh(x) = sign(

∑n
i=1 wixi − θ) where the weights are integers of magnitude

at mostpoly(n). While it is well known that every halfspace has a representation with integer
weights, it is not possible to represent an arbitrary halfspace withpoly(n) integer weights. Indeed,
an easy counting argument (see e.g. [MT94, Hås94]) shows that if the weights are required to be
integers then almost all halfspaces require weights of magnitude 2Ω(n); in fact some halfspaces
require weights of magnitude2Θ(n log n) [Hås94]. Our result is for the entire class of halfspaces
with no restriction on the weights, and much of the richness of halfspaces only comes in this
setting; for example, the “odd-max-bit” function [Bei94], the “universal halfspace” [GHR92], and
other important halfspaces [Hås94] all require exponentially large integer weights. Moreover, even
for the restricted class of halfspaces where the weights areintegers of magnitude at mostpoly(n),
previous techniques [Nis92] give seed lengths = O(log2 n) at best, while we achieves = O(log n)
for constant error.

Other related results. Several recent papers have studied the power ofk-wise independent distri-
butions. An exciting recent result of Braverman [Bra09], which builds on an earlier breakthrough
of Bazzi [Baz07] (simplified by Razborov [Raz08]), shows thatpolylog(n)-wise independent dis-
tributions fool small constant-depth circuits, settling aconjecture of Linial and Nisan [LN90]. Ben-
jamini et al. [BGGP07] showed that anyO(1/ǫ2)-wise independent distributionD on {−1, +1}n

satisfies|Prx←D[
∑

i xi ≥ 0] − 1/2| ≤ ǫ, i.e., such distributions fool the majority function. (We
discuss [BGGP07] in more detail shortly. Here we note that their result does not seem immediately
relevant for constructing generators, because to fool the majority function, with optimal error0,
one can just output1n with probability1/2 and(−1)n with probability1/2.)

The problem of constructing generators for halfspaces has been considered by several authors
in the recent literature. Rabani and Shpilka give an explicit construction of anǫ-net, orǫ-hitting set,
for halfspaces [RS08]: a set of sizepoly(n, 1/ǫ) which is guaranteed to contain at least one point
whereh(x) = +1 and at least one point whereh(x) = −1 for any halfspaceh which takes on both
values with probability at leastǫ under the uniform distribution. However, their construction does
not offer any guarantees about the distribution of these values. [RS08] pose as a research goal “to
build methodically a theory of generators for geometric functions” such as halfspaces.

The problem of generators for halfspaces also arose in recent work by Gopalan and Radhakr-
ishnan [GR09] on finding duplicates in a data stream. They required a generator that allows one
to estimate the influence of a variable in a halfspace, a problem which is in fact equivalent to con-
structing a generator for a related halfspace. They observethat Nisan’s space generator [Nis92]
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suffices for the halfspaces arising in their context, but they raise the problem of constructing gen-
erators for general halfspaces. Our result does not improvethe space bounds for their problem, but
it makes the analysis simpler by showing that one can useÕ(ǫ−2)-wise independence to estimate
the influence to within an additiveǫ.

1.1 Techniques

Our proof combines tools from real approximation theory with structural results regarding half-
spaces. An important notion is that of anǫ-regular halfspace; which is a halfspaceh(x) =
sign(

∑

i wixi−θ) where no more than anǫ-fraction of the2-norm of its coefficient vector(w1, . . . , wn)
comes from any single coefficientwi. We first show thatk-wise independence fools allǫ-regular
halfspaces, and then use this to prove thatk-wise independence fools all halfspaces. Our proof can
be broken into three steps.

Step 1: Fooling regular halfspaces.Our starting point is Bazzi’s observation [Baz07, Theorem
4.2], Theorem 4.2 (also in [BGGP07]) that to establish that everyk-wise independent distribution
on{−1, +1}n fools a Boolean functionf : {−1, +1}n → {−1, +1} with errorǫ, it is sufficient to
exhibit two “sandwiching” polynomialsqℓ, qu : {−1, +1}n → {−1, +1} of degree at mostk such
that:

• qu(x) ≥ f(x) ≥ qℓ(x) for all x ∈ {−1, +1}n; and

• EU [qu(x) − f(x)],EU [f(x) − qℓ(x)] ≤ ǫ.

Using only classical tools from real approximation theory,we give a proof of the existence
of univariate polynomials of degreeK(ǫ) := Õ(1/ǫ2) which, roughly speaking, provide a good
sandwich approximator to theunivariate function sign(t) under the normal distribution onR.
This is useful because of the following simple but crucial insight: for any regular halfspaceh(x) =
sign(w · x − θ), the argumentw · x − θ is well-approximated by a normal random variable (a
precise error-estimate is given by the Berry-Esséen theorem). For anyǫ-regular halfspace, we can
plugw ·x− θ into our univariate polynomials, and obtain low-degree sandwich polynomials forh,
establishing thatK(ǫ)-wise independence fools allǫ-regular halfspaces. The construction of these
polynomials is the most technically involved portion of this paper.

Of course, there are halfspacessign(w ·x−θ) that are far from beingǫ-regular and havew ·x−θ
distributed very unlike a Gaussian. To tackle general halfspaces, we use the notion of theǫ-critical
index of a halfspace, which was (implicitly) introduced in [Ser07] and has since played a useful
role in several recent results on halfspaces [OS08, MORS09, DS09]. Briefly, assuming that the
weightsw1, . . . , wn are sorted by absolute value, theǫ-critical index is the first indexℓ so that
the weight vector(wℓ, wℓ+1, . . . , wn) is ǫ-regular. The previous Step 1 handled halfspaces that are
regular, corresponding toℓ = 1. We now proceed by analyzing two cases, based on whether or not
1 < ℓ < L(ǫ), or ℓ ≥ L(ǫ), for L(ǫ) := Õ(1/ǫ2). In both cases, it is convenient to think of the
variables as partitioned into a “head” part consisting the first L(ǫ) variables and corresponding to
the largest weights, and of a “tail” part consisting of the rest.

Step 2: Fooling halfspaces with small critical index (ℓ < L(ǫ)). We argue that for every setting
of the head variables, theǫ-regularity of the tail is sufficient to ensure that the overall halfspace
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gives the right bias. More precisely, assume thatD is (K(ǫ) + L(ǫ))-wise independent, and note
that each setting of theℓ head variables gives anǫ-regular halfspacesign(w · x − θ′) over the tail
variables (with the constantθ′ depending on the values of the head variables). Since the marginal
distribution on the tail variables isK(ǫ)-wise independent for every setting of the head variables,
the distributionD fools all such halfspaces.

Step 3: Fooling halfspaces with large critical index (ℓ ≥ L(ǫ)). In this case, we show that the
setting of the head variables alone is very likely to determine the value of the halfspaceby a large
margin. More precisely, we show that a uniform random assignment tothe head variables is very
likely to yield a halfspacesign(wT · xT − θ′) over the tail variablesT where|θ′| > ‖wT‖2/ǫ. As
long as the tail variables are pairwise independent, by Chebyshev’s inequality it follows that the
valuewT · xT will be sharply concentrated within[−‖wT‖2, +‖wT‖2]. So, for most settings of the
head variables, we get something very close to a constant function over the tail variables. Since a
(L(ǫ) + 2)-wise independent distribution gives us uniform randomness for the head variables and
pairwise independence for the tail variables, bounded independence fools these halfspaces as well.

The idea behind the proof of the large margin property is thatup to the critical indexℓ – which
in this case is large (ℓ ≥ L(ǫ)) – the weights(w1, . . . , wℓ−1) must be decreasing fairly rapidly; this
implies strong anti-concentration for the distribution ofθ′, which yields large margin with good
probability.

Overall, the amount of independence required for all the three steps to work ismax{K(ǫ), K(ǫ)+
L(ǫ), L(ǫ) + 2} = Õ(1/ǫ2).

Univariate approximations to the sign function. As mentioned above, our approach relies on the
existance of low-degree univariate sandwich approximators to the sign function under the normal
distribution onR. Low-degree approximations to the sign function have been studied in both com-
puter science and mathematics (see for instance [Pat92, EY07, KS07] and the references therein).
However it appears that these results do not fit all our requirements. Below we discuss how our
approach relates to the work of Benjaminiet al. [BGGP07] and Eremenko and Yuditskii [EY07].

Benjaminiet al. prove thatO(1/ǫ2)-wise independence suffices to fool the majority function,
using machinery from the theory of the classical moment problem. However, their proof seems
to be tailored quite specifically to the majority function, where the moments can be understood in
terms of Krawtchouk polynomials and known bounds on such polynomials can be applied, so it
seems difficult to extend their approach to general halfspaces (or indeed even to slight variants of
the majority function).

Bazzi’s condition on the existence of sandwiching polynomials mentioned above is in fact
both necessary and sufficient for allk-wise independent distributions to fool a functionf. Thus
the [BGGP07] theorem implies the existence ofO(1/ǫ2)-degree multivariate sandwich polynomi-
als for the majority function; symmetrization then impliesthat there exist univariate polynomials
which, roughly speaking, provide good sandwich approximation to the functionsign(t) under the
binomial distribution. This is similar in spirit to the result we establish (mentioned in Step 1
above) about univariate polynomial approximators, but there is a crucial difference: since the bi-
nomial distribution is supported only on the integers{−n, . . . , n}, it seems difficult to infer much
about the behavior of the univariate polynomial on values outside of{−n, . . . , n}. Hence, it is
unclear whether these polynomials can be used for general (or even regular) halfspaces.
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In contrast, we work with thebest possiblepointwise approximation to the functionsign(t)
on the (piecewise)continuousdomain[−1,−a] ∪ [a, 1]. This uniform error bound is convenient
for dealing with regular halfspaces; moreover, working with the optimal pointwise approximator
allows us to exploit various properties of optimal approximators that follow from the theory of
Chebyshev approximation, in a way that is crucial for us to obtain the required “univariate sand-
wich approximators.”

We note that a recent work in approximation theory [EY07] analyzes the error achieved by this
optimal polynomial and in particular establishes the limiting behavior of the error, using tools from
complex analysis. For our purposes, though, we require the error to converge to the limit fairly
rapidly and it is unclear whether the results of [EY07] guarantee this. We present an error analysis
which is elementary (it only uses basic approximation theory) and moreover matches the limiting
bounds of [EY07] up to a constant factor.

Finally, we briefly discuss some other work on polynomial approximations to halfspaces, a
topic that has been studied extensively, motivated by applications to complexity theory and com-
putational learning [NS92, Pat92, KOS02, KKMS05, KS07]. Nisan and Szegedy showed that the
n-variable OR function has a pointwise (ℓ∞) approximation of degreeO(

√
n) [NS92], and Pa-

turi showed that such approximations to Majority require degreeΩ(n). A beautiful theorem by
Peres shows that halfspaces have noise stabilityO(

√
ǫ) [Per04], improving on anO(ǫ1/4) bound

due to Benjaminiet al. [BKS99]. Klivans et al. used this to show that every halfspace has an
ǫ-approximation inℓ2 of degreeO(ǫ−2) [KOS02]. We note that while low-degreeℓ2 approxima-
tions do imply the existence of low-degreeℓ1 approximations, Benjaminiet al. [BGGP07] showed
that they do not imply the existence of sandwich approximations: indeed, recursive Majorities
of depth2 haveℓ2 approximations of degreeO(ǫ−4) but require degreeΩ(

√
n) for sandwich ap-

proximations. Thus this paper’s results do not follow from theO(ǫ−2)-degreeℓ2 approximators of
[KOS02].

Organization. After some preliminaries in Section2, in Sections3 and4 we show how to fool
regular halfspaces. First we discuss how a certain univariate polynomial approximator tosign(t)
yields low-degree sandwich polynomials for regular halfspaces, then in Section3.1 we construct
the required univariate polynomial, and finally in Section4 we put everything together. We show
how to fool non-regular halfspaces in Section5. We conclude in Section6 mentioning a few open
problems.

2 Preliminaries

We require a few basic facts from probability theory: the Berry-Esséen theorem and the standard
tail bounds of Hoeffding and Chebyshev. We discuss them next.

The Berry-Esséen theorem is a version of the Central Limit Theorem with explicit error bounds:

Theorem 2.1. (Berry-Esśeen) LetX1, . . . , Xn be a sequence of independent random variables
satisfyingE[Xi] = 0 for all i,

√

∑

i E[X2
i ] = σ, and

∑

i E[|Xi|3] = ρ3. LetS = (X1+· · ·+Xn)/σ
and letF denote the cumulative distribution function (cdf) ofS. Then

sup
x

|F (x) − Φ(x)| ≤ Cρ3/σ
3,
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whereΦ is the cdf of a standard Gaussian random variable (with mean zero and variance one),
andC is a universal constant. [Shi86] has shown that one can takeC = .7915.

Corollary 2.2. Letx1, . . . , xn denote independent uniformly±1 random signs and letw1, . . . , wn ∈
R. Writeσ =

√

∑

i w
2
i , and assume|wi|/σ ≤ τ for all i. Then for any interval[a, b] ⊆ R,
∣

∣Pr[a ≤ w1x1 + · · · + wnxn ≤ b] − Φ([ a
σ
, b

σ
])
∣

∣ ≤ 2τ,

whereΦ([c, d]) := Φ(d) − Φ(c). In particular,

Pr[a ≤ w1x1 + · · ·+ wnxn ≤ b] ≤ |b − a|
σ

+ 2τ.

For completeness we recall the Hoeffding and Chebyshev bounds:

Theorem 2.3(Hoeffding). Fix anyw ∈ R
n. For anyγ > 0, we have

Pr
x←U

[w · x ≥ γ‖w‖] ≤ e−γ2/2 and Pr
x←U

[w · x ≤ −γ‖w‖] ≤ e−γ2/2.

Theorem 2.4(Chebyshev). For any random variableX with E[X] = µ andVar[X] = σ2 and
anyk > 0,

Pr[|X − µ| ≥ kσ] ≤ 1

k2
.

3 Fooling regular halfspaces

Throughout this paper we assume without loss of generality that halfspaces are normalized to
satisfyw2

1 + · · ·+ w2
n = 1. Such a representation can always be obtained by appropriate scaling.

Definition 3.1 (Regular Halfspace). A halfspacef is said to beǫ-regular if it can be expressed as
f(x) = sign(w · x − θ) where for alli = 1, . . . , n, we have|wi| ≤ ǫ.

An ǫ-regular halfspacef(x) = sign(w · x− θ) has the convenient property that the cumulative
distribution function (cdf) ofw·x−θ is everywhere within±O(ǫ) of the cdf of the shifted Gaussian
N(−θ, 1). This is a direct consequence of the Berry-Esséen Theorem (See Section2). In this
section we show how to fool regular halfspaces. Givenǫ > 0, we define the following parameters:

a(ǫ) :=
ǫ2

C log(1/ǫ)
, K(ǫ) :=

4c log(1/ǫ)

a
+ 2 <

5c

a
log(1/ǫ) = O

(

log2(1/ǫ)/ǫ2
)

.

We assume without loss of generality thatǫ is a sufficiently small power of2 (i.e., ǫ = 2−i for
some integeri). The positive constantsC andc will be chosen later; but (with foresight), we will
require thatC ≫ c.

Theorem 3.2 (Fooling ǫ-regular halfspaces). Any K(ǫ)-wise independent distribution foolsǫ-
regular halfspaces with error12ǫ.
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To prove the theorem we construct certain “sandwiching” polynomials. We now define such
polynomials and then explain why they are sufficient for our purposes.

Definition 3.3. Let f : {−1, +1}n → {−1, +1} be a Boolean function. A pair of real-valued
polynomialsqℓ(x1, . . . , xn), qu(x1, . . . , xn) are said to beǫ-sandwich polynomials of degreek for
f if they have the following properties:

• deg(qu), deg(qℓ) ≤ k;

• qu(x) ≥ f(x) ≥ qℓ(x) for all x ∈ {−1, +1}n;

• Ex←U [qu(x) − f(x)] ≤ ǫ andEx←U [f(x) − qℓ(x)] ≤ ǫ.

The following fact proved via LP-duality relates sandwiching polynomials to fooling [Baz07].
We only use the “if” direction of this lemma, which follows easily by linearity of expectation.

Lemma 3.4 (Bazzi). Let f : {−1, +1}n → {−1, +1} be a Boolean function. Everyk-wise
independent distributionǫ-foolsf if and only if there existǫ-sandwich polynomials of degreek for
f .

The crux of our construction of sandwiching polynomials forregular halfspaces is good uni-
variate approximations to the sign function:

Theorem 3.5. Let 0 < ǫ < 0.1 and leta and K be as defined above. There is a univariate
polynomialP (t) such thatdeg(P ) ≤ K with the following properties:

(1) P (t) ≥ sign(t) ≥ −P (−t) for all t ∈ R;

(2) P (t) ∈ [sign(t), sign(t) + ǫ] for t ∈ [−1/2,−2a]
⋃

[0, 1/2];

(3) P (t) ∈ [−1, 1 + ǫ] for t ∈ (−2a, 0);

(4) |P (t)| ≤ 2 · (4t)K for all |t| ≥ 1/2.

Property (1) says thatP (t) is an upper sanwdich to thesign function. By property (2),P gives
a pointwise approximation with errorǫ in the interval[−1/2, 1/2], except for the interval[−2a, 0]
where it has error at most2 + ǫ by property (3). Fort ≥ 1

2
, property (4) bounds how rapidly

P (t) grows. For a qualitative depiction ofP we refer the reader to Figure 1 (this figure is not an
actual plot, it is intended to illustrate the behavior ofP on various intervals; also the parameter
1/2 is replaced by1 − a ≥ 1/2 for later needs). Before constructingP , we outline the proof of
Theorem3.2using the polynomialP ; the full proof is in Section4.

Overview of the proof of Theorem3.2. Given anǫ-regular halfspaceh(x) = sign(w · x − θ),
and assume that|θ| is small (the case where|θ| is large is simpler). Let us define

t :=
w · x − θ

Z

where we choose the scaling factorZ to beΘ̃(ǫ−1). We usequ(x) = P (t) andqℓ(x) = −P (−t)
as the upper and lower sandwich polynomials respectively. The sandwiching property is easy to
verify, the crux is to boundEx[qu(x) − h(x)]. We do this by case analysis.
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Figure 1: Qualitative plot of polynomialP .

1. If t lies in the interval[−2a, 0] then, although the errorqu(x) − h(x) may be large, by our
choice ofZ it must be the case thatw · x lands in an interval of lengthO(ǫ). By the anti-
concentration ofw · x (which is a consequence of theǫ-regularity ofw), this only happens
with probabilityO(ǫ). Thus the contribution toEx[qu(x) − h(x)] from this event isO(ǫ).

2. In the event thatt lies in [−1/2, 1/2] \ [−2a, 0], the pointwise errorqu(x) − h(x) is at most
ǫ because, by Property (2),P gives a good pointwise approximation to the sign function in
this range. So this event contributes at mostO(ǫ) to Ex[qu(x) − h(x)].

3. Finally, the event that the inputt has absolute value bigger than1/2 corresponds to the event
that |w · x − θ| ≥ Z/2. Sincew2

1 + · · · + w2
n = 1, |θ| is small, andZ is Θ̃(ǫ−1), we can

bound this probability using the Hoeffding bound. In this event, the pointwise error is large
but we can bound it from above using Property (4). Our choice of parameters ensures that
the Hoeffding bound dominates the growth of the polynomialP , so that the contribution to
Ex[qu(x) − h(x)] is again at mostO(ǫ).

Thus, overallEx[qu(x) − h(x)] = O(ǫ). One can similarly bound the error ofqℓ.

3.1 Proof of Theorem3.5

This section contains our proof of Theorem3.5. The key step is to exhibit a low-degree univariate
polynomial that approximatessign(t) well when |t| ∈ [a, 1] and is well-behaved even for larger
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values of|t| to be compatible with the sandwich condition. We phrase thisas a problem in uni-
variate approximation. The solution we use is a low-degree polynomialp(t) which is an optimal
pointwise approximator tosign(t) on [−1,−a] ∪ [a, 1]. Such an optimal polynomial exists and
we prove that it is well-behaved for large|t|, using ideas from classical approximation theory.
However, it seems difficult to construct this polynomial explicitly and bound its error.

Recent work by [EY07] analyzes the error achieved by such a polynomial and in particular
establishes the limiting behavior of the error function. For our purposes, though, we require the
error to converge to the limit fairly rapidly and it is unclear whether the results of [EY07] guarantee
this.

Instead, we bound the error by constructing a small error approximatorq(t) using Jackson’s
theorem together with standard amplification ideas. Whileq(t) might not be well-behaved for
large values oft, we only use it to bound from above the error ofp(t) on [−1,−a] ∪ [a, 1]. Our
approach has the advantage of being fairly elementary (using only standard ingredients from basic
approximation theory) and matches the limiting bounds of [EY07] up to a constant factor.

For a bounded continuous functionf : [−1, 1] → R, we define itsmodulus of continuityωf(δ)
as

ωf(δ) := sup{|f(x) − f(y)| : x, y ∈ [−1, 1]; |x − y| ≤ δ}.
A classical result of Dunham Jackson from the early twentieth century bounds the error of the best
degree-ℓ approximation tof .

Theorem 3.6. (Jackson’s Theorem)[Car, Page 104], [Che66]. For f as above and any integer
ℓ ≥ 1, there exists a polynomialJ(t) with deg(J) ≤ ℓ so that

max
t∈[−1,1]

|J(t) − f(t)| ≤ 6ωf

(

1

ℓ

)

.

Recall the parametera = ǫ2

C log(1/ǫ)
. We now definem := c log(1/ǫ)

a
. It will be crucial for us that

m is even (see in particular the last paragraph of the proof of Theorem3.10.); for this condition to
be satisfied, it is of course enough thatc is even. (We also note that the parametersK andm are
such thatK = 4m + 2.)

Lemma 3.7. For a, m as above, there is a polynomialq(t) of degree at most2m such that

max
|t|∈[a,1]

|q(t) − sign(t)| ≤ ǫ2.

Proof. Define the continuous and piecewise linear functionf(t) as

f(t) =

{

sign(t) a ≤ |t| ≤ 1

t/a |t| ≤ a.

Thusf(t) increases linearly from−1 to 1 in the range[−a, a]. A simple calculation yields that
ωf(

1
ℓ
) = 1/(aℓ). Takingℓ ≥ 25/a, Jackson’s theorem gives a polynomialJ(t) of degree at mostℓ

such that

max
a≤|t|≤1

|J(t) − sign(t)| ≤ max
t∈[−1,1]

|J(t) − f(t)| ≤ 6

aℓ
<

1

4
.
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Our goal is to bring the error down toǫ2. Rather than using Jackson’s theorem for this (which
would require degreẽO(ǫ−4)), we use the degree-k amplifying polynomial

Ak(u) :=
∑

j≥ k
2

(

k

j

)(

1 + u

2

)j (
1 − u

2

)k−j

. (1)

This polynomial has the following properties (easily proved via elementary calculation and
also following from the Chernoff bound):

Claim 3.8. The polynomialAk(u) satisfies:

1. If u ∈ [3/5, 1], then2Ak(u) − 1 ∈ [1 − 2e−k/6, 1].

2. If u ∈ [−1,−3/5], then2Ak(u) − 1 ∈ [−1,−1 + 2e−k/6].

We define the polynomial

q(t) := 2Ak

(

4

5
J(t)

)

− 1

wherek = 15 log(1/ǫ). ScalingJ(t) by 4
5

ensures that the argument toAk lies in the range
[−1,−3/5] ∪ [3/5, 1] whenever|t| ≤ a. Applying Claim3.8with k = 15 log(1/ǫ) gives

max
|t|∈[a,1]

|q(t) − sign(t)| < 2e−k/6 < ǫ2.

Finally, by selectingc large enough, we have

deg(q) ≤ deg(J) deg(Ak) ≤
25

a
· 15 log(1/ǫ) <

2c

a
log(1/ǫ) = 2m.

We use Chebyshev’s classical theorem on (weighted) real polynomial approximation.

Theorem 3.9. (Chebyshev’s Theorem)[Ach56, Page 55]. Letf : [a, b] → R be a continuous
function. Lets : [a, b] → R be a continuous function that does not vanish on[a, b]. The polynomial
r(z) of degreem that minimizes

M(m) = max
z∈[a,b]

|f(z) − s(z)r(z)|

is unique, and it is characterized by the property that thereexistm + 2 pointsa ≤ z0 < z1 · · · <
zm+1 ≤ b such that for eachzi

M(m) = |f(zi) − s(zi)r(zi)|

and the sign of the error at thezi’s alternates.
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Figure 2: Qualitative representation of polynomialp.

We now present the “well-behaved” polynomialp(t) mentioned at the beginning of this section.
To help the reader visualizep(t), we provide a schematic representation in Figure 2. (As before,
this figure is not an actual plot, but rather is intended to illustrate the behavior ofp on various
intervals.)

Theorem 3.10.Let a and m be as previously specified. There is a univariate polynomialp(t)
wheredeg(p) ≤ 2m + 1 such that:

1. p(t) ∈ [sign(t) − ǫ2, sign(t) + ǫ2] for all |t| ∈ [a, 1];

2. p(t) ∈ [−(1 + ǫ2), 1 + ǫ2] for all t ∈ [−a, a];

3. p(t) is monotonically increasing on the intervals(−∞,−1] and[1,∞).

Proof. Intuitively, the polynomialp is the “best possible” approximator to the functionsign. How-
ever, some care is required because the functionsign is not continuous. We present an analysis that
assumes no background in approximation theory.

Invoking Theorem3.9, let r(z) be the polynomial of degreem that minimizes

max
z∈[a2,1]

|
√

zr(z) − 1|.

Definep(t) := t · r(t2).

11



Bounding the error ofp(t) for |t| ∈ [a, 1]: A polynomialp∗(t) is odd if the coefficients of the
even powers oft are0; it can be written asp∗(t) = t · r∗(t2). Note that

max
|t|∈[a,1]

|p∗(t) − sign(t)| = max
|t|∈[a,1]

|t · r∗(t2) − sign(t)| = max
z∈[a2,1]

|
√

z · r∗(z) − 1|. (2)

By Theorem3.6there exists a polynomialp∗(t) of degree2m ≤ 2m + 1 such that

max
|t|∈[a,1]

|p∗(t) − sign(t)| ≤ ǫ2.

We can assume thatp∗(t) is odd, for else we can replace it by the odd polynomial(p∗(t)−p∗(−t))/2
whose error is no worse. Therefore we can writep∗(t) = t ·r∗(t2). Using Equation2, the definition
of r, and the property ofp∗ above, we can now bound the error ofp as follows:

max
|t|∈[a,1]

|p(t)−sign(t)| = max
z∈[a2,1]

|
√

z·r(z)−1| ≤ max
z∈[a2,1]

|
√

z·r∗(z)−1| ≤ max
|t|∈[a,1]

|p∗(t)−sign(t)| ≤ ǫ2.

This concludes the proof of Property (1).
Other properties ofp: By Theorem3.9we find that there is a sequence of points

a2 ≤ z0 < z1 . . . < zm+1 ≤ 1

so that the error
√

zr(z)− 1 achieves its maximum magnitude exactly at the pointszi, and the sign
of the error alternates. Setti =

√
zi > 0 so thata ≤ t0 < t1 . . . < tm+1 ≤ 1. Let φ(t) be the error

functionφ(t) = p(t) − sign(t). Note that fort ≥ a, we have

φ(t) = p(t) − 1, andφ(−t) = p(−t) − (−1) = −p(t) + 1 = −φ(t).

In particular, for eachti we have|φ(ti)| = |φ(−ti)|.
Now consider the interval[a, 1], on which φ(t) = p(t) − 1. Note thatφ′(t) is well de-

fined and equalsp′(t) at any point in(a, 1). The pointst1, . . . , tm lie in (a, 1) and they are lo-
cal maxima/minima, sinceφ(t) cannot increase in magnitude in the neighborhood ofti. Thus
φ′(ti) = p′(ti) = 0 for eachi ∈ [m]. Similarly, we can show thatφ′(−ti) = p′(−ti) = 0 for
i ∈ [m]. But deg(p′) is at most2m, and so we have located all its roots. As we now show, this
allows us to determine the sign ofp in the intervals[−∞,−1], [−a, a] and[1,∞].

Note thatp(t1) is close to1 whereasp(−t1) is close to−1, and thusp increases monotonically
in the interval(−t1, t1) which includes[−a, a]. This gives Property (2). Alsot1 is a local maximum
for p, which shows that theti’s are maxima wheni is odd, and minima wheni is even. Thus, since
m is even,p(tm) is a local minimum, sop(t) increase monotonically in the range(tm,∞), which
includes[1,∞). Sincep(t) is odd, this also implies thatp(t) is monotonically increasing in the
range(−∞,−tm) which contains(−∞,−1]. This gives Property (3).

Using the polynomialp(t), we construct the polynomialP (t) which is a good “upper” approx-
imator tosign(t) (i.e. P (t) ≥ sign(t) for all t), completing the proof of Theorem3.5 (restated
below).
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Theorem 3.5. (Restated.)Let 0 < ǫ < 0.1 and leta andK be as defined above. There is a
univariate polynomialP (t) such thatdeg(P ) ≤ K with the following properties:

(1) P (t) ≥ sign(t) ≥ −P (−t) for all t ∈ R;

(2) P (t) ∈ [sign(t), sign(t) + ǫ] for t ∈ [−1/2,−2a]
⋃

[0, 1/2];

(3) P (t) ∈ [−1, 1 + ǫ] for t ∈ (−2a, 0);

(4) |P (t)| ≤ 2 · (4t)K for all |t| ≥ 1/2.

Proof. Let p denote the polynomial of degree2m + 1 from Theorem3.10. Consider the following
polynomial:

P (t) =
1

2
(1 + ǫ2 + p(t + a))2 − 1.

Note thatdeg(P ) = 2 deg(p) ≤ K. We now consider the behavior ofP on the relevant intervals.
We repeatedly use the inequality1

2
(2+2ǫ2)2−1 = 1+4ǫ2 +2ǫ4 ≤ 1+ ǫ which holds sinceǫ < 1

10
.

Note thatP (t) ≥ −1 holds for allt. We now analyze the behavior ofP (t) interval by interval:

(a) t ∈ [−1 − a,−2a]. Herep(t + a) ∈ [−1 − ǫ2,−1 + ǫ2], henceP (t) ∈ [−1,−1 + ǫ].

(b) t ∈ (−2a, 0). Herep(t + a) ∈ [−1 − ǫ2, 1 + ǫ2], henceP (t) ∈ [−1, 1 + ǫ].

(c) t ∈ [0, 1 − a]. Herep(t + a) ∈ [1 − ǫ2, 1 + ǫ2], henceP (t) ∈ [1, 1 + ǫ].

(d) t ∈ (1 − a,∞]. Herep(t + a) ≥ 1 − ǫ2, henceP (t) ≥ 1.

This shows thatP (t) ≥ sign(t) for all t ∈ R. Thus we also have

P (−t) ≥ sign(−t) ⇒ sign(t) ≥ −P (−t)

which establishes Property (1). Properties (2) and (3) follow immediately from (a), (b) and (c)
above.

For Property (4), we use the following standard fact from approximation theory.

Fact 3.12. [Car, Page 61], [Riv74]. Let a(t) be a polynomial of degree at mostd for which
|a(t)| ≤ b in the interval[−1, 1]. Then|a(t)| ≤ b|2t|d for all |t| ≥ 1.

Takinga(t) to beP (t/2), properties (2) and (3) give us that|P (t/2)| ≤ 2 for t ∈ [−1, 1]. So
the fact gives|P (t/2)| < 2|2t|4m+2 for |t| ≥ 1, i.e. |P (t)| < 2|4t|4m+2 for |t| ≥ 1/2.

4 Proof of Theorem3.2

In this section we prove Theorem3.2: any K(ǫ)-wise independent distribution foolsǫ-regular
halfspaces with error12ǫ.

We start with recording in the following theorem the properties ofP , our univariate polynomial
approximator to the sign function.
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Theorem 3.5. (Restated.)Let 0 < ǫ < 0.1 and leta andK be as defined above. There is a
univariate polynomialP (t) such thatdeg(P ) ≤ K with the following properties:

(1) P (t) ≥ sign(t) ≥ −P (−t) for all t ∈ R;

(2) P (t) ∈ [sign(t), sign(t) + ǫ] for t ∈ [−1/2,−2a]
⋃

[0, 1/2];

(3) P (t) ∈ [−1, 1 + ǫ] for t ∈ (−2a, 0);

(4) |P (t)| ≤ 2 · (4t)K for all |t| ≥ 1/2.

Theorem3.5was proved in Section3.1. We now proceed with the proof of Theorem3.2.

4.1 Proof of Theorem3.2

Let h(x) = sign(w · x − θ) be anǫ-regular halfspace (and recallw2
1 + · · ·+ w2

n = 1.) Let

Z :=
ǫ

2a
=

C log(1/ǫ)

2ǫ
.

We break the analysis into the following two cases, based on the magnitude of the thresholdθ.

4.1.1 |θ| is small (|θ| ≤ Z/4)

The sandwich polynomials we use are:

qu(x) := P

(

w · x − θ

Z

)

, ql(x) := −P

(

θ − w · x
Z

)

. (3)

First, observe that for everyx ∈ {−1, +1}n we have

qu(x) ≥ h(x) ≥ ql(x).

This is because from Theorem3.5with t = (w · x − θ)/Z we get

qu(x) ≥ sign

(

w · x − θ

Z

)

= sign(w · x − θ) = h(x) ≥ ql(x).

In the rest of this section we bound the error of the approximation.

Lemma 4.2. Ex[qu(x) − h(x)] < 10ǫ.

Proof. Define the random variableH(x) = (w · x − θ)/Z. We prove the desired upper bound by
partitioning the space into three events and bounding the contribution from each:

1. S1 is the event thatH(x) ∈ [−ǫ/Z, 0].

2. S2 is the event that|H(x)| ≤ 1/2, butS1 does not happen.
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3. S3 is the event that|H(x)| > 1/2.

We have

Ex[qu(x) − h(x)] =
3
∑

i=1

Pr
x

[Si]Ex[qu(x) − h(x)|Si].

Case 1: In this case, the pointwise error is moderate – at most (2 + ǫ) – and we use gaussian
anti-concentration to argue that the event has small probability mass. The eventH(x) ∈ [−ǫ/Z, 0]
implies that

w · x − θ

Z
∈ [−2a, 0] ⇒ qu(x) ≤ 1 + ǫ ⇒ qu(x) − h(x) ≤ 2 + ǫ,

using Item (3) in Theorem3.5.
Sinceh is ǫ-regular, from Corollary2.2 it follows thatPrx[H(x) ∈ [−ǫ/Z, 0]] ≤ 3ǫ. So,

Pr
x

[S1]Ex[qu(x) − h(x)|S1] ≤ (2 + ǫ) · 3ǫ < 8ǫ.

Case 2: This event has high probability, but in this range we get goodpointwise approxima-
tion. The eventS2 implies that

H(x) ∈ [−1/2, 1/2] \ [−2a, 0] ⇒ qu(x) ≤ h(x) + ǫ ⇒ qu(x) − h(x) ≤ ǫ,

where we used Item (2)in Theorem3.5. So,

Pr
x

[S2]Ex[qu(x) − h(x)|S2] ≤ 1 · ǫ ≤ ǫ.

Case 3: Here we trade off the large magnitude of error (Item (4) in Theorem3.5) with the
small probability of the event (bounded by the Hoeffding bound). Define the intervals

I+
j =

[

j

2
,
(j + 1)

2

)

for j = 1, 2, . . .

I−k =

(−(k + 1)

2
,
−k

2

]

for k = 1, 2, . . . .

We can write

Pr
x

[S3]Ex[qu(x) − h(x)|S3] =
∑

j≥1

Pr
x

[H(x) ∈ I+
j ]Ex[qu(x) − h(x)|H(x) ∈ I+

j ]

+
∑

k≥1

Pr
x

[H(x) ∈ I−k ]Ex[qu(x) − h(x)|H(x) ∈ I−k ]. (4)

Fix any integerj ≥ 1. If H(x) ∈ I+
j , then

j

2
≤ H(x) <

j + 1

2
.
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Recalling that we have|P (t)| ≤ 2 · (4t)K for t ≥ 1/2, we get that

qu(x) = P (H(x)) ≤ 2(2j + 2)K .

Sinceh(x) = 1, we get

qu(x) − h(x) = q(x) − 1 ≤ 2(2j + 2)K − 1. (5)

Next we boundPrx[H(x) ∈ I+
j ] using the Hoeffding bound.

Pr[H(x) ∈ I+
j ] ≤ Pr

x

[

w · x − θ ≥ jZ

2

]

≤ Pr
x

[

w · x ≥ jZ

4

]

≤ e−j2Z2/32 (6)

where the second inequality uses the fact that|θ| ≤ Z/4.
The analysis of the intervalsI−k is similar (excepth(x) = −1). ForH(x) ∈ I−k we get

|H(x)| ≤ k + 1

2
⇒ qu(x) ≤ 2(k + 1)K ⇒ qu(x) − h(x) ≤ 2(2k + 2)K + 1. (7)

Similarly, the Hoeffding bound gives

Pr[H(x) ∈ I−k ] ≤ Pr
x

[

w · x − θ ≤ −kZ

2

]

≤ Pr
x

[

w · x ≤ −kZ

4

]

≤ e−k2Z2/32. (8)

Plugging equations (5), (6), (7), (8) back into (4), we get

Pr
x

[S3]Ex[qu(x) − h(x)|S3] ≤
∑

j≥1

2(2j + 2)K − 1

ej2Z2/32
+
∑

k≥1

2(2k + 2)K + 1

ek2Z2/32

= 4
∑

j≥1

(2j + 2)K

ej2Z2/32
< 4

∑

j≥1

ej(2K−Z2/32),

where the last inequality follows by noting that, forj ≥ 1, (2j+2)K < e2Kj andej2Z2/32 ≥ ejZ2/32.
But now observe that

2K − Z2

32
<

C log2(1/ǫ)

ǫ2

(

10c − C

128

)

.

For a suitable choice ofC ≫ c, we have that10c − C/128 ≤ −1, so

Pr
x

[S3]Ex[qu(x) − h(x)|S3] < 4
∑

j

e−jC log2(1/ǫ)

ǫ2 < ǫ.

Thus overall, we haveEx[qu(x) − h(x)] ≤ 10ǫ.

The lower sandwich bound follows by symmetry:

Lemma 4.3. Ex[h(x) − ql(x)] < 10ǫ.
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Proof. Sinceql(x) ≤ h(x) for everyx, we also have−h(x) ≤ −ql(x). Thus

−ql(x) = P

(

θ − w · x
Z

)

is an upper sandwich for the function−h(x) = sign(θ − w · x). As this does not change the
magnitude ofθ, we can apply the analysis of Lemma4.2to conclude that

Ex[h(x) − ql(x)] = Ex[−ql(x) − (−h(x))] < 10ǫ.

4.1.2 |θ| is large (|θ| > Z/4)

We assume for simplicity thatθ ≥ Z/4 (the case whenθ is negative is handled similarly). The
sandwich polynomials we use are:

ru(x) = P

(

w · x − Z/4

Z

)

, rl(x) = −1. (9)

Lemma 4.4. h(x) ≥ rl(x) for all x ∈ {−1, +1}n. Further,Ex[h(x) − rl(x)] ≤ 2ǫ.

Proof. Note thatEx[h(x) − rl(x)] = 2 Prx[h(x) = 1]. For large enoughC we havePrx[h(x) =
1] = Prx[w · x ≥ θ] < e−Z2/32 < ǫ.

Lemma 4.5. ru(x) ≥ h(x) for all x ∈ {−1, +1}n. Further,Ex[ru(x) − h(x)] ≤ 12ǫ.

Proof. Observe thatru(x) is the upper sandwich polynomial for the halfspaceh′(x) = sign(w ·
x − Z/4) as specified in Section4.1.1. Thus we have

ru(x) ≥ h′(x) ≥ h(x)

hence
Ex[ru(x) − h(x)] = Ex[ru(x) − h′(x)] + Ex[h

′(x) − h(x)].

By Lemma4.2, Ex[ru(x) − h′(x)] ≤ 10ǫ whereas by the Hoeffding boundEx[h
′(x) − h(x)] ≤ 2ǫ

which completes the proof.

5 Fooling non-regular halfspaces

In this section we show how to fool halfspaces that are not regular. We proceed by case analysis
based on thecritical indexof the halfspace, which we define shortly. Throughout this section we
assume that the weights of the halfspace are decreasing:

|w1| ≥ |w2| . . . ≥ |wn|.
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We can assume this without loss of generality because we are going to prove that, for a suitable
k, any k-wise independent distribution fools such halfspaces, andthe property of beingk-wise
independent is clearly invariant under permutation of the variables.

Some notation: ForT ⊆ [n] we denote byσT the quantityσT :=
√
∑

i∈T w2
i . For k ∈ [n] we

also writeσk for σ{k,k+1,...,n}.

Definition 5.1 (Critical index). We define theτ -critical indexℓ(τ) of a halfspaceh = sign(w·x−θ)
as the smallest indexi ∈ [n] for which

|wi| ≤ τ · σi.

If this inequality does not hold for anyi ∈ [n], we defineℓ(τ) = ∞.

Note that a halfspace isτ -regular ifℓ(τ) = 1; in this section we handle the caseℓ(τ) > 1.

We assume without loss of generality thatǫ is sufficiently small. Givenǫ, our threshold for the
critical index is

L(ǫ) :=
8 log2(10/ǫ)

ǫ2
.

We argue separately depending on whetherℓ(ǫ) > L(ǫ) or not. Both proofs rely on the following
simple property ofk-wise independent distributions.

Fact 5.2. Let D be ak-wise independent distribution over{−1, +1}n. Condition on any fixed
values for anyt ≤ k bits ofD, and letD′ be the projection ofD on the othern − t bits. ThenD′
is (k − t)-wise independent.

The first theorem addresses the simpler case whenℓ(ǫ) ≤ L(ǫ).

Theorem 5.3(Fooling non-regular halfspaces with small critical index). Let h(x) be a halfspace
with ǫ-critical indexℓ(ǫ) ≤ L(ǫ). Then any(K(ǫ)+L(ǫ))-wise independent distributionO(ǫ)-fools
h.

Proof. Condition on any setting to the firstℓ − 1 variables. Each of these defines a halfspace of
the form

h′(x) = sign

(

∑

i≥ℓ

wixi − θ′

)

whereθ′ depends on the values assigned to the head. Every such halfspace isǫ-regular by the
definition ofǫ-critical index. Also, the conditional distribution on theremaining variables isK(ǫ)-
wise independent by Fact5.2. Thus, Theorem3.2 implies that we foolh′ with errorǫ. Since both
the uniform distribution andD induce the same (uniform) distribution on the firstℓ − 1 variables,
an averaging argument concludes the proof of the theorem.

In the rest of this section we study the case of large criticalindexℓ(ǫ) > L(ǫ), and prove the
following theorem.
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Theorem 5.4(Fooling non-regular halfspaces with large critical index). Let h(x) be a halfspace
with critical indexℓ(ǫ) > L(ǫ). Any(L(ǫ) + 2)-wise independent distributionD foolsh with error
9ǫ.

To prove Theorem5.4 we partition the coordinate set[n] into aheadH consisting of the first
L(ǫ) coordinates, and atail T = [n] \H consisting of the rest. We then show that a random setting
of the head variables induces with high probability a partial sum

∑

i∈H wixi − θ which is so large
in magnitude that the values of the tail variables are essentially irrelevant, in the sense that they are
very unlikely to change the sign ofw · x − θ and hence the value of the halfspace.

We will show that this statement holds both for the uniform distribution and for the distribution
D with limited independence. For the latter we will use that after restricting the variables in the
head we still have a2-wise independent distribution on the tail (by Fact5.2), which is enough for
Chebyshev’s concentration bound to apply. To show that the partial sum is likely to be large we use
ideas from [Ser07], in particular that the weights decrease geometrically upto the critical index.

We partition the coordinate set[n] into aheadH consisting of the firstL(ǫ) coordinates, and a
tail T = [n] \ H consisting of the rest. Any fixing of the variables inH results in a halfspace

h′(xT ) := sign

(

∑

i∈T

wixi − θ′H

)

over the tail variablesxT where
θ′H := θ −

∑

i∈H

wixi.

As discussed before, our goal is to show that, for a random setting of the head variables,θ′H is
likely to be so large in magnitude that the value of the tail sum

∑

i∈T wixi is unlikely to influence
the outcome ofh(x). The key idea here is the following lemma from [Ser07] showing that the
weights decrease geometrically up to the critical index.

Lemma 5.5. For any1 ≤ i < j ≤ ℓ + 1 we have

|wj| ≤ σj <
(√

1 − ǫ2
)j−i

σi ≤
(√

1 − ǫ2
)j−i

|wi|/ǫ.

In particular, if j ≥ i + (4/ǫ2) ln(1/ǫ) then

|wj| ≤ |wi|/3.

Proof. For anyk ≤ ℓ, we have by the definition ofǫ-critical index that

w2
k > ǫ2σ2

k.

Hence
σ2

k+1 = σ2
k − w2

k < (1 − ǫ2)σ2
k.

Repeating this calculation yields
σ2

j < (1 − ǫ2)j−iσ2
i .

To conclude the first chain of inequalities in the statement of the lemma, use againσ2
i < w2

i /ǫ
2

and the obvious inequalityσ2
j ≥ w2

j . The “in particular” part can be verified by straightforward
calculation, using thatǫ is sufficiently small.
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Now consider the set of
t := log(10/ǫ)

“nicely separated” coordinates (variables)

G := {ki := 1 + i ·
(

4/ǫ2
)

ln(1/ǫ) : i = 0, 1, . . . , t − 1} ⊆ H.

Observe that indeedG ⊆ H because the maximum index inG is at most1 + t · (4/ǫ2) log(1/ǫ) ≤
(4/ǫ2) log2(10/ǫ), whereasH consists of all the firstL(ǫ) = (8/ǫ2) log2(10/ǫ) indices. The key
features ofG are that we can apply the ‘in particular” part of Lemma5.5and prove the following
claim.

Claim 5.6. σT < ǫ|wkt|.

Proof. By our choice ofL(ǫ), t, andkt, we have

L(ǫ) − kt ≥ 8 log2(10/ǫ)/ǫ2 − 4 log2(10/ǫ)/ǫ2 ≥ log2(1/ǫ)/ǫ2.

An application of Lemma5.5gives

σT <
√

1 − ǫ2
log2(1/ǫ)/ǫ2 |wkt|/ǫ ≤ ǫ2|wkt|/ǫ = ǫ|wkt|

where we use thatǫ is sufficiently small.

We now show that a random setting ofH is likely to result in a value of|θ′H | which is at least
|wkt|/4. The proof relies on the following claim.

Claim 5.7. Let v1 > v2 > · · · > vt > 0 be a sequence of numbers so thatvi+1 ≤ vi/3. Then for
any two pointsx 6= y ∈ {−1, +1}t, we have|v · x − v · y| ≥ vt.

Proof. Let z := x − y ∈ {−2, 0, 2}t, which is not zero. Letj ≤ t be the smallest index such that
zj 6= 0. Then

|v · x − v · y| = |v · z| = |
∑

i≥j

vizi| ≥ |vjzj | −
∑

i>j

|vizi| ≥ 2(vj −
∑

i>j

vi)

≥ 2(vj −
∑

i>j

vj

3i−j
) ≥ 2(vj − vj/2) = vj ≥ vt,

usingvi ≤ vj/3i−j by assumption.

We are now ready to show our intended lemma:

Lemma 5.8. Prxi:i∈H

[
∣

∣θ −∑i∈H wixi

∣

∣ ≤ |wkt|/4
]

≤ ǫ/10.
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Proof. Fix any assignment to the variables inH \G. For this fixing, the event|θ −
∑

i∈H wixi| ≤
|wkt|/4 happens only if

∑

i∈G

wixi ∈



θ −
∑

i∈H\G

wixi − |wkt|/4, θ −
∑

i∈H\G

wixi + |wkt|/4



 ,

i.e.,
∑

i∈G wixi falls in an interval of length|wkt|/2. Applying Claim5.7to the weights inG, any
two possible outcomes of

∑

i∈G wixi differ by at least|wkt|. So there is at most one settingxk1 =
a1, . . . , xkt = at of the variables inG for which this event occurs. This setting has probability at
most2−t = ǫ/10.

With this lemma in hand, we can show that limited independence suffices to fool halfspaces
with a large critical index.

Proof of Theorem5.4. We compare the behavior ofh(x) onD and the uniform distributionU . In
either case, the marginal distribution for the variables inH is uniform. For each setting of these
variables, we are left with a halfspace of the formh′(xT ) = sign(

∑

i∈T wixi−θ′H) on the variables
in T . The combination of Lemma5.8and Claim5.6shows that with probability at least1 − ǫ/10
we have

|θ −
∑

i∈H

wi · xi| ≥
|wkt|

4
≥ σT

4ǫ
. (⋆)

We condition on this event(⋆). Consider the projectionsU ′ andD′ of U andD on xT . By
Fact5.2, D′ is 2-wise independent. We now argue that for bothU ′ andD′, it is very likely that
h′(xT ) = −sign(θ′H) (for small enoughǫ). Indeed if this does not happen, then we have

|
∑

i∈T

wixi| ≥ |θ −
∑

i∈H

wi · xi| ≥
|wkt|

4
≥ σT

4ǫ
.

Under the uniform distribution, by a Hoeffding bound (Theorem 2.3), the probability of this
event is bounded by

Pr
x∼U ′

[
∣

∣

∣

∣

∣

∑

i∈T

wixi

∣

∣

∣

∣

∣

≥ σT

4ǫ

]

≤ 2e−
1

32ǫ2 ≪ 4ǫ.

While by Chebyshev’s inequality (Theorem2.4) we get

Pr
x∼D′

[
∣

∣

∣

∣

∣

∑

i∈T

wixi

∣

∣

∣

∣

∣

≥ σT

4ǫ

]

≤ 16ǫ2 ≤ 4ǫ.

Thus, we have

|ED′ [h′(xT )] −EU ′[h′(xT )]| ≤ 2|Pr
D′

[h′(xT ) = −sign(θ′H)] − Pr
U ′

[h′(xT ) = −sign(θ′H)]| ≤ 8ǫ.

To conclude, our goal was to bound from above|EU [h(x)] − ED[h(x)]|. Using the fact that
both distributions induce the uniform distribution on variables inH, and conditioning on the event
(⋆), we get

|EU [h(x)] −ED[h(x)]| ≤ 8ǫ + 2 · ǫ/10 < 9ǫ.
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5.1 Proof of the main theorem

For completeness in this section we summarize what is neededto prove our main theorem.

Theorem 1.2(Main). (Restated.)Let D be ak-wise independent distribution on{−1, +1}n, and
let h : {−1, +1}n → {−1, +1} be a halfspace. ThenD foolsh with errorǫ, i.e.,

|Ex←D[h(x)] − Ex←U [h(x)]| ≤ ǫ, provided k ≥ C

ǫ2
log2

(

1

ǫ

)

,

whereC is an absolute constant andU is the uniform distribution over{−1, +1}n.

Proof. Consider the parametersK(ǫ), L(ǫ) defined in Sections3 and5, respectively, and recall
that they are bothO(log2(1/ǫ)/ǫ2). For a given halfspace, consider its critical indexℓ. If ℓ ≤ L(ǫ)
we apply Theorem5.3, otherwise we apply Theorem5.4.

6 Conclusion and open problems

Our results, because of the lower bound mentioned after Theorem1.2, are essentially optimal in
terms of characterizing the degree of independence that is required toǫ-fool halfspaces. However,
many natural and interesting directions remain for future work. One obvious goal is to construct
unconditional pseudorandom generators for halfspaces that have a better dependence onǫ than our
construction. The ultimate goal here is to achieve the information-theoretic optimal seed length,
i.e.s = O(log(n/ǫ)). This would in particular allow one to count the number of satisfying assign-
ments to a given halfspace up to accuracyǫ in deterministic timepoly(n, 1/ǫ); cf. [Ser07] for more
on this problem.

Another natural goal is to understand the degree of independence that is required toǫ-fool
degree-d polynomial threshold functions over{−1, +1}n. To our knowledge, no strong result is
known even ford = 2.
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applications to percolation.Inst. HautesÉtudes Sci. Publ. Math., 90:5–43, 1999.5

[Bra09] M. Braverman. Poly-logarithmic independence fools AC0 circuits. Available at
http://www.cs.toronto.edu/mbraverm/, 2009.2

[BV07] Andrej Bogdanov and Emanuele Viola. Pseudorandom bits for polynomials. In48th
Annual Symposium on Foundations of Computer Science (FOCS), pages 41–51. IEEE,
2007.2

[Car] Neal Carothers. A short course on approximation theory. Available at
http://personal.bgsu.edu/∼carother/Approx.html.9, 13

[CG89] Benny Chor and Oded Goldreich. On the power of two-point based sampling.Journal
of Complexity, 5(1):96–106, March 1989.1

[CGH+85] B. Chor, O. Goldreich, J. Hastad, J. Friedman, S. Rudich,and R. Smolensky. The bit
extraction problem andt-resilient functions. In26th Annual Symposium on Founda-
tions of Computer Science, pages 396–407, Portland, Oregon, 21–23 October 1985.
IEEE. 1

[Che66] E. Cheney.Introduction to approximation theory. McGraw-Hill, New York, New
York, 1966.9

[Der65] M. Dertouzos.Threshold logic: a synthesis approach. MIT Press, Cambridge, MA,
1965.1

[DS79] P. Dubey and L.S. Shapley. Mathematical properties of the banzhaf power index.
Mathematics of Operations Research, 4:99–131, 1979.1

[DS09] I. Diakonikolas and R. Servedio. Improved approximation of linear threshold func-
tions. Manuscript, 2009.3

[EY07] A. Eremenko and P. Yuditskii. Uniform approximationof sgn(x) by polynomials and
entire functions.J. d’Analyse Math., 12:313–324, 2007.4, 5, 9

23



[FKL+01] J. Forster, M. Krause, S.V. Lokam, R. Mubarakzjanov, N. Schmitt, and H.-U. Si-
mon. Relations between communication complexity, linear arrangements, and com-
putational complexity. InFSTTCS, pages 171–182, 2001.1
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