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Abstract

We show that any distribution ofi-1,+1}" that is k-wise independent fools any halfs-
pace (a.k.a. threshold) : {—1,+1}" — {—1,+1}, i.e., any function of the fornk(z) =
sign(>"7, wiz; — 0) where thews, ..., w,,0 are arbitrary real numbers, with errerfor
k = O(e 2log?(1/€)). Our result is tight up tdog(1/¢) factors. Using standard construc-
tions of k-wise independent distributions, we obtain the first exjgiseudorandom generators
G:{-1,+1}* — {—1,+1}" that fool halfspaces. Specifically, we fool halfspaces witior
¢ and seed length = & - logn = O(logn - e 2log?(1/¢)).

Our approach combines classical tools from real approximaheory with structural re-
sults on halfspaces by Servedio (Comput. Complexity 2007).
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1 Introduction

Halfspaces or threshold functions, are a central class of Booleantfansh : {—1,+1}" —
{—1,+1} of the form:
h(x) = sign(wyxq + - - - + wyz, — 0),

where the weights)y, . . . , w, and the threshold are arbitrary real numbers. These functions have
been studied extensively in a variety of contexts. In compsitience, the work on halfspaces dates
back to the study of switching functions, see for instaneehtboks Per65 Hu65 LC67, She69
Mur71]. In computational complexity, much effort has been pub i derstanding constant-depth
circuits of halfspaces. On the one hand this has resultedrprising inclusions (such as the
simulation of depthd circuits of halfspaces by deptla-+ 1) circuits of majority gatesGHR92
GK98)), but on the other hand many seemingly basic questionsirenmsolved: for instance it is
conceivable that every function P is computable by a deptheircuit of halfspacesHMP*93,
Kra91, KW91, FKL*01]. In learning theory, the problem of learning an unknowrf$mdce has
arguably been the most influential problem in the develogrogthe field, with algorithms such
as Perceptron, Weighted Majority, Boosting, and SuppodtdfeMachines emerging from this
study. Halfspaces (with non-negative weights) have alem Is¢udied extensively in game theory
and social choice theory, where they are referred to as ‘hetymajority games” and have been
analyzed as models for voting, see e.Ben46Isb69 DS79 TZ92).

In this work we make progress on a natural complexity-thioigpiestion about halfspaces.
We construct the first explicit pseudorandom generators{—1, +1}* — {—1,+1}" with short
seed lengths that fool any halfspacg : {—1,+1}" — {—1,+1}, i.e. satisfy

| Buc o140y [H(C(@))] ~ Bae s (@] < e,

for a smalle. We actually prove that the class of distributions knowrk-agise independent has
this “fooling” property for a suitablé:; as pointed out below, a generator can then be obtained
using any of the standard explicit constructions of suctriigtions.

Definition 1.1. A distributionD on{—1, +1}" is k-wise independerit the projection ofD on any
k indices is uniformly distributed over—1, +1}*.

Theorem 1.2 (Main). Let D be ak-wise independent distribution op-1,+1}", and leth :
{-=1,+1}" — {—1,+1} be a halfspace. Theh fools i with errore, i.e.,

€

Bnlh()] - Beh(e)] <c. provided k> < log? (1)

whereC' is an absolute constant aixis the uniform distribution ovef—1, +1}".

Our Theoreml.2 s tight up tolog(1/¢) factors, as can be seen by considering the halfspace
h(x) := sign(d_, .., z:;) and thek-wise independent distributidw,, zs, . . ., 24, [ [,<f, %o, Ty, - - -, T0)
where the variables; are independent and uniform{r-1, +1}.

Standard explicit constructions bfwise independent distributions over 1, +1}" have seed
lengthO(k - logn) [CG89 ABI86], which is optimal up to constant factor€ GH*85]. Plugging

1



these in Theorert.2, we obtain explicit pseudorandom generatGrs{—1,+1}* — {—1,+1}"
that fool any halfspace : {—1,+1}" — {—1,+1} with errore and have seed length= O(log n-
e 2log?(e™h)).

Discussion and comparison with previous explicit generats. The literature is rich with explicit
generators for various classes, such as small constatti-depuits with various gatesAjv85,
Nis91, LVW93, Vio07, Baz07 Bra0g, low-degree polynomialsNN93, AGHP92 BV07, Lov08§,
Vio08], and one-way small-space algorithmdig92. Many of these classes (such as low-degree
polynomials and A€ circuits) provably cannot implement halfspaces, and iiskmown how to
implement an arbitrary halfspace in any of these classespse of these results gives Theorem
1.2 However, some of these resuldi$92 LVW93, Vio07] give generators for theestricted class

of halfspaces given by(z) = sign(} ., w;z; — 0) where the weights are integers of magnitude
at mostpoly(n). While it is well known that every halfspace has a represemtawith integer
weights, it is not possible to represent an arbitrary haléspwvithpoly(n) integer weights. Indeed,
an easy counting argument (see eMTP4, Has94) shows that if the weights are required to be
integers then almost all halfspaces require weights of madgm2?); in fact some halfspaces
require weights of magnitud2®™'>=™) [H&as94. Our result is for the entire class of halfspaces
with no restriction on the weights, and much of the richnelshalfspaces only comes in this
setting; for example, the “odd-max-bit” functioB¢i94], the “universal halfspace' GHR93, and
other important halfspaceslfs94 all require exponentially large integer weights. Moregesen

for the restricted class of halfspaces where the weightsigggers of magnitude at mosbly(n),
previous techniquedis97 give seed length = O(log” n) at best, while we achieve= O(logn)

for constant error.

Other related results. Several recent papers have studied the powérwise independent distri-
butions. An exciting recent result of Bravermd@r§09, which builds on an earlier breakthrough
of Bazzi Baz07 (simplified by RazborovRRaz0§), shows thapolylog(n)-wise independent dis-
tributions fool small constant-depth circuits, settlingpmjecture of Linial and NisaiN90]. Ben-
jamini et al. [BGGPOT showed that any)(1/¢?)-wise independent distributic® on {—1, +1}"
satisfies Pr,_p[>,z; > 0] — 1/2| < ¢, i.e., such distributions fool the majority function. (We
discuss BGGPOT in more detail shortly. Here we note that their result dogisseem immediately
relevant for constructing generators, because to fool th@mity function, with optimal errof),
one can just output™ with probability1/2 and(—1)™ with probability1/2.)

The problem of constructing generators for halfspaces bas bonsidered by several authors
in the recent literature. Rabani and Shpilka give an exalamstruction of am-net, ore-hitting set,
for halfspacesRS09: a set of sizepoly(n, 1/¢) which is guaranteed to contain at least one point
whereh(z) = +1 and at least one point whehéx) = —1 for any halfspacé which takes on both
values with probability at leastunder the uniform distribution. However, their constrantdoes
not offer any guarantees about the distribution of theseegl RS0g pose as a research goal “to
build methodically a theory of generators for geometricctions” such as halfspaces.

The problem of generators for halfspaces also arose intreaak by Gopalan and Radhakr-
ishnan [GR09 on finding duplicates in a data stream. They required a geoethat allows one
to estimate the influence of a variable in a halfspace, a prolvhich is in fact equivalent to con-
structing a generator for a related halfspace. They obgbateNisan’s space generatdi§9o2
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suffices for the halfspaces arising in their context, buy ttaése the problem of constructing gen-
erators for general halfspaces. Our result does not impgha/gpace bounds for their problem, but
it makes the analysis simpler by showing that one cange?)-wise independence to estimate
the influence to within an additive

1.1 Techniques

Our proof combines tools from real approximation theoryhwgtructural results regarding half-
spaces. An important notion is that of asregular halfspace; which is a halfspaddz) =
sign()_, w;x;—0) where no more than anfraction of the2-norm of its coefficient vectofwy, . . ., w,)
comes from any single coefficient,. We first show that-wise independence fools alregular
halfspaces, and then use this to prove thatise independence fools all halfspaces. Our proof can
be broken into three steps.

Step 1: Fooling regular halfspaces.Our starting point is Bazzi’s observatioBdz07 Theorem
4.2], Theorem 4.2 (also iBIGGPO07) that to establish that everyrwise independent distribution
on{—1,+1}" fools a Boolean functiorf : {—1,+1}" — {—1, +1} with errore, it is sufficient to
exhibit two “sandwiching” polynomialg,, ¢, : {—1,+1}" — {—1,+1} of degree at most such
that:

e q.(x) > f(x) > q(x) forallz € {—1,+1}"; and
* Eylgu(z) = f(2)], Byf(2) = q(2)] < e

Using only classical tools from real approximation theavg give a proof of the existence
of univariate polynomials of degref(¢) := O(1/¢?) which, roughly speaking, provide a good
sandwich approximator to thenivariate function sign(¢) under the normal distribution ofR.
This is useful because of the following simple but crucialght: for any regular halfspacdéx) =
sign(w - x — @), the argumentv - = — 0 is well-approximated by a normal random variable (a
precise error-estimate is given by the Berry-Esséen émprFor any-regular halfspace, we can
plugw - = — @ into our univariate polynomials, and obtain low-degreeds@nh polynomials for:,
establishing thak(¢)-wise independence fools alregular halfspaces. The construction of these
polynomials is the most technically involved portion ofstipiaper.

Of course, there are halfspacés (w -« —0) that are far from being-regular and have -« —0
distributed very unlike a Gaussian. To tackle general palfss, we use the notion of theritical
index of a halfspacewhich was (implicitly) introduced in$er07 and has since played a useful
role in several recent results on halfspac®$08§ MORS09 DS09. Briefly, assuming that the
weightswy, ..., w, are sorted by absolute value, theritical index is the first indexX so that
the weight vectofw,, w44, . .., w,) is e-regular. The previous Step 1 handled halfspaces that are
regular, corresponding to= 1. We now proceed by analyzing two cases, based on whethet or no
1 < ¢ < L(e), or ¢ > L(e), for L(e) := O(1/€2). In both cases, it is convenient to think of the
variables as partitioned into a “head” part consisting trst fi(¢) variables and corresponding to
the largest weights, and of a “tail” part consisting of thstre

Step 2: Fooling halfspaces with small critical index{ < L(¢)). We argue that for every setting
of the head variables, theregularity of the tail is sufficient to ensure that the oVlenalfspace
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gives the right bias. More precisely, assume thas (K (¢) + L(e))-wise independent, and note
that each setting of théhead variables gives arregular halfspaceign(w - = — ') over the tail
variables (with the constaft depending on the values of the head variables). Since thgimahr
distribution on the tail variables i& (¢)-wise independent for every setting of the head variables,
the distributionD fools all such halfspaces.

Step 3: Fooling halfspaces with large critical index { > L(¢)). In this case, we show that the
setting of the head variables alone is very likely to detaesthe value of the halfspaby a large
margin More precisely, we show that a uniform random assignmetitédead variables is very
likely to yield a halfspaceign(wr - zr — ') over the tail variable§” where|¢’| > ||wr]|2/€. AS
long as the tail variables are pairwise independent, by @tedy’s inequality it follows that the
valuewr - z will be sharply concentrated withir-||wz |2, +||wr||2]. So, for most settings of the
head variables, we get something very close to a constacatiduover the tail variables. Since a
(L(¢e) + 2)-wise independent distribution gives us uniform randomriesthe head variables and
pairwise independence for the tail variables, boundeddeddence fools these halfspaces as well.
The idea behind the proof of the large margin property istipab the critical indexX — which
in this case is large/(> L(¢)) — the weightgwy, . .., w,_1) must be decreasing fairly rapidly; this
implies strong anti-concentration for the distributionégf which yields large margin with good
probability.

Overall, the amount of independence required for all thedisteps to work isiax{ K (¢), K (¢)+
L(€), L(e) + 2} = O(1/€?).

Univariate approximations to the sign function. As mentioned above, our approach relies on the
existance of low-degree univariate sandwich approxinsaimthe sign function under the normal
distribution onR.. Low-degree approximations to the sign function have bagied in both com-
puter science and mathematics (see for instaRat EY07, KS07] and the references therein).
However it appears that these results do not fit all our requénts. Below we discuss how our
approach relates to the work of Benjaménial.[BGGPOT and Eremenko and YuditskigY07].

Benjaminiet al. prove thatO(1/€%)-wise independence suffices to fool the majority function,
using machinery from the theory of the classical moment lerab However, their proof seems
to be tailored quite specifically to the majority functiorhheve the moments can be understood in
terms of Krawtchouk polynomials and known bounds on suclrgohials can be applied, so it
seems difficult to extend their approach to general halispéar indeed even to slight variants of
the majority function).

Bazzi’s condition on the existence of sandwiching polyrasimentioned above is in fact
both necessary and sufficient for &Hlwise independent distributions to fool a functignThus
the BGGPO07 theorem implies the existence 6f(1/¢?)-degree multivariate sandwich polynomi-
als for the majority function; symmetrization then implibat there exist univariate polynomials
which, roughly speaking, provide good sandwich approxiometo the functiorsign(¢) under the
binomial distribution. This is similar in spirit to the rdswve establish (mentioned in Step 1
above) about univariate polynomial approximators, butehe a crucial difference: since the bi-
nomial distribution is supported only on the integérsn, . .., n}, it seems difficult to infer much
about the behavior of the univariate polynomial on valuetside of {—n,...,n}. Hence, it is
unclear whether these polynomials can be used for generatém regular) halfspaces.
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In contrast, we work with thdest possiblgointwise approximation to the functiogn (t)
on the (piecewisegontinuousdomain|[—1, —a] U [a, 1]. This uniform error bound is convenient
for dealing with regular halfspaces; moreover, workingwitie optimal pointwise approximator
allows us to exploit various properties of optimal approaiors that follow from the theory of
Chebyshev approximation, in a way that is crucial for us ttawbthe required “univariate sand-
wich approximators.”

We note that a recent work in approximation thedty D7] analyzes the error achieved by this
optimal polynomial and in particular establishes the lingtbehavior of the error, using tools from
complex analysis. For our purposes, though, we requirertioe ® converge to the limit fairly
rapidly and it is unclear whether the results B¥07] guarantee this. We present an error analysis
which is elementary (it only uses basic approximation tijeand moreover matches the limiting
bounds of EY07] up to a constant factor.

Finally, we briefly discuss some other work on polynomial ragpmations to halfspaces, a
topic that has been studied extensively, motivated by eipiins to complexity theory and com-
putational learningjlS92 Pat92 KOS02 KKMS05, KS07]. Nisan and Szegedy showed that the
n-variable OR function has a pointwisé,() approximation of degre®(,/n) [NS93, and Pa-
turi showed that such approximations to Majority requirgrée()(n). A beautiful theorem by
Peres shows that halfspaces have noise staliilityc) [Per04, improving on anO(e'/*) bound
due to Benjaminiet al. [BKS99. Klivans et al. used this to show that every halfspace has an
e-approximation in/, of degreeO(e~2) [KOS0ZJ. We note that while low-degre& approxima-
tions do imply the existence of low-degréeapproximations, Benjamirt al.[BGGP01 showed
that they do not imply the existence of sandwich approxiomesti indeed, recursive Majorities
of depth2 have/, approximations of degre@(¢~*) but require degre€(,/n) for sandwich ap-
proximations. Thus this paper’s results do not follow frdre ©® (¢ ?)-degree/, approximators of
[KOSO02.

Organization. After some preliminaries in Sectid? in Sections3 and4 we show how to fool
regular halfspaces. First we discuss how a certain unieapi@lynomial approximator teign(t)
yields low-degree sandwich polynomials for regular halfss, then in SectioB.1 we construct
the required univariate polynomial, and finally in Sectibwe put everything together. We show
how to fool non-regular halfspaces in Sectmn/Ne conclude in Sectio mentioning a few open
problems.

2 Preliminaries

We require a few basic facts from probability theory: thergdtsséen theorem and the standard
tail bounds of Hoeffding and Chebyshev. We discuss them next
The Berry-Esséen theorem is a version of the Central Liméorem with explicit error bounds:

Theorem 2.1. (Berry-Es&en) LetX,,..., X, be a sequence of independent random variables

satisfyingE[X;] = Oforall i, /Y, E[X?] = 0, and}_, E[|X;|’] = ps. LetS = (X1+---+X,,) /0
and letF' denote the cumulative distribution function (cdf)fThen

sup | F(z) — ®(x)| < Cps/0”,
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where® is the cdf of a standard Gaussian random variable (with mesn and variance one),
andC' is a universal constant.ghi8q has shown that one can take = .7915.

Corollary 2.2. Letzq, ..., x, denote independent uniformiyl random ssigns and let, ..., w, €
R. Writeo = />, w?, and assuméw;| /o < 7 for all i. Then for any intervala, b] C R,

‘Pr[a < wiwy + - A wpr, <) — O([4 9])‘ <27,

where®([c, d]) := ®(d) — ®(c). In particular,

b
Prla <wizqy + - 4+ wpz, < b SM—FQT.
o

For completeness we recall the Hoeffding and Chebyshevdsoun

Theorem 2.3(Hoeffding) Fix anyw € R"™. For any~ > 0, we have

Priw-z>nfwll] <e™? and  Prlw-z < —yuwl] < e/

Theorem 2.4(Chebyshev) For any random variableX with E[X] = p and Var[X] = ¢? and
anyk > 0,

1
Pr[| X — p| > ko] < o

3 Fooling regular halfspaces

Throughout this paper we assume without loss of generdiay halfspaces are normalized to
satisfyw? + - - - + w? = 1. Such a representation can always be obtained by appmpdaling.

Definition 3.1 (Regular Halfspace)A halfspacef is said to be-regular if it can be expressed as
f(z) =sign(w - x — ) where foralli = 1, ..., n, we havew;| < e.

An e-regular halfspacé¢(z) = sign(w - = — 6) has the convenient property that the cumulative
distribution function (cdf) ofv-z—@ is everywhere withint O(¢) of the cdf of the shifted Gaussian
N(—60,1). This is a direct consequence of the Berry-Esséen TheoBem Sectior?). In this
section we show how to fool regular halfspaces. Given0, we define the following parameters:

€ 4clog(1/€) 5c ) )
a(e) Clog(1/0)" K(e) , +2< ” og(1/e) O(og( /e)/e)
We assume without loss of generality thas a sufficiently small power of (i.e.,e = 27 for

some integef). The positive constants andc will be chosen later; but (with foresight), we will
require thatC' > c.

Theorem 3.2 (Fooling e-regular halfspaces)Any K (e)-wise independent distribution foots
regular halfspaces with error2e.



To prove the theorem we construct certain “sandwichingypomials. We now define such
polynomials and then explain why they are sufficient for cunposes.

Definition 3.3. Let f : {—1,+1}" — {—1,+1} be a Boolean function. A pair of real-valued
polynomialsg(xy, ..., z,), q.(z1,. .., x,) are said to be-sandwich polynomials of degréefor
f if they have the following properties:

o deg(qu),deg(qr) < k;
e q,(z) > f(x) > qx) forallx € {—1,+1}";
o E.ulgu(r) — f(2)] < eandEqy[f(z) — q(2)] < e

The following fact proved via LP-duality relates sandwigdnpolynomials to foolingBaz07.
We only use the “if” direction of this lemma, which followssly by linearity of expectation.

Lemma 3.4 (Bazzi) Let f : {—1,+1}" — {—1,+1} be a Boolean function. Ever-wise
independent distributioa-fools f if and only if there exist-sandwich polynomials of degréefor

f.
The crux of our construction of sandwiching polynomials fegular halfspaces is good uni-
variate approximations to the sign function:

Theorem 3.5.Let 0 < ¢ < 0.1 and leta and K be as defined above. There is a univariate
polynomial P(t) such thatleg(P) < K with the following properties:

(1) P(t) > sign(t) > —P(—t)forallt € R;

(2) P(t) € [sign(t),sign(t) + €] fort € [-1/2,—2a] |J[0,1/2];
() P(t) € [-1,1+4¢€| fort € (—2a,0);

(4) |P(t)| <2 (4t)% forall |t| > 1/2.

Property (1) says tha®(¢) is an upper sanwdich to thén function. By property (2) P gives
a pointwise approximation with errerin the interval—1/2, 1/2], except for the intervgl-2a, 0]
where it has error at mo&t+ ¢ by property (3). For > % property (4) bounds how rapidly
P(t) grows. For a qualitative depiction @f we refer the reader to Figure 1 (this figure is not an
actual plot, it is intended to illustrate the behaviorffon various intervals; also the parameter
1/2 is replaced byl — a > 1/2 for later needs). Before constructiigy we outline the proof of

Theorem3.2using the polynomiaP; the full proof is in Sectior.

Overview of the proof of Theorem3.2  Given ane-regular halfspacé(z) = sign(w - © — ),
and assume that| is small (the case whelé| is large is simpler). Let us define

w-x —0

Z

where we choose the scaling factérto be©(¢ ). We useg,(z) = P(t) andgq,(z) = —P(—t)
as the upper and lower sandwich polynomials respectivete Sandwiching property is easy to
verify, the crux is to bound,[¢,(z) — h(z)]. We do this by case analysis.
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-

Figure 1. Qualitative plot of polynomidp.

1. If ¢ lies in the interval—2a, 0] then, although the erray, () — h(z) may be large, by our
choice ofZ it must be the case that - « lands in an interval of length(¢). By the anti-
concentration ofv - = (which is a consequence of theegularity ofw), this only happens
with probabilityO(e). Thus the contribution t&, [¢,(z) — h(x)] from this eventigD(e).

2. Inthe event thatlies in[—1/2,1/2] \ [—2a, 0], the pointwise errog, (z) — h(zx) is at most
e because, by Property (2}, gives a good pointwise approximation to the sign function in
this range. So this event contributes at most) to E, (¢, (z) — h(x)].

3. Finally, the event that the inptihas absolute value bigger tharR corresponds to the event
that|w - =z — 0] > Z/2. Sincew? + --- +w? = 1, || is small, andZ is ©(¢ '), we can
bound this probability using the Hoeffding bound. In thiget; the pointwise error is large
but we can bound it from above using Property (4). Our chofgegacameters ensures that
the Hoeffding bound dominates the growth of the polynomiiako that the contribution to
E.[q.(x) — h(z)] is again at mosD (e).

Thus, overalE,[g.(x) — h(z)] = O(e). One can similarly bound the error @f.

3.1 Proof of Theorem3.5

This section contains our proof of Theor&. The key step is to exhibit a low-degree univariate
polynomial that approximatesgn(¢) well when|t| € [a, 1] and is well-behaved even for larger
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values of|t| to be compatible with the sandwich condition. We phrasedkig problem in uni-
variate approximation. The solution we use is a low-deggromial p(¢) which is an optimal
pointwise approximator teign(¢) on [—1, —a] U [a, 1]. Such an optimal polynomial exists and
we prove that it is well-behaved for lardg, using ideas from classical approximation theory.
However, it seems difficult to construct this polynomial ksifly and bound its error.

Recent work by EYO07] analyzes the error achieved by such a polynomial and inqodet
establishes the limiting behavior of the error functionr Bar purposes, though, we require the
error to converge to the limit fairly rapidly and it is uncte@hether the results oY07] guarantee
this.

Instead, we bound the error by constructing a small erroreqdmator¢(t¢) using Jackson’s
theorem together with standard amplification ideas. Wh({t¢ might not be well-behaved for
large values ot, we only use it to bound from above the errorpdf) on [—1, —a] U [a, 1]. Our
approach has the advantage of being fairly elementaryqusity standard ingredients from basic
approximation theory) and matches the limiting bound€f(7] up to a constant factor.

For a bounded continuous functign [—1, 1] — R, we define itsnodulus of continuity;(¢)
as

wr(0) = sup{[f(z) — f(y)| : z,y € [-1 1]; [z —y[ < 0}.
A classical result of Dunham Jackson from the early twelnentury bounds the error of the best
degreet approximation tof.

Theorem 3.6. (Jackson’s Theorem)[Car, Page 104], Che6§. For f as above and any integer
¢ > 1, there exists a polynomial(t) with deg(J) < ¢ so that

s 10) = (0] < 6 (7).

te[-1,1]

;. We now definen := closll/o)

Recall the parameter = ﬁ It will be crucial for us that
m IS even (see in particular the iast paragraph of the proofm!bTerrB 10); for this condition to
be satisfied, it is of course enough tlaas even. (We also note that the paramet&randm are

such thatk’ = 4m + 2.)
Lemma 3.7. For a, m as above, there is a polynomiglt) of degree at mostm such that

max [g(t) —sign(t)] < ¢”
t|e

Proof. Define the continuous and piecewise linear functf¢h as

_ Jsign(t) a <t <1
f(t)_{t/a |t|§a.

Thus f(t) increases linearly from-1 to 1 in the rangg—a, a]. A simple calculation yields that
wy(3) = 1/(al). Taking? > 25/a, Jackson’s theorem gives a polynomidt) of degree at most

such that ¢ 1
max |J(t) —sign(t)] < max [J(t) — f(t)] < — 7 <1

a<lt/<1 te[~1,1]
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Our goal is to bring the error down t3. Rather than using Jackson’s theorem for this (which
would require degre@(c~*)), we use the degreleamplifying polynomial

o ()05 ()

.y
Jjzs

This polynomial has the following properties (easily prowga elementary calculation and
also following from the Chernoff bound):

Claim 3.8. The polynomiald,(u) satisfies:
1. Ifu € [3/5,1], then2A,(u) — 1 € [1 — 2e7*/6 1].
2. Ifu € [-1,-3/5], then2A4,(u) — 1 € [-1, —1 + 2e*/6].
We define the polynomial

g(t) == 24, <§J(t)) 1

wherek = 15log(1/€). Scaling.J(¢) by + ensures that the argument t, lies in the range
[—1,—-3/5] U [3/5,1] whenevelit| < a. Applying Claim3.8with & = 15log(1/¢) gives

max |q(t) — sign(t)| < 2e7/° < €.
lt|€[a,1]

Finally, by selecting: large enough, we have

2 2
deg(q) < deg(J) deg(Ay) < ;5 15105(1/¢) <~ log(1/€) = 2m.

We use Chebyshev’s classical theorem on (weighted) reghpotial approximation.

Theorem 3.9. (Chebyshev’'s Theorem)Ach56 Page 55]. Letf : [a,b] — R be a continuous
function. Lets : [a, b] — R be a continuous function that does not vanishamn]. The polynomial
r(z) of degreen that minimizes

M(m) = max [f(z) — s(2)r(2)|

z€[a,b]

is unique, and it is characterized by the property that thexestm + 2 pointsa < z5 < z1--- <
zm+1 < bsuch that for each;

M(m) = [f(z:) — s(zi)r(z)|

and the sign of the error at the’s alternates.
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Figure 2: Qualitative representation of polynomial

We now present the “well-behaved” polynomy@t ) mentioned at the beginning of this section.
To help the reader visualizgt), we provide a schematic representation in Figure 2. (Asrbefo
this figure is not an actual plot, but rather is intended tositlate the behavior gf on various
intervals.)

Theorem 3.10.Let « and m be as previously specified. There is a univariate polynomial
wheredeg(p) < 2m + 1 such that:

1. p(t) € [sign(t) — €2, sign(t) + €*] for all |¢] € [a, 1];
2. p(t) e [-(1+ €}, 1+ € forall t € [—a,al;
3. p(t) is monotonically increasing on the intervdlsoo, —1] and[1, co).

Proof. Intuitively, the polynomiap is the “best possible” approximator to the functiagn. How-
ever, some care is required because the funetipnis not continuous. We present an analysis that
assumes no background in approximation theory.

Invoking TheorenB.9, letr(z) be the polynomial of degree that minimizes

max |v/zr(z) — 1.

z€[a?,1]

Definep(t) :=t - r(t?).
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Bounding the error op(¢) for |t| € [a, 1]: A polynomialp*(t) is oddif the coefficients of the
even powers of are(; it can be written ag*(t) = ¢ - r*(¢?). Note that

max |p*(t) — sign(t)| = maX [t-r (tz) —sign(t)| = max [z -7r*(z) — 1. (2)
[t|€[a,1] [t|€la,1 z€la?,1]

By Theorem3.6there exists a polynomial () of degree2m < 2m + 1 such that

max [p*(t) — sign(t)| < €.

lt|€[a,1
We can assume that(¢) is odd, for else we can replace it by the odd polynortpélt) —p*(—t)) /2
whose error is no worse. Therefore we can wpit@) = ¢-7*(¢?). Using Equatior, the definition
of r, and the property gf* above, we can now bound the errorpods follows:

max |p(t)—sign(t)] = max [vzr(z)-1| < max [vzr"(z)~1] < max [p*(t)—sign(t)| < €.
[t|€la,1] 2€[a?,1] z€[a?,1] [t|€]a,1]
This concludes the proof of Property (1).
Other properties op: By Theorem3.9we find that there is a sequence of points

a2§z0<z1...<zm+1§1

so that the errot/zr(z) — 1 achieves its maximum magnitude exactly at the poiptand the sign
of the error alternates. Sgt= ,/z; > 0 sothata <, <t;... <t,41 < 1. Letg(t) be the error
function¢(t) = p(t) — sign(t). Note that fort > a, we have

¢(t) = p(t) — 1, and(—t) = p(—t) — (=1) = —p(t) + 1 = —o(1).

In particular, for each; we havelo(t;)| = |o(—t;)|-

Now consider the intervala, 1|, on which¢(t) = p(t) — 1. Note that¢'(¢) is well de-
fined and equalg’(¢) at any point in(a,1). The pointsty, ..., t,, lie in (a,1) and they are lo-
cal maxima/minima, since(t) cannot increase in magnitude in the neighborhood;.ofThus
¢'(t;) = p'(t;) = 0 for eachi € [m]. Similarly, we can show thap'(—t;) = p/(—t;) = 0 for
i € [m]. Butdeg(p') is at most2m, and so we have located all its roots. As we now show, this
allows us to determine the sign pin the interval§ —oo, —1], [—a, a] and[1, co].

Note thatp(¢,) is close tol whereag(—t,) is close to—1, and thug increases monotonically
in the interval —t4, ¢;) which includes—a, a]. This gives Property (2). Alsq is a local maximum
for p, which shows that thg’s are maxima whenis odd, and minima whehis even. Thus, since
m is even,p(t,,) is a local minimum, s@(t) increase monotonically in the rangg,, oo), which
includes|1, co0). Sincep(t) is odd, this also implies thaf(¢) is monotonically increasing in the
range(—oo, —t,,,) which containg§—oo, —1|. This gives Property (3).

(|

Using the polynomiap(t), we construct the polynomia?(¢) which is a good “upper” approx-
imator tosign(¢) (i.e. P(t) > sign(t) for all t), completing the proof of Theore®.5 (restated
below).
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Theorem 3.5. (Restated.l et 0 < ¢ < 0.1 and leta and K be as defined above. There is a
univariate polynomiaP(¢) such thatleg(P) < K with the following properties:

(1) P(t) > sign(t) > —P(—t)forallt € R;

(2) P(t) € [sign(t),sign(t) + €] fort € [-1/2,—2a] |J[0,1/2];
() P(t) € [-1,1+4¢€| fort € (—2a,0);

(4) |P(t)| <2-(4t)% forall |t| > 1/2.

Proof. Let p denote the polynomial of degrée: + 1 from TheorenB.10 Consider the following
polynomial:

P() = 5+ 4 p(t ) — 1

Note thatdeg(P) = 2deg(p) < K. We now consider the behavior éf on the relevant intervals.
We repeatedly use the inequaliff2 + 2¢2)2 — 1 = 1 +4€® +2¢* < 1+ e which holds since < .
Note thatP(¢) > —1 holds for allt. We now analyze the behavior #ft) interval by interval:

(@) t € [-1—a,—2a). Herep(t + a) € [-1 — €2, —1 + ¢2], henceP(t) € [-1,—1 +¢].
(b) t € (—2a,0). Herep(t + a) € [-1 — €*,1 + €?], henceP(t) € [-1,1 + €.

(c) t € 0,1 —a). Herep(t +a) € [1 — €*,1 + ¢2], henceP(t) € [1,1 + ¢].

(d) t € (1 —a,o00]. Herep(t +a) > 1 — €, henceP(t) > 1.

This shows thaf’(t) > sign(t) for all t € R. Thus we also have
P(—t) > sign(—t) = sign(t) > —P(—t)

which establishes Property (1). Properties (2) and (3p¥olimmediately from (a), (b) and (c)
above.
For Property (4), we use the following standard fact fromragpnation theory.

Fact 3.12. [Car, Page 61], Riv74]. Let a(t) be a polynomial of degree at mogtfor which
la(t)| < binthe interval|—1,1]. Then|a(t)| < b|2t|* for all [¢| > 1.

Takinga(t) to be P(t/2), properties (2) and (3) give us thdt(¢/2)| < 2 fort € [—1,1]. So
the fact givegP(t/2)| < 2|2t|*™ 2 for |t| > 1, i.e.|P(t)| < 2|4t|*™ 2 for |¢t| > 1/2. O

4 Proof of Theorem3.2

In this section we prove Theoref12 any K (e)-wise independent distribution foolsregular
halfspaces with errar2e.

We start with recording in the following theorem the propesof P, our univariate polynomial
approximator to the sign function.
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Theorem 3.5. (Restated.l et 0 < ¢ < 0.1 and leta and K be as defined above. There is a
univariate polynomiaP(¢) such thatleg(P) < K with the following properties:

(1) P(t) > sign(t) > —P(—t)forallt € R;

(2) P(t) € [sign(t),sign(t) + €] fort € [-1/2,—2a] J[0,1/2];
(3) P(t) e [-1,1+¢]fort € (—2a,0);

(4) |P(t)| <2-(4t)% forall |t| > 1/2.

Theorem3.5was proved in SectioB.1 We now proceed with the proof of Theoreéh2

4.1 Proof of Theorem3.2
Let h(z) = sign(w - = — @) be ane-regular halfspace (and recaff + - - - +w? = 1.) Let

€ Clog(1/e)
2a 2e '

Z =
We break the analysis into the following two cases, baseth@miagnitude of the threshald

4.1.1 |0]issmall (0| < Z/4)

The sandwich polynomials we use are:

o) = P (L220) )= - () ®

First, observe that for every € {—1, +1}" we have
Gu() = W) = qz).
This is because from TheoreBibwith ¢t = (w -z — 6)/Z we get

¢u(z) > sign (%‘9) — sign(w -z — 0) = h(z) > q(x).

In the rest of this section we bound the error of the approtona
Lemma 4.2. E,[g.,(x) — h(z)] < 10e.

Proof. Define the random variablg (z) = (w - = — 0)/Z. We prove the desired upper bound by
partitioning the space into three events and bounding th&ibation from each:

1. Sy isthe eventthatl (z) € [—¢/Z,0].
2. Sy is the event thatH (z)| < 1/2, butS; does not happen.

14



3. S;is the event thatH (z)| > 1/2.

We have 5
E;[qu(z) — h(z)] = Z Pr(S:] By gu(z) — h(x)|5i].

Case 1: In this case, the pointwise error is moderate — at most §) — and we use gaussian
anti-concentration to argue that the event has small pilifyabass. The event!/ (z) € [—¢/Z, 0]
implies that

w-x—0

Z

using Item (3) in Theorer.5.
Sinceh is e-regular, from Corollary?.2it follows thatPr,[H () € [—¢/Z,0]] < 3e. So,

€[-2a,0] = qu(v) <1+e = qulr)—h(z) <2+e

er[Sl] E.[q.(x) — h(z)|S1] < (2+¢€) - 3e < 8e.

Case 2: This event has high probability, but in this range we get gpoititwise approxima-
tion. The event, implies that
H(z) € [-1/2,1/2]\ [-2a,0] = qu(z) < h(z) +€ = qu(z) —h(z) <€
where we used Item (2)in Theore3rb. So,
PrSo] Eylgu(z) = h(2)]9] <1-e<e

Case 3: Here we trade off the large magnitude of error (Item (4) in dreen 3.5) with the
small probability of the event (bounded by the Hoeffding du Define the intervals

I = [Z (j+1)) forj=1,2,...

I; = (M,%ﬂ fork=1,2,....

We can write

Pr[S5] Exlgu(x) — h(x)|Ss] = ) Pr[H(2) € [[]Eulgu(x) — h(x)|H(x) € I}]

T ZP;I[H(@ € I7]Euqu(z) — h(2)|H(z) € I].  (4)



Recalling that we haviP(t)| < 2 - (4t)% fort > 1/2, we get that
qu(r) = P(H(x)) < 2(2j +2)".
Sinceh(x) = 1, we get
qu(®) = h(z) = q(x) =1 < 2(2j +2)" - 1. (5)

Next we boundPr,[H (x) € I}] using the Hoeffding bound.
PI‘[H(I‘) = Ij—i_] <Pr [w x—0 > %} < Pr |:'LU -r > %:| < 6_j2Z2/32 (6)

where the second inequality uses the fact thiatl 7 /4.
The analysis of the interval§ is similar (except(z) = —1). ForH (z) € I,_ we get

H(2)| < 4= = qu@) <2(k+1)" = quz) —h(z) <22k +2)"+1. (@)

Similarly, the Hoeffding bound gives

Pr[H(z) € I,/] < Pr [w 93—9<_T]€Z} <Pr [w-xé —TkZ} < e K72 (8)

Plugging equations}, (6), (7), (8) back into @), we get

2(25 +2)K —1 22k +2)K +1
Prr[S?)] E:C[ ( |S < ; 2z2/32 _l_ ; €k2Z2/32
jz
(2 2)
o 42 92—2:/32 426](21( Z2/32
j=1 j>1

where the last inequality follows by noting that, fob 1, (2j+2)K < 27 andei®Z°/32 > ¢17°/32,

But now observe that ) 2( 1o
A C'log“(1/e C

For a suitable choice af > ¢, we have thatOc — C'/128 < —1, so
. og2 1/e
Pr(Sh) By lg (@) — h(a)|Sh] <4 ) e E <
j
Thus overall, we hav&, [q,(x) — h(x)] < 10e. O
The lower sandwich bound follows by symmetry:

Lemma 4.3. E,[h(x) — ¢(z)] < 10e.
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Proof. Sinceq,(z) < h(z) for everyz, we also have-h(z) < —q(x). Thus

—q(z) =P (9 _;U : x)

is an upper sandwich for the functioph(x) = sign(é — w - z). As this does not change the
magnitude o, we can apply the analysis of Lemm&to conclude that

E.[h(z) = ()] = Ex[-q(z) = (=h(z))] < 10e.

4.1.2 |0|islarge (0| > Z/4)

We assume for simplicity that > Z/4 (the case wheH is negative is handled similarly). The
sandwich polynomials we use are:

ro(z) = P (%_ZM) , m(z) = —1. 9)

Lemma4.4. h(x) > r(x) forall x € {—1,+1}". Further, E,[h(z) — r(x)] < 2e.

Proof. Note thatE, [h(z) — r/(x)] = 2Pr,[h(xz) = 1]. For large enougli’ we havePr, [h(x) =
1] =Prfw-z>0] <e?/3 <e O

Lemma 4.5.r,(z) > h(z) forall z € {1, +1}". Further,E,[r,(x) — h(z)] < 12e.

Proof. Observe that,(x) is the upper sandwich polynomial for the halfspater) = sign(w -
x — Z/4) as specified in Sectioh.1.1 Thus we have

ro(z) > W(x) > h(x)

hence
E.[ru(z) = h(2)] = By[ru(z) — W' (2)] + E,[I'(z) — h()].

By Lemma4.2 E,[r,(z) — W' (x)] < 10e whereas by the Hoeffding bourtd, [/ (z) — h(x)] < 2
which completes the proof. 0J
5 Fooling non-regular halfspaces

In this section we show how to fool halfspaces that are naileegWe proceed by case analysis
based on theritical indexof the halfspace, which we define shortly. Throughout thitisae we
assume that the weights of the halfspace are decreasing:
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We can assume this without loss of generality because weaaing ¢p prove that, for a suitable
k, any k-wise independent distribution fools such halfspaces, taedoroperty of being:-wise
independent is clearly invariant under permutation of teables.

Some notation: Fof’ C [n] we denote by, the quantityor := />, . w?. Fork € [n] we
also writeoy, for oy j41,...n}-

Definition 5.1 (Critical index) We define the-critical index/(7) of a halfspacé = sign(w-z—0)
as the smallest indexe [n] for which

lw;| < 70y
If this inequality does not hold for anye [n], we define/(7) = co.

Note that a halfspace isregular if /() = 1; in this section we handle the ca&e) > 1.

We assume without loss of generality thas sufficiently small. Giver, our threshold for the
critical index is 2(10/0

8log”(10/€
L(e) := — =
We argue separately depending on whettier > L(¢) or not. Both proofs rely on the following
simple property of:-wise independent distributions.

Fact 5.2. Let D be ak-wise independent distribution ovér-1, +1}". Condition on any fixed
values for anyt < k bits of D, and letD’ be the projection oD on the othemn — ¢ bits. ThenD’
is (k — t)-wise independent.

The first theorem addresses the simpler case Wherk L(e).

Theorem 5.3(Fooling non-regular halfspaces with small critical injlelxet 2 (z) be a halfspace
with e-critical index/(e) < L(e). Then any K (¢)+ L(e))-wise independent distributian(e)-fools
h.

Proof. Condition on any setting to the firét— 1 variables. Each of these defines a halfspace of

the form
h'(x) = sign (Z Wi, — 9’)

>l
wheref’ depends on the values assigned to the head. Every suchdwafsg-regular by the
definition ofe-critical index. Also, the conditional distribution on themaining variables i& (¢)-
wise independent by Fabt2 Thus, Theoren3.2implies that we foolh’ with errore. Since both
the uniform distribution an@® induce the same (uniform) distribution on the fifst 1 variables,
an averaging argument concludes the proof of the theorem.
O

In the rest of this section we study the case of large critiudéx ¢(¢) > L(¢), and prove the
following theorem.
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Theorem 5.4(Fooling non-regular halfspaces with large critical indelxet 4(x) be a halfspace
with critical index?(e) > L(¢). Any(L(¢) + 2)-wise independent distributid® fools / with error
9e.

To prove Theorend.4 we partition the coordinate sgt] into aheadH consisting of the first
L(e) coordinates, andtail 7" = [n] \ H consisting of the rest. We then show that a random setting
of the head variables induces with high probability a pastisn) ~._,, w;x; — 6 which is so large
in magnitude that the values of the tail variables are eggbntrelevant, in the sense that they are
very unlikely to change the sign af - z — 6 and hence the value of the halfspace.

We will show that this statement holds both for the uniforstdbution and for the distribution
D with limited independence. For the latter we will use thaeafestricting the variables in the
head we still have a-wise independent distribution on the tail (by F&c®), which is enough for
Chebyshev’s concentration bound to apply. To show thatdnggbsum is likely to be large we use
ideas from §er07, in particular that the weights decrease geometricallyoughe critical index.

We partition the coordinate sgt| into aheadH consisting of the firsL(e) coordinates, and a
tail 7" = [n| \ H consisting of the rest. Any fixing of the variables/ihresults in a halfspace

h/(ZET) = sign (Z W;T; — 9%)

€T
over the tail variables; where

0y =60 — Zwm

i€H
As discussed before, our goal is to show that, for a randotingetdf the head variable8y; is
likely to be so large in magnitude that the value of the taihsu, . w;z; is unlikely to influence
the outcome ofi(x). The key idea here is the following lemma froi®€r07 showing that the
weights decrease geometrically up to the critical index.

Lemmab.5. Foranyl <i < j < /{4 1we have
lw;| <o; < <m>j_i o; < <m>J
In particular, if j > i + (4/€?)In(1/¢) then
|wj| < Jwil/3.

Proof. For anyk < ¢, we have by the definition efcritical index that

i
|w;| /€.

wi > 2o},

Hence
opy =0 —wp < (1—€*)o}.
Repeating this calculation yields
ol < (L—¢€) ol
To conclude the first chain of inequalities in the statemérnhe lemma, use agaim? < w?/e?
and the obvious inequalitzyf- > wf-. The “in particular” part can be verified by straightforward
calculation, using thatis sufficiently small. O
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Now consider the set of
t :=log(10/¢)

“nicely separated” coordinates (variables)
G:={ki:==1+i-(4/€)In(1/e):i=0,1,...,t —1} C H.

Observe that indee@ C H because the maximum indexdhis at mostl + ¢ - (4/¢?) log(1/¢) <
(4/€*)10g®(10/¢), whereasH consists of all the firsL.(¢) = (8/¢?)log®(10/¢) indices. The key
features of7 are that we can apply the ‘in particular” part of Lem&& and prove the following
claim.

Claim 5.6. o7 < €|wy,|.
Proof. By our choice ofL(¢), t, andk;, we have
L(e) — k; > 8log?(10/¢) /e* — 41og®(10/€)/€* > log*(1/€) /€.

An application of Lemma&.5gives

\/—210g2(1/€)/62 2 .
or <vV1—e |wr,| /€ < € wg,| /€ = e[wg,|
where we use thatis sufficiently small. O

We now show that a random setting &fis likely to result in a value of¢};| which is at least
|wg, | /4. The proof relies on the following claim.

Claim 5.7. Letv; > vy > -+ > v, > 0 be a sequence of numbers so that, < v;/3. Then for
any two pointse # y € {—1,+1}', we havdv - = — v - y| > v;.

Proof. Letz := z — y € {—2,0, 2}, which is not zero. Lej < ¢ be the smallest index such that
z; # 0. Then

ooz —veyl = vzl =) vizl = |zl =D vzl = 20— > vi)

i>5 i>j i>j
U.
> 2(v; — Z 3,-13-) > 2(v; —v;/2) = v; > vy,
1>
usingv; < v;/3"~7 by assumption. O

We are now ready to show our intended lemma:

Lemma 5.8. Pry e [0 — Y icp wizi| < |wy,|/4] < €/10.
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Proof. Fix any assignment to the variables/ih\ G. For this fixing, the event) — >, w;z;| <
|wg, | /4 happens only if

Zwixie 0 — Z wir; — |wy,| /4,0 — Z w;x; + |wy, | /4

ied iE€H\G i€H\G

i.e.,> ;e wiz; falls in an interval of lengthwy, |/2. Applying Claim5.7to the weights ini7, any
two possible outcomes of . w;z; differ by at leasfwy, |. So there is at most one setting =
ay, ...,z = a; Of the variables irG for which this event occurs. This setting has probability at
most2~" = ¢/10. O

With this lemma in hand, we can show that limited independeaufices to fool halfspaces
with a large critical index.

Proof of Theorend.4. We compare the behavior 6fz) onD and the uniform distributiody. In
either case, the marginal distribution for the variableg/ims uniform. For each setting of these
variables, we are left with a halfspace of the fdliffw) = sign(>, ., w;z; — 0%) on the variables
in 7. The combination of Lemm&.8 and Claim5.6 shows that with probability at lea$t— ¢/10
we have | |
wkt
0 — ZEZHwZ x| > 46 (%)

We condition on this eventx). Consider the projectiortg’ andD’ of &/ andD on z7. By
Fact5.2 D' is 2-wise independent. We now argue that for bothand?’, it is very likely that
h'(xz7) = —sign(fy) (for small enough). Indeed if this does not happen, then we have

w
S w2 10— i xz\>| bl > 7T,

i€T i€H
Under the uniform distribution, by a Hoeffding bound (Thewr2.3), the probability of this
event is bounded by
[ Z W;T;
:BNZ/{/

€T

While by Chebyshev’s inequality (Theore2md) we get

Thus, we have

| Ep [P (wr)] = Eu (I (x0)]| < 2| Pr[W (21) = —sign(6)] — Prh/(zr) = —sign(0p)]| < 8¢

€

24—] < 2e” 375<<46

< 16€% < 4e.

>_
— 4e

To conclude, our goal was to bound from abo¥g,[h(x)] — Ep[h(z)]|. Using the fact that
both distributions induce the uniform distribution on \adnies inf/, and conditioning on the event
(%), we get

| Ey[h(z)] — Eplh(z)]] <8+ 2-€/10 < 9e.
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5.1 Proof of the main theorem
For completeness in this section we summarize what is needeadve our main theorem.

Theorem 1.2(Main). (Restated.).et D be ak-wise independent distribution gn-1, +1}", and
leth: {—1,+1}" — {—1,+1} be a halfspace. Theh fools i with errore, i.e.,

Bnlh()] - Boofh(e)] <c. provided k> log? (1)

€
whereC' is an absolute constant ahtis the uniform distribution ovef—1, +1}".

Proof. Consider the parameters(¢), L(e) defined in Section8 and5, respectively, and recall
that they are botkd (log®(1/¢)/€%). For a given halfspace, consider its critical indexf ¢ < L(e)
we apply Theorens.3, otherwise we apply Theorefm4. O

6 Conclusion and open problems

Our results, because of the lower bound mentioned afterréhed.2, are essentially optimal in
terms of characterizing the degree of independence thatjisned toe-fool halfspaces. However,
many natural and interesting directions remain for futuogkw One obvious goal is to construct
unconditional pseudorandom generators for halfspacés@iva a better dependence«than our
construction. The ultimate goal here is to achieve the madion-theoretic optimal seed length,
i.e.s = O(log(n/e€)). This would in particular allow one to count the number ofsfging assign-
ments to a given halfspace up to accuragydeterministic timeyoly(n, 1/¢); cf. [Ser0q for more
on this problem.

Another natural goal is to understand the degree of indepparedthat is required te-fool
degreed polynomial threshold functions ovér1,+1}". To our knowledge, no strong result is
known even fow = 2.
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