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Abstract. This paper makes two contributions towards determining some well-
studied optimal constants in Fourier analysis of Boolean functions and high-
dimensional geometry.

1. It has been known since 1994 [GL94] that every linear threshold function has
squared Fourier mass at least 1/2 on its degree-0 and degree-1 coefficients.
Denote the minimum such Fourier mass by W≤1[LTF], where the mini-
mum is taken over all n-variable linear threshold functions and all n ≥ 0.
Benjamini, Kalai and Schramm [BKS99] have conjectured that the true value
of W≤1[LTF] is 2/π. We make progress on this conjecture by proving that
W≤1[LTF] ≥ 1/2+c for some absolute constant c > 0. The key ingredient
in our proof is a “robust” version of the well-known Khintchine inequality
in functional analysis, which we believe may be of independent interest.

2. We give an algorithm with the following property: given any η > 0, the
algorithm runs in time 2poly(1/η) and determines the value of W≤1[LTF]
up to an additive error of±η. We give a similar 2poly(1/η)-time algorithm to
determine Tomaszewski’s constant to within an additive error of ±η; this is
the minimum (over all origin-centered hyperplanes H) fraction of points in
{−1, 1}n that lie within Euclidean distance 1 ofH . Tomaszewski’s constant
is conjectured to be 1/2; lower bounds on it have been given by Holzman
and Kleitman [HK92] and independently by Ben-Tal, Nemirovski and Roos
[BTNR02]. Our algorithms combine tools from anti-concentration of sums
of independent random variables, Fourier analysis, and Hermite analysis of
linear threshold functions.

1 Introduction

This paper is inspired by a belief that simple mathematical objects should be well un-
derstood. We study two closely related kinds of simple objects: n-dimensional linear
threshold functions f(x) = sign(w · x− θ), and n-dimensional origin-centered hyper-
planes H = {x ∈ Rn : w · x = 0}. Benjamini, Kalai and Schramm [BKS99] and
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Tomaszewski [Guy86] have posed the question of determining two universal constants
related to halfspaces and origin-centered hyperplanes respectively; we refer to these
quantities as “the BKS constant” and “Tomaszewski’s constant.” While these constants
arise in various contexts including uniform-distribution learning and optimization the-
ory, little progress has been made on determining their actual values over the past twenty
years. In both cases there is an easy upper bound which is conjectured to be the correct
value; Gotsman and Linial [GL94] gave the best previously known lower bound on the
BKS constant in 1994, and Holzmann and Kleitman [HK92] gave the best known lower
bound on Tomaszewski’s constant in 1992.

We give two main results. The first of these is an improved lower bound on the BKS
constant; a key ingredient in the proof is a “robust” version of the well-known Khint-
chine inequality, which we believe may be of independent interest. Our second main
result is a pair of algorithms for computing the BKS constant and Tomaszewski’s con-
stant up to any prescribed accuracy. The first algorithm, given any η > 0, runs in time
2poly(1/η) and computes the BKS constant up to an additive η, and the second algorithm
runs in time 2poly(1/η) and has the same guarantee for Tomaszewski’s constant.

1.1 Background and problem statements.

First problem: low-degree Fourier weight of linear threshold functions. A linear
threshold function, henceforth denoted simply LTF, is a function f : {−1, 1}n →
{−1, 1} of the form f(x) = sign(w · x − θ) where w ∈ Rn and θ ∈ R (the uni-
variate function sign : R → R is sign(z) = 1 for z ≥ 0 and sign(z) = −1 for z < 0).
The values w1, . . . , wn are the weights and θ is the threshold. Linear threshold func-
tions play a central role in many areas of computer science such as concrete complexity
theory and machine learning, see e.g. [DGJ+10] and the references therein.

It is well known [BKS99,Per04] that LTFs are highly noise-stable, and hence they
must have a large amount of Fourier weight at low degrees. For f : {−1, 1}n → R and
k ∈ [0, n] let us define Wk[f ] =

∑
S⊆[n],|S|=k f̂

2(S) and W≤k[f ] =
∑k
j=0 Wj [f ];

we will be particularly interested in the Fourier weight of LTFs at levels 0 and 1. More
precisely, for n ∈ N let LTFn denote the set of all n-dimensional LTFs, and let LTF =
∪∞n=1LTFn. We define the following universal constant:

Definition 1. Let W≤1[LTF]
def
= infh∈LTF W≤1(h) = infn∈N W≤1[LTFn], where

W≤1[LTFn]
def
= infh∈LTFn W≤1(h).

Benjamini, Kalai and Schramm (see Remark 3.7 of [BKS99]) and subsequently
O’Donnell (see the Conjecture following Theorem 2 of Section 5.1 of [O’D12]) have
conjectured that W≤1[LTF] = 2/π, and hence we will sometimes refer to W≤1[LTF]
as “the BKS constant.” As n → ∞, a standard analysis of the n-variable Majority
function shows that W≤1[LTF] ≤ 2/π. Gotsman and Linial [GL94] observed that
W≤1[LTF] ≥ 1/2 but until now no better lower bound was known. We note that since
the universal constant W≤1[LTF] is obtained by taking the infimum over an infinite
set, it is not a priori clear whether the computational problem of computing or even
approximating W≤1[LTF] is decidable.
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Jackson [Jac06] has shown that improved lower bounds on W≤1[LTF] translate
directly into improved noise-tolerance bounds for agnostic weak learning of LTFs in
the “Restricted Focus of Attention” model of Ben-David and Dichterman [BDD98].
Further motivation for studying W≤1[f ] comes from the fact that W1[f ] is closely
related to the noise stability of f (see [O’D12]). In particular, if NSρ[f ] represents the

noise stability of f when the noise rate is (1−ρ)/2, then it is known that dNSρ[f ]
dρ

∣∣∣
ρ=0

=

W1[f ]. This means that for a function f with E[f ] = 0, we have NSρ[f ]→ ρ·W≤1[f ]
as ρ → 0. Thus, at very large noise rates, W1[f ] quantifies the size of the “noisy
boundary” of mean-zero functions f .

Second problem: how many hypercube points have distance at most 1 from an
origin-centered hyperplane? For n ∈ N and n > 1, let Sn−1 denote the n-dimensional
sphere Sn−1 = {w ∈ Rn : ‖w‖2 = 1}, and let S = ∪n>1Sn−1. Each unit vector
w ∈ Sn−1 defines an origin-centered hyperplane Hw = {x ∈ Rn : w · x = 0}. Given
a unit vector w ∈ Sn−1, we define T(w) ∈ [0, 1] to be T(w) = Prx∈{−1,1}n [|w ·
x| ≤ 1], the fraction of hypercube points in {−1, 1}n that lie within Euclidean distance
1 of the hyperplane Hw. We define the following universal constant, which we call
“Tomaszewski’s constant:”

Definition 2. Define T(S)
def
= infw∈S T(w) = infn∈N T(Sn−1), where T(Sn−1)

def
=

infw∈Sn−1 T(w).

Tomaszewski [Guy86] has conjectured that T(S) = 1/2. The main result of Holz-
man and Kleitman [HK92] is a proof that 3/8 ≤ T(S); the upper bound T(S) ≤ 1/2
is witnessed by the vector w = (1/

√
2, 1/
√

2). As noted in [HK92], the quantity T(S)
has a number of appealing geometric and probabilistic reformulations. Similar to the
BKS constant, since T(S) is obtained by taking the infimum over an infinite set, it is
not immediately evident that any algorithm can compute or approximate T(S). 4

An interesting quantity in its own right, Tomaszewski’s constant also arises in a
range of contexts in optimization theory, see e.g. [So09,BTNR02]. In fact, the latter pa-
per proves a lower bound of 1/3 on the value of Tomaszewski’s constant independently
of [HK92], and independently conjectures that the optimal lower bound is 1/2.

1.2 Our results.

A better lower bound for the BKS constant W≤1[LTF]. Our first main result is the
following theorem:

Theorem 1 (Lower Bound for the BKS constant). There exists a universal constant
c′ > 0 such that W≤1[LTF] ≥ 1

2 + c′.

This is the first improvement on the [GL94] lower bound of 1/2 since 1994. We ac-
tually give two quite different proofs of this theorem, which are sketched in the “Tech-
niques” subsection below.

4 Whenever we speak of “an algorithm to compute or approximate” one of these constants, of
course what we really mean is an algorithm that outputs the desired value together with a proof
of correctness of its output value.
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An algorithm for approximating the BKS constant W≤1[LTF]. Our next main re-
sult shows that in fact there is a finite-time algorithm that approximates the BKS con-
stant up to any desired accuracy:

Theorem 2 (Approximating the BKS constant). There is an algorithm that, on input
an accuracy parameter ε > 0, runs in time 2poly(1/ε) and outputs a value Γε such that

W≤1[LTF] ≤ Γε ≤W≤1[LTF] + ε. (1)

An algorithm for approximating Tomaszewski’s constant T(S). Our final main re-
sult is an algorithm that approximates T(S) up to any desired accuracy:

Theorem 3 (Approximating Tomaszewski’s constant). There is an algorithm that,
on input ε > 0, runs in time 2poly(1/ε) and outputs a value Γε such that

W≤1[LTF] ≤ Γε ≤W≤1[LTF] + ε. (2)

1.3 Our techniques for Theorem 1: lower-bounding the BKS constant

It is easy to show that it suffices to consider the level-1 Fourier weight W1 of LTFs
that have threshold θ = 0 and have w · x 6= 0 for all x ∈ {−1, 1}n, so we confine our
discussion to such zero-threshold LTFs. To explain our approaches to lower bounding
W≤1[LTF], we recall the essentials of the simple argument of [GL94] that gives a
lower bound of 1/2. The key ingredient of their argument is the well-known Khintchine
inequality from functional analysis:

Definition 3. For a unit vector w ∈ Sn−1 we define K(w)
def
= Ex∈{−1,1}n [|w · x|] to

be the “Khintchine constant for w.”

The following is a classical theorem in functional analysis (we write ei to denote the
unit vector in Rn with a 1 in coordinate i):

Theorem 4 (Khintchine inequality, [Sza76]). For w ∈ Sn any unit vector, we have
K(w) ≥ 1/

√
2, with equality holding if and only if w = 1√

2
(±ei ± ej) for some

i 6= j ∈ [n].

Szarek [Sza76] was the first to obtain the optimal constant 1/
√

2, and subsequently
several simplifications of his proof were given [Haa82,Tom87,LO94]; we shall give a
simple self-contained proof in Section 2.1 below, which is quite similar to Filmus’s
[Fil12] translation of the [LO94] proof into “Fourier language.” With Theorem 4 in
hand, the Gotsman-Linial lower bound is almost immediate:

Proposition 1 ([GL94]). Let f : {−1, 1}n → {−1, 1} be a zero-threshold LTF f(x) =
sign(w · x) where w ∈ Rn has ‖w‖2 = 1. Then W1[f ] ≥ (K(w))2 .

Proof. We have that K(w) = Ex[f(x)(w · x)] =
∑n
i=1 f̂(i)wi ≤

√∑n
i=1 f̂

2(i) ·√∑n
i=1 w

2
i =

√
W1[f ] where the first equality uses the definition of f , the second is

Plancherel’s identity, the inequality is Cauchy-Schwarz, and the last equality uses the
assumption that w is a unit vector. ut
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First proof of Theorem 1: A “robust” Khintchine inequality. Given the strict con-
dition required for equality in the Khintchine inequality, it is natural to expect that
if a unit vector w ∈ Rn is “far” from 1√

2
(±ei ± ej), then K(w) should be sig-

nificantly larger than 1/
√

2. We prove a robust version of the Khintchine inequal-
ity which makes this intuition precise. Given a unit vector w ∈ Sn−1, define d(w)
to be d(w) = min ‖w − w∗‖2, where w∗ ranges over all 4

(
n
2

)
vectors of the form

1√
2
(±ei ± ej). Our “robust Khintchine” inequality is the following:

Theorem 5 (Robust Khintchine inequality). There exists a universal constant c > 0
such that for any w ∈ Sn−1, we have K(w) ≥ 1√

2
+ c · d(w).

Armed with our robust Khintchine inequality, the simple proof of Proposition 1
suggests a natural approach to lower-bounding W≤1[LTF]. If w is such that d(w) is
“large” (at least some absolute constant), then the statement of Proposition 1 immedi-
ately gives a lower bound better than 1/2. So the only remaining vectors w to handle
are highly constrained vectors which are almost exactly of the form 1√

2
(±ei ± ej). A

natural hope is that the Cauchy-Schwarz inequality in the proof of Proposition 1 is not
tight for such highly constrained vectors, and indeed this is essentially how we proceed
(modulo some simple cases in which it is easy to bound W≤1 above 1/2 directly).

Second proof of Theorem 1: anticoncentration, Fourier analysis of LTFs, and LTF
approximation. Our second proof of Theorem 1 employs several sophisticated ingre-
dients from recent work on structural properties of LTFs [OS11,MORS10]. The first
of these ingredients is a result (Theorem 6.1 of [OS11]) which essentially says that
any LTF f(x) = sign(w · x) can be perturbed very slightly to another LTF f ′(x) =
sign(w′ ·x) (where both w and w′ are unit vectors). The key properties of this perturba-
tion are that (i) f and f ′ are extremely close, differing only on a tiny fraction of inputs in
{−1, 1}n; but (ii) the linear form w′ · x has some nontrivial “anti-concentration” when
x is distributed uniformly over {−1, 1}n, meaning that very few inputs have w′ ·x very
close to 0.

Why is this useful? It turns out that the anti-concentration of w′ · x, together with
results on the degree-1 Fourier spectrum of “regular” halfspaces from [MORS10], lets
us establish a lower bound on W≤1[f ′] that is strictly greater than 1/2. Then the fact
that f and f ′ agree on almost every input in {−1, 1}n lets us argue that the original LTF
f must similarly have W≤1[f ] strictly greater than 1/2. Interestingly, the lower bound
on W≤1[f ′] is proved using the Gotsman-Linial inequality W≤1[f ′] ≥ (K(w))2; in
fact, the anti-concentration of w′ · x is combined with ingredients in the simple Fourier
proof of the (original, non-robust) Khintchine inequality (specifically, an upper bound
on the total influence of the function `(x) = |w′ · x|) to obtain the result. Because of
space constraints we give this second proof in the full version of the paper, following
the references.

1.4 Our techniques for Theorem 2: approximating the BKS constant

As in the previous subsection, it suffices to consider only zero-threshold LTFs sign(w ·
x). Our algorithm turns out to be very simple (though its analysis is not):
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Let K = Θ(ε−24). Enumerate all K-variable zero-threshold LTFs, and output
the value Γε

def= min{W1[f ] : f is a zero-threshold K-variable LTF.}.

It is well known (see e.g. [MT94]) that there exist 2Θ(K2) distinctK-variable LTFs, and
it is straightforward to confirm that they can be enumerated in output-polynomial time.
Thus the above simple algorithm runs in time 2poly(1/ε); the challenge is to show that
the value Γε thus obtained indeed satisfies Equation (2).

A key ingredient in our analysis is the notion of the “critical index” of an LTF f . The
critical index was implicitly introduced and used in [Ser07] and was explicitly used in
[DS09,DGJ+10,OS11,DDFS12] and other works. To define the critical index we need
to first define “regularity”:

Definition 4 (regularity). Fix τ > 0. We say that a vector w = (w1, . . . , wn) ∈ Rn is
τ -regular if maxi∈[n] |wi| ≤ τ‖w‖ = τ

√
w2

1 + · · ·+ w2
n. A linear form w · x is said to

be τ -regular if w is τ -regular, and similarly an LTF is said to be τ -regular if it is of the
form sign(w · x− θ) where w is τ -regular.

Regularity is a helpful notion because if w is τ -regular then the Berry-Esséen theo-
rem tells us that for uniform x ∈ {−1, 1}n, the linear form w · x is “distributed like a
Gaussian up to error τ .” This can be useful for many reasons (as we will see below).

Intuitively, the critical index of w is the first index i such that from that point on, the
vector (wi, wi+1, . . . , wn) is regular. A precise definition follows:

Definition 5 (critical index). Given a vectorw ∈ Rn such that |w1| ≥ · · · ≥ |wn| > 0,
for k ∈ [n] we denote by σk the quantity

√∑n
i=k w

2
i . We define the τ -critical index

c(w, τ) of w as the smallest index i ∈ [n] for which |wi| ≤ τ ·σi. If this inequality does
not hold for any i ∈ [n], we define c(w, τ) =∞.

Returning to Theorem 2, since our algorithm minimizes over a proper subset of all
LTFs, it suffices to show that for any zero-threshold LTF f = sign(w · x), there is a K-
variable zero-threshold LTF g such that W1[g]−W1[f ] < ε. At a high level our proof
is a case analysis based on the size of the δ-critical index c(w, δ) of the weight vector
w, where we choose the parameter δ to be δ = poly(ε). The first case is relatively easy:
if the δ-critical index is large, then it is known that the function f is very close to some
K-variable LTF g. Since the two functions agree almost everywhere, it is easy to show
that |W1[f ]−W1[g]| ≤ ε as desired.

The case that the critical index is small is much more challenging. In this case it
is by no means true that f can be well approximated by an LTF on few variables –
consider, for example, the majority function. We deal with this challenge by developing
a novel variable reduction technique which lets us construct a poly(1/ε)-variable LTF
g whose level-1 Fourier weight closely matches that of f .

How is this done? The answer again comes from the critical index. Since the critical
index c(w, δ) is small, we know that except for the “head” portion

∑c(w,δ)−1
i=1 wixi of

the linear form, the “tail” portion
∑n
i=c(w,δ) wixi of the linear form “behaves like a

Gaussian.” Guided by this intuition, our variable reduction technique proceeds in three
steps. In the first step, we replace the tail coordinates xT = (xc(w,δ), . . . , xn) by inde-
pendent Gaussian random variables and show that the degree-1 Fourier weight of the
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corresponding “mixed” function (which has some±1-valued inputs and some Gaussian
inputs) is approximately equal to W1[f ]. In the second step, we replace the tail random
variable wT · GT , where GT is the vector of Gaussians from the first step, by a single
Gaussian random variable G, where G ∼ N (0, ‖wT ‖2). We show that this transforma-
tion exactly preserves the degree-1 weight. At this point we have reduced the number
of variables from n down to c(w, δ) (which is small in this case!), but the last variable
is Gaussian rather than Boolean. As suggested by the Central Limit Theorem, though,
one may try to replace this Gaussian random variable by a normalized sum of indepen-
dent ±1 random variables

∑M
i=1 zi/

√
M . This is exactly the third step of our variable

reduction technique. Via a careful analysis, we show that by taking M = poly(1/ε),
this operation preserves the degree-1 weight up to an additive ε. Combining all these
steps, we obtain the desired result.

1.5 Our techniques for Theorem 3: approximating Tomaszewski’s constant

The first step of our proof of Theorem 3 is similar in spirit to the main structural in-
gredient of our proof of Theorem 2: we show that given any ε > 0, there is a value
Kε = poly(1/ε) such that it suffices to consider linear forms w ·x overKε-dimensional
space, i.e. for any n ∈ N we have T(Sn−1) ≤ T(SKε−1) ≤ T(Sn−1)+ε. Similar to the
high-level outline of Theorem 2, our proof of again proceeds by fixing any w ∈ Sn−1

and doing a case analysis based on whether the critical index of w is “large” or “small.”
However, the technical details of each of these cases is quite different from the earlier
proof. In the “small critical index” case we employ Gaussian anti-concentration (which
is inherited by the “tail” random variable wTxT since the tail vector wT is regular), and
in the “large critical index” case we use an anti-concentration result from [OS11].

Unlike the previous situation for the BKS constant, at this point more work remains
to be done for approximating Tomaszewski’s constant. While there are only 2poly(1/ε)

many halfspaces over poly(1/ε) many variables and hence a brute-force enumeration
could cover all of them in 2poly(1/ε) time for the BKS constant, here we must contend
with the fact that SKε−1 is an uncountably infinite set, so we cannot naively minimize
over all its elements. Instead we take a dual approach and exploit the fact that while
there are uncountably infinitely many vectors in SKε−1, there are only 2Kε many hy-
percube points in {−1, 1}Kε , and (with some care) the desired infimum over all unit
vectors can be formulated in the language of existential theory of the reals. We then use
an algorithm for deciding existential theory of the reals (see [Ren88]) to compute the
infimum. Because of space constraints we prove Theorem 3 in the full version of the
paper, following the references.

Discussion. It is interesting to note that determining Tomaszewski’s constant is an in-
stance of the well-studied generic problem of understanding tails of Rademacher sums.
For the sake of discussion, let us define Tin(w, a) = Prx∈{−1,1}n [|w · x| ≤ a] and
Tout(w, a) = Prx∈{−1,1}n [|w · x| ≥ a] where w ∈ Sn−1. Further, let Tin(a) =
infw∈S Tin(w, a) and Tout(a) = infw∈S Tout(w, a). Note that Tomaszewski’s constant
T(S) is simply Tin(1). Much effort has been expended on getting sharp estimates for
Tin(a) and Tout(a) for various values of a (see e.g. [Pin12,Ben04]). As a representative

example, Bentkus and Dzindzalieta [BD12] proved that Tin(a) ≥ 1
4 + 1

4 ·
√

2− 2
a2 for
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a ∈ (1,
√

2]. Similarly, Pinelis [Pin94] showed that there is an absolute constant c > 0
such that Tout(a) ≥ 1 − c · φ(a)

a where φ(x) is the density function of the standard
normal N (0, 1) (note this beats the standard Hoeffding bound by a factor of 1/a).

On the complementary side, Montgomery-Smith [MS90] proved that there is an ab-
solute constant c′ > 0 such that Tout(a) ≥ e−c

′·a2
for all a ≤ 1. Similarly, Oleszkiewicz

[Ole96] proved that Tout(1) ≥ 1/10. The conjectured lower bound on Tout(1) is 7/32
(see [HK94]). While we have not investigated this in detail, we suspect that our tech-
niques may be applicable to some of the above problems. Finally, we note that apart
from being of intrinsic interest to functional analysts and probability theorists, the above
quantities arise frequently in the optimization literature (see [HLNZ08,BTNR02]). Re-
lated tail bounds have also found applications in extremal combinatorics (see [AHS12]).

Mathematical Preliminaries. These are given in Section 2 of the full version.

2 Proof of Theorem 5: A “robust” Khintchine inequality

It will be convenient for us to reformulate Theorems 4 and 5 as follows: Let us say that
a unit vector w = (w1, . . . , wn) ∈ Sn−1 is proper if wi ≥ wi+1 ≥ 0 for all i ∈ [n− 1].
Then we may state the “basic” Khintchine inequality with optimal constant, Theorem 4,
in the following equivalent way:

Theorem 6 (Khintchine inequality, [Sza76]). Let w ∈ Rn be a proper unit vector.

Then K(w) ≥ 1/
√

2, with equality if and only if w = w∗
def
= (1/

√
2, 1/
√

2, 0, . . . , 0).

And we may restate our “robust” Khintchine inequality, Theorem 5, as follows:

Theorem 7 (Robust Khintchine inequality). There exists a universal constant c > 0
such that the following holds: Let w ∈ Rn be a proper unit vector. Then K(w) ≥
1/
√

2 + c · ‖w − w∗‖2,where w∗
def
= (1/

√
2, 1/
√

2, 0, . . . , 0).

Before we proceed with the proof of Theorem 7, we give a simple Fourier analytic
proof of the “basic” Khintchine inequality with optimal constant, K(w) ≥ 1/

√
2. (We

note that this is a well-known argument by now; it is given in somewhat more general
form in [Ole99] and in [KLO96].) We then build on this to prove Theorem 7.

2.1 Warm-up: simple proof that K(w) ≥ 1/
√

2

We consider the function `(x) = |
∑n
i=1 wixi| where

∑
i w

2
i = 1 and will show that

K(w) = Ex[`(x)] ≥ 1/
√

2. Noting that Ex[(`(x))2] = 1, we have (E[`(x)])2 = 1 −
Var[`], so it suffices to show that Var[`] ≤ 1/2. This follows directly by combining the
following claims. The first bound is an improved Poincaré inequality for even functions:

Fact 8 (Poincaré inequality) Let f : {−1, 1}n → R be even. Then Var[f ] ≤ (1/2) ·
Inf(f).

Proof. Since f is even, we have that f̂(S) = 0 for all S with odd |S|. We can thus write

Inf(f) =
∑

S⊆[n],|S| even
|S|·f̂2(S) ≥ 2·

∑
∅6=S,|S| even

f̂2(S) = 2·
∑

∅6=S⊆[n]

f̂2(S) = 2·Var[f ].
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The second is an upper bound on the influences in ` as a function of the weights:

Lemma 1. Let `(x) = |
∑n
i=1 wixi|. For any i ∈ [n], we have Infi(`) ≤ w2

i .

Proof. Recall that Infi(`) = Ex
[
Varxi

[
`(x)

]]
= Ex

[
Exi [`

2(x)]− (Exi [`(x)])
2
]
.

We claim that for any x ∈ {−1, 1}n, it holds that Varxi [`(x)] ≤ w2
i , which yields the

lemma. To show this claim we write `(x) = |wixi + ci|, where ci =
∑
j 6=i wj ·xj does

not depend on xi.
Since `2(x) = c2i +w2

i +2ciwixi, it follows that Exi [`
2(x)] = c2i +w2

i , and clearly
Exi [`(x)] = (1/2) · (|wi− ci|+ |wi+ ci|). We consider two cases based on the relative
magnitudes of ci and wi.

If |ci| ≤ |wi|, we have Exi [`(x)] = (1/2)·(sign(wi)(wi − ci) + sign(wi)(wi + ci))
= |wi|. Hence, in this case Varxi [`(x)] = c2i ≤ w2

i . If on the other hand |ci| > |wi|,
then we have Exi [`(x)] = (1/2) · (sign(ci)(ci − wi) + sign(ci)(ci + wi)) = |ci|, so
again Varxi [`(x)] = w2

i as desired. ut

The bound K(w) ≥ 1/
√

2 follows from the above two claims using the fact that `
is even and that

∑
i w

2
i = 1.

2.2 Proof of Theorem 7

Let w ∈ Rn be a proper unit vector and denote τ = ‖w − w∗‖2. To prove Theorem 7,
one would intuitively want to obtain a robust version of the simple Fourier-analytic
proof of Theorem 6 from the previous subsection. Recall that the latter proof boils
down to the following:

Var[`] ≤ (1/2) · Inf(`) = (1/2) ·
n∑
i=1

Infi(`) ≤ (1/2) ·
n∑
i=1

w2
i = 1/2

where the first inequality is Fact 8 and the second is Lemma 1. While it is clear that
both inequalities can be individually tight, one could hope to show that both inequalities
cannot be tight simultaneously. It turns out that this intuition is not quite true, however it
holds if one imposes some additional conditions on the weight vector w. The remaining
cases forw that do not satisfy these conditions can be handled by elementary arguments.

We first note that without loss of generality we may assume that w1 = maxi wi >
0.3, for otherwise Theorem 7 follows directly from the following result of König et al:

Theorem 9 ([KSTJ99]). For a proper unit vector w ∈ Rn, we have K(w) ≥
√

2/π−
(1−

√
2/π)w1.

Indeed, if w1 ≤ 0.3, the above theorem gives that K(w) ≥ 1.3
√

2/π − 0.3 >

0.737 > 1/
√

2 + 3/100 ≥ 1/
√

2 + (1/50)τ, where the last inequality follows from
the fact that τ ≤

√
2 (as both w and w∗ are unit vectors). Hence, we will henceforth

assume that w1 > 0.3.
The preceding discussion leads us to the following definition:

Definition 6 (canonical vector). We say that a proper unit vector w ∈ Rn is canonical
if it satisfies the following conditions: (a) w1 ∈ [0.3, 1/

√
2 + 1/100]; and (b) τ =

‖w − w∗‖2 ≥ 1/5.

9



The following lemma establishes Theorem 7 for non-canonical vectors:

Lemma 2. Let w be a proper non-canonical vector. Then K(w) ≥ 1/
√

2+(1/1000)τ ,
where τ = ‖w − w∗‖2.

The proof of Lemma 2 is elementary, using only basic facts about symmetric ran-
dom variables, but sufficiently long that we give it in the full version. For canonical
vectors we show:

Theorem 10. There exist universal constants c1, c2 > 0 such that: Let w ∈ Rn be
canonical. Consider the mapping `(x) = |w · x|. Then at least one of the following
statements is true : (1) Inf1(`) ≤ w2

1 − c1; (2) W>2[`] ≥ c2.

This proof is more involved, using Fourier analysis and critical index arguments
(see the full version). We proceed now to show that for canonical vectors, Theorem 7
follows from Theorem 10. To see this we argue as follows: Let w ∈ Rn be canonical.
We will show that there exists a universal constant c > 0 such that K(w) ≥ 1/

√
2 + c;

as mentioned above, since τ <
√

2, this is sufficient for our purposes. Now recall that

K(w) = Ex[`(x)] = ̂̀(0) =
√

1−Var[`]. (3)

In both cases, we will show that there exists a constant c′ > 0 such that

Var[`] ≤ 1/2− c′. (4)

From this (3) gives K(w) ≥
√

1/2 + c′ = 1/
√

2 + c′′ where c′′ > 0 is a universal
constant, so to establish Theorem 7 it suffices to establish (4).

Suppose first that statement (1) of Theorem 10 holds. In this case we exploit the fact
that Lemma 1 is not tight. We can write

Var[`] ≤ (1/2) · Inf(f) ≤ (1/2) ·
(
w2

1 − c1 +
n∑
i=2

w2
i

)
≤ (1/2)− c1/2,

giving (4). Now suppose that statement (2) of Theorem 10 holds, i.e. at least a c2 fraction
of the total Fourier mass of ` lies above level 2. Since ` is even, this is equivalent to the
statement W≥4[`] ≥ c2. In this case, we prove a better upper bound on the variance
because Fact 8 is not tight. In particular, we have

Inf(`) ≥ 2W2[`]+4W≥4[`] = 2
(
Var[`]−W≥4[`]

)
+4W≥4[`] = 2Var[`]+2W≥4[`]

which yields Var[`] ≤ (1/2)Inf(`)−W≥4[`] ≤ (1/2)−c2, again giving (4) as desired.

3 Proof of Theorem 1 using Theorem 5

We first observe that it suffices to prove the theorem for balanced LTFs, i.e. LTFs f :
{−1, 1}n → {−1, 1} with f̂(∅) =E[f ] = 0. (Note that any balanced LTF can be
represented with a threshold of 0, i.e. f(x) = sign(w · x) for some w ∈ Rn.) To see
this, let f : {−1, 1}n → {−1, 1} be an arbitrary n-variable threshold function, i.e.

10



f(x) = sign(w0 +
∑n
i=1 wixi), and note that we may assume that w0 6= w · x for all

x ∈ {−1, 1}n. Consider the (n+1)-variable balanced LTF g : (x, y)→ {−1, 1}, where
y ∈ {−1, 1}, defined by g(x, y) = sign(w0y +

∑n
i=1 wixi). Then it is easy to see that

ĝ(y) = E[f ] and ĝ(i) = f̂(i) for all i ∈ [n]. Therefore, W≤1[f ] = W1[g] = W≤1[g].

Let f = sign(w · x) be an LTF. We may assume that w is a proper unit vector, i.e.
that ‖w‖2 = 1 and wi ≥ wi+1 > 0 for i ∈ [n− 1]. We can also assume that w · x 6= 0
for all x ∈ {−1, 1}n. We distinguish two cases: If w is “far” from w∗ (i.e. the worst-
case vector for the Khintchine inequality), the desired statement follows immediately
from our robust inequality (Theorem 5). For the complementary case, we use a separate
argument that exploits the structure of w. More formally, we have the following two
cases:

Let τ > 0 be a sufficiently small universal constant, to be specified.

[Case I: ‖w − w∗‖2 ≥ τ ]. In this case, Proposition 1 and Theorem 5 give us

W1[f ] ≥ (K(w))2 ≥ (1/
√

2 + cτ)2 ≥ 1/2 +
√

2cτ

which completes the proof of Theorem 1 for Case I.

[Case II: ‖w − w∗‖2 ≤ τ ]. In this case the idea is to consider the restrictions of
f obtained by fixing the variables x1, x2 and argue based on their bias. See the full
version for details.
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