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ABSTRACT

A new method for detecting remote protein homologies is introduced and shown to perform
well in classifying protein domains by SCOP superfamily. The method is a variant of support
vector machines using a new kernel function. The kernel function is derived from a generative
statistical model for a protein family, in this case a hidden Markov model. This general
approach of combining generative models like HMMs with discriminative methods such as
support vector machines may have applications in other areas of biosequence analysis as well.
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1. INTRODUCTION

Acore problem in statistical biosequence analysis is the annotation of new protein sequences
with structural and functional features. To a degree, this can be achieved by relating the new sequences

to proteins for which such structural properties are already known, i.e., by detection of protein homologies.
Many statistical, sequence-based tools have been developed for detecting protein homologies. These include
BLAST (Altshul et al., 1990, 1997), Fasta (Pearson and Lipman, 1988), PROBE (Neuwald et al., 1997),
templates (Taylor, 1986), pro� les (Gribskov et al., 1987), position-speci� c weight matrices (Henikoff and
Henikoff, 1994), and Hidden Markov Models (HMMs) (Krogh et al., 1994). Recent experiments (Brenner,
1996; Park et al., 1998) have used the SCOP classi� cation of protein structures (Hubbard et al., 1997) to test
many of these methods to see how well they detect remote protein homologies that exist between protein
domains that are in the same structural superfamily, but not necessarily in the same family. This work
has shown that methods such as PSI-BLAST and HMMs, which build a statistical model from multiple
sequences, perform better than simple pairwise comparison methods, but all sequence-based methods miss
many important remote homologies.

We present and evaluate a new methodology for detecting remote protein homologies. In this approach
we use generative statistical models built from multiple sequences, in this case HMMs, as a way of
extracting features from protein sequences. This maps all protein sequences to points in a Euclidean
feature space of � xed dimension. (See Linial et al. (1997) for a different method of mapping protein
sequences into Euclidean space.) We then use a general discriminative statistical method to classify the
points representing protein sequences by domain superfamily. This is quite distinct from methods that train
the parameters of the HMM itself to give a more discriminative model (Eddy et al., 1995; Mamitsuka,
1996). Other discriminative methods, using neural nets, are described in Dubchak et al. (1995, 1997).
Using our method, we obtain a substantial improvement in identifying remote homologies over what is
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achieved by HMMs alone, as they are currently employed. This new method also compares favorably to
what have been called family pairwise search homology methods, in which the scores from all pairwise
comparisons between a query protein and the members of a known protein family are combined to improve
performance (Grundy, 1998).

2. METHODS

The statistical modeling approach to protein sequence analysis involves constructing a generative prob-
ability model, such as an HMM, for a protein family or superfamily (Durbin et al., 1998). Sequences
known to be members of the protein family are used as (positive) training examples. The parameters of a
statistical model representing the family are estimated using these training examples, in conjunction with
general a priori information about properties of proteins. The model assigns a probability to any given
protein sequence. If it is a good model for the family it is trained on, then sequences from that family,
including sequences that were not used as training examples, yield a higher probability score than those
outside the family. The probability score can thus be interpreted as a measure of the extent to which a
new protein sequence is homologous to the protein family of interest. Considerable recent work has been
done in re� ning HMMs for the purpose of identifying weak protein homologies in this way (Krogh et al.,
1994; Baldi et al., 1994; Eddy, 1995; Hughey and Krogh, 1996; Karplus et al., 1997).

Let X 5 [x1, . . . , xn ] denote a protein sequence, where each xi is an amino acid residue. Suppose that
we are interested in a particular protein family such as immunoglobulins and have estimated an HMM,
H1, for this family (for details of the estimation process see, e.g., Durbin et al., (1998)). We use P (X jH1)
to denote the corresponding probability model. In a database search, a likelihood ratio score is often used
in place of a simple probability P (X jH1):

L (X ) 5 log
P (X jH1)P (H1)
P (X jH0)P (H0)

(1)

5 log
P (X jH1)

P (X jH0)
1 log

P (H1)

P (H0)

where the null model P (X jH0) is the probability model under the hypothesis that the sequence X does
not belong to the family of interest; different types of null models are discussed in Barrett et al. (1997)
and Park et al. (1998). A positive value of the likelihood ratio L (X ) is taken as an indication that the new
sequence X is indeed a member of the family. The constant factor log P (H1)=P (H0), the log prior odds,
provides an a priori means for biasing the decision and does not affect the ranking of sequences being
scored.

2.1. Discriminative approaches

The parameters of a generative model are estimated in such a way as to make the positive training
examples, proteins in the family being modeled, very likely under the probability model. In contrast, the
parameters of a discriminative model are estimated using both positive training examples and negative
training examples, which are proteins that are not members of the family being modeled. The goal in
estimating the parameters of a discriminative model is to � nd parameters such that the score derived from
the model can be used to discriminate members of the family from nonmembers, e.g., such that members
of the family receive a high score and nonmembers receive a low score.

As discussed above, generative models can be used for discrimination when a null model is provided.
Consider the log-likelihood ratio formulation above. By Bayes rule, we may rewrite this as follows:

L (X ) 5 log
P (X jH1)P (H1)

P (X jH0)P (H0)
5 log

P (H1jX )P (X )

P (H0jX )P (X )
5 log

P (H1jX )

P (H0jX )
(2)

where P (X ) 5 P (X jH1)P (H1) 1 P (X jH0)P (H0) is the overall probability model for sequences both
in the family and not in the family. P (H1jX ) is referred to as the posterior probability of the model; in
our case it is the posterior probability that the sequence X belongs to the protein family being modeled.
The score function L (X ) is called the log posterior odds score. We should classify X as a member of
the protein family if this score is positive, else as a nonmember. While this decision rule is perfectly
reasonable, and in fact optimal, when both the model H1 and the null model H0 are completely accurate,
it can perform poorly when these models are not accurate. This can easily happen with limited training
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sets (Barret et al., 1997; Park et al., 1998) or when the inherent structural assumptions made during the
model construction are inaccurate. This problem is made worse by the objective function typically used in
estimating the parameters for the generative model, P (X jH1) and occasionally also used to estimate the
parameters of the null model, P (X jH0). More speci� cally, P (X jH1) is re� ned only on the basis of the
positive training examples, and the parameters for the null model P (X jH0), if modi� ed at all, are adjusted
only based on negative training examples. An improvement in the accuracy of either of these models does
not directly translate into a better discriminative performance, which is governed by the score function
L (X ). In a discriminative approach, the objective is to re� ne the discriminant function L (X ) directly using
both positive and negative training examples.

2.2. Kernel methods

Here we provide a brief introduction to a particular class of discriminative techniques known as kernel
methods. Our introduction is geared towards our goals in biosequence analysis. For more details on the
general class of kernel methods see, e.g., Vapnik (1995) and MacKay (1997).

Suppose we have a training set of examples (protein sequences) fX i g, i 5 1, . . . , n for which we know
the correct hypothesis class, H1 or H0. In other words, we have a set of protein sequences that are known
to be either homologous to the family of interest or not. We model the discriminant function L (X ) directly
via the following expansion in terms of the training examples

L (X ) 5 log P (H1jX ) ¡ log P (H0jX ) (3)

5
X

i :X i 2H1

li K (X , X i ) ¡
X

i :X i 2H0

li K (X , X i ).

This expansion could have been speci� ed without any reference to the posterior class probabilities P (H1jX )
and P (H0jX ); the latter quantities are included here only for the purpose of illustration. The sign of the
discriminant function determines the assignment of the sequences into hypothesis classes. The contribution,
either positive or negative, of each training example (sequence) to the decision rule consists of two parts:
1) the overall importance of the example X i as summarized with the nonnegative coef� cient li and 2)
a measure of pairwise “similarity” between the training example X i and the new example X , expressed
in terms of a kernel function K (X i , X ). So, to restate the expansion more generally, the classi� cation
decisions are made on the basis of weighted pairwise similarities to the training examples.

The free parameters in the above decision rule are the coef� cients li and to some degree also the kernel
function K . To pin down a particular kernel method, two things need to be clari� ed. First, we must specify
how to set the values for the coef� cients li ; this is explained in the next section. We subsequently discuss
the second and deeper issue of how to choose an appropriate kernel function that de� nes the pairwise
comparison between protein sequences.

2.2.1. Optimization of the discriminative coef� cients. Since the sign of the discriminant function L (X )
determines the predicted class for any sequence X , we would certainly like to have this sign correct and
the value separated from zero by a large margin for as many of the training examples as possible. In other
words, if we chose a margin of 1, our objective should be to � nd, if possible, coef� cients li so that

L (X i ) ¶ 1, X i 2 H1 (4)
L (X i ) µ ¡ 1, X i 2 H0. (5)

Since any margin, once achieved, can be increased by scaling the li , to convert this into a constrained
maximization problem, we must impose additional constraints on these coef� cients, e.g., 0 µ li µ 1. Even
with the additional constraints, the solution, if it exists, is not unique. Following Vapnik’s work on support
vector machines (SVMs) (Vapnik, 1995), we de� ne a quadratic objective function for the coef� cients that is
then used to maximize the margins in a geometrically meaningful way.1 The following objective function
also generalizes to the setting where not all the margin constraints can be satis� ed:

J (l) 5
X

i:X i 2H1

li (2 ¡ L (X i )) 1
X

i:X i 2H0

li (2 1 L (X i )) (6)

1Our formulation differs slightly from that of Vapnik (1995) but the geometric motivation remains the same. For
details, see Vapnik (1995) or Burges (1998).
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(recall that L (X i ) is a linear function of the li coef� cients). Subject to standard constraints on the kernel
function,2 the solution to the constrained maximization of J (l) is unique and can be achieved iteratively.
For li corresponding to X i 2 H1, we proceed as follows. If this coef� cient was unconstrained, we would
update it so that the discriminant function evaluated at X i (i.e., L (X i )) after the update would be exactly
1. This would give the update rule

li ¬
1 ¡ L (X i ) 1 li K (X i , X i )

K (X i , X i )
(7)

It is clear that L (X i ) 5 1 holds after this update. However, this ignores the constraints li 2 [0, 1]. Taking
these into account, we get the modi� ed update

li ¬ f

³
1 ¡ L (X i ) 1 li K (X i , X i )

K (X i , X i )

´
(8)

where the function f maintains the constraints: f (z) 5 0 for z µ 0, f (z) 5 z for 0 µ z µ 1 and f (z) 5 1
otherwise. This gives the best approximation to the above update that is allowed given the constraints on
li . Proceeding analogously for X i 2 H0, the update rule becomes:

li ¬ f

³
1 1 L (X i ) 1 li K (X i , X i )

K (X i , X i )

´
. (9)

By repeatedly updating the coef� cients li corresponding to the positive and negative training examples, it
can be shown that the coef� cients will converge to those that maximize the quadratic objective function
J (l) subject to the given constraints. Although this simple procedure can be slow in pathological cases,3

we have found it to be fast enough in practice.
A useful property of the quadratic objective function J (l) is that it forces most of the li coef� cients to

converge to zero. The training examples corresponding to these zero coef� cients will not contribute to the
classi� cation rule as de� ned by the score function L (X ) in (4). Such training examples can be therefore
safely ignored and this leads to fewer evaluations of the kernel function for each query sequence.

2.3. The Fisher kernel

Finding an appropriate kernel function for a particular application area can be dif� cult and remains largely
an unresolved issue. We have, however, developed a general formalism for deriving kernel functions from
generative probability models (Jaakkola and Haussler, 1998a). This formalism carries several advantages,
including the ability to handle complex objects such as variable length protein sequences within the kernel
function. Furthermore, the formalism facilitates the encoding of prior knowledge about protein sequences,
via the probability models, into the kernel function. We emphasize that this is an important consideration
since the kernel function mediates all the pairwise comparisons between the protein sequences.

Our approach here is to derive the kernel function from HMMs corresponding to the protein family of
interest. We are thus able to build on the work of others towards adapting HMMs for protein homology
detection (Krogh et al., 1994; Hughey and Krogh, 1996; Karplus et al., 1997). Our use of protein models
in the kernel function, however, deviates from the standard use of such models in biosequence analysis.
More precisely, the kernel function speci� es a similarity score for any pair of sequences, whereas the
likelihood score from an HMM only measures the closeness of the sequence to the model itself. Indeed,
the HMM can assign the same likelihood to two widely different protein sequences. We must therefore be
able to extract and entertain richer representations than the HMM score in order to carry out meaningful
model-based pairwise comparisons.

Suppose now that we have estimated an HMM for a particular family of proteins such as the immunoglob-
ulins. Let the corresponding probability model be P (X jH1, h), where the parameters h include the output

2More precisely, for any � nite set of examples X i , i 5 1, . . . , n the kernel function K i j 5 K (X i , X j ) must de� ne
a positive de� nite matrix.

3By changing at random the order in which each coef� cient is updated, one can increase the rate of convergence
signi� cantly.
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and the transition probabilities of an HMM trained to model immunoglobulins (see e.g., Krogh et al.
(1994)). To compute the likelihood score for a query sequence X or, equivalently, to evaluate P (X jH1, h),
we employ the standard forward-backward algorithm (Rabiner and Juang, 1986). In addition to obtaining
the generative likelihood for the query sequence, the forward-backward algorithm extracts what are known
as suf� cient statistics for the parameters. For HMMs, the suf� cient statistics are the posterior frequencies
of having taken a particular transition or having generated one of the residues of the query sequence X
from a particular state. We can arrange these statistics in a vector of � xed dimension that contains a value
(suf� cient statistic) for each independent parameter in the model. The resulting vector of suf� cient statis-
tics re� ects the generation process of the sequence from the HMM in the sense that it captures how each
parameter is involved. More generally, it provides a complete summary of the sequence in the parameter
space of the model.

We use the vector of suf� cient statistics as an intermediate representation of the query sequence. This
representation naturally respects the assumptions that went into building the HMM. Also, unlike the simple
likelihood score, it provides the means for comparing two sequences relative to a single model. In other
words, the closeness of the suf� cient statistics provides an appropriate measure of similarity between the
sequences.

This idea can be generalized considerably (Jaakkola and Haussler, 1998b). In the more general treatment,
one works not with the vector of suf� cient statistics directly but with an analogous quantity known as the
Fisher score

UX 5 rh log P (X jH1, h). (10)

Each component of UX is a derivative of the log-likelihood score for the query sequence X with respect
to a particular parameter. The magnitude of the components specify the extent to which each parameter
contributes to generating the query sequence. The computation of these gradients in the context of HMMs
along with their relation to suf� cient statistics is described in more detail in Appendix A.

Finding an appropriate kernel function in this new gradient representation is easier than in the original
space of variable length protein sequences. We only need to quantify the similarity between two � xed
length gradient vectors UX and UX 0 corresponding to two sequences X and X 0, respectively. A number of
appropriate kernel functions can be derived once we quantify a distance function between such vectors. A
natural (squared) distance between the gradient vectors is given by (see, e.g., Jaakkola et al. (1998b))

D 2(X , X 0) 5
1
2

(UX ¡ UX 0 )T F ¡ 1 (UX ¡ UX 0 ) (11)

where F is the Fisher information matrix or, equivalently, the covariance matrix of the score vectors UX
when the examples (sequences) are sampled from the same probability model (P (X jH1, h) in our case).
In the experiments reported in this paper, we used the following Gaussian kernel

K (X , X 0) 5 e ¡ D 2(X ,X 0) (12)

where, in addition, the Fisher information matrix F appearing in the distance function was approximated
by F º s2 I , where I is the identity matrix and s a scaling parameter. This approximation was made
for ef� ciency reasons since the score vectors corresponding to the protein HMMs tend to have several
thousand components. The scaling parameter was set equal to the median Euclidean distance between the
gradient vectors corresponding to the training sequences in the protein family of interest and the closest
gradient vector from a protein belonging to another protein fold. Roughly speaking, the scaling guarantees
that, on average, the (approximate) distance from a protein sequence in the family of interest to its nearest
nonmember is one.

To summarize, we begin with an HMM trained from positive examples to model a given protein family.
We use this HMM to map each new protein sequence X we want to classify into a � xed length vector,
its Fisher score, and compute the kernel function on the basis of the Euclidean distance between the score
vector for X and the score vectors for known positive and negative examples X i of the protein family. The
resulting discriminant function is given by

L (X ) 5
X

i :X i 2H1

li K (X , X i ) ¡
X

i :X i 2H0

li K (X , X i ), (13)
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where K is the kernel function de� ned above and the li are estimated from the positive and negative
training examples X i as described in Section 2.2.1. We refer to this as the SVM-Fisher method.

2.4. Combination of scores

In many cases we can construct more than one HMM model for the family or superfamily of interest.
It is advantageous in such cases to combine the scores from the multiple models rather than selecting just
one. Let L i (X ) denote the score for the query sequence X based on the i th model. This might be the score
derived from the SVM-Fisher method, Equation (13), or the log likelihood ratio for the generative HMM
model,

log
P (X jH1)
P (X jH0)

,

or even a negative log E-value derived from a BLAST comparison, as described in Section 3. We would
like to combine the SVM-Fisher scores for X from all the models of the given family, and similarly with
HMM and BLAST scores. Unfortunately, there is no clear optimal way to combine these scores that is
practical to implement. How one should combine them depends on the joint distribution of all the score
functions from the different models and also on the exact performance measure one wants to optimize
by performing this combination of scores (Lindley, 1985; Bailey and Gribskov, 1998). Since this is not
the focus of this paper, here we only explore two simple heuristic means of combining scores. These are
average score

L ave(X ) 5
1
N

X

i

L i (X ) (14)

and maximum score

L max (X ) 5 max
i

L i (X ), (15)

where in each case the index i ranges over all models for a single family of interest. These combination
methods have also been explored in other protein homology experiments (Grundy, 1998). The average
score method works best if the scores for the individual models are fairly consistent, and the maximum
score method is more appropriate when we expect a larger value of some individual model score to be
a more reliable indicator of a positive example. We have found that the maximum score method works
better in our experiments with generative HMM models and BLAST scores, so this approach is used there.
However, the average score method works better for combining scores from our discriminative models, so
it is used in these experiments.

3. EXPERIMENTAL METHODS

We designed a set of experiments to determine the ability of SVM-Fisher kernel discriminative models to
recognize remote protein homologs. The SVM-Fisher kernel methods were compared to BLAST (Altshul
et al., 1990; Gish and States, 1993) and the generative HMMs built using the SAM-T98 methodology
(Park et al., 1998; Karplus et al., 1998; Hughey and Krogh, 1995, 1996). The experiments measured the
recognition rate for members of superfamilies of the SCOP protein structure classi� cation scheme (Hubbard
et al., 1997). We simulate the remote homology detection problem by withholding all members of a SCOP
family from the training set and training with the remaining members of the SCOP superfamily. We then
test sequences from the withheld family to see if they are recognized by the model built from the training
sequences. Since the withheld sequences are known remote homologs, we are able to demonstrate the
relative effectiveness of the techniques in classifying new sequences as remote members of a superfamily.
In a sense, we are asking, “Could the method discover a new family of a known superfamily?”

3.1. Overview of experiments

The SCOP version 1.37 PDB90 domain database, consisting of protein domains, no two of which have
90% or more residue identity, was used as the source of both training and test sequences. PDB90 eliminates
a large number of essentially redundant sequences from the SCOP database. The use of the domain database
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allows for accurate determination of a sequence’s class, eliminating the ambiguity associated with searching
whole-chain protein databases.

The generative models were obtained from an existing library of SAM-T98 HMMs. The SAM-T98
algorithm, described more fully in Karplus et al. (1998), builds an HMM for a SCOP domain sequence
by searching the nonredundant protein database NRP for a set of potential homologs of the sequence and
then iteratively selecting positive training sequences from among these potential homologs and re� ning a
model. The resulting model is stored as an alignment of the domain sequence and � nal set of homologs.

All SCOP families that contain at least 5 PDB90 sequences and have at least 10 PDB90 sequences in
the other families in their superfamily were selected for our test, resulting in 33 test families from 16
superfamilies (Table 1). When testing the recognition of each of these families, the training and test sets
were constructed as follows. The positive training examples were selected from the remaining families in
the same superfamily and the negative training examples from outside the fold that the family belongs to.
The positive test examples consisted of all the PDB90 sequences in the family of interest. The negative test
examples were chosen from outside of the fold and in such a way that the negative examples in the training
set and those in the test set never came from the same fold. Figure 1 shows an example of the division.
All of the training and test sequences, as well as the SAM-T98 models and alignments, are available from
our web site.

For each of the 33 test families, all the test examples, both positive and negative, were scored, based
on a discriminant function constructed from the training examples. We used various performance criteria,
described in the following section, to evaluate the quality of the discriminant function. The main purpose
of the discriminant function is to give better scores to the positive rather than the negative test examples.
Using this setup, the performance of the SVM-kernel method was compared to the performance of the
generative HMM alone and to BLAST scoring methods.

As a gauge of the distance of the test sequences from the positive training examples, the percent residue
identity, when available, was obtained from the SCOP domain structural alignment database created by
Gerstein and Levitt (1998). The alignment database was created for SCOP release 1.35, and thus did not
fully cover the test set from release 1.37. Additionally, the majority (98%) of the pairs of the test and
positive example sequences where not determined to have suf� cient structural similarity for alignment by
the database. Nevertheless, the structural alignments in this database give some rough idea of how remote
the homologies are that we are trying to � nd.

To use the Gerstein and Levitt database, for each sequence in a test family, we de� ne its similarity to
the positive training examples for this family as the maximum percent residue identity between the test
sequence and any of these positive training examples, computed from the Gerstein-Levitt alignments. If
no such alignments can be found for a given test sequence, its similarity is taken to be zero. Separately for
each of our 33 test families, we compute the similarity values for all sequences in the given test family,
sort these values in descending order, and report the quartiles of this distribution in Table 1. The column
marked “50” is the 50th percentile of this distribution, i.e., the median. The columns marked “25” and
“75” give the � rst and third quartile, respectively. A dash represents a value of zero that arises from the
lack of any appropriate structural alignments in the database.

3.2. Multiple models used

After selecting a test family, we must construct a model for its superfamily using available sequences
from the other families in that superfamily. The SAM-T98 method starts with a single sequence (the guide
sequence for the domain) and builds a model. In general, there are too many sequences in the other families
of the superfamily to consider building a model around each one of them, so we used a subset of PDB90
superfamily sequences that were present in a diverse library of existing HMMs. The SVM-Fisher method
was subsequently trained using each of these models in turn. The scores for the test sequences, given each
HMM model, were computed from Equation (13), and the scores obtained based on multiple models were
combined according to Equation (14).

3.3. Details on the training and test sets

In each experiment, all PDB90 sequences outside the fold of the test family were used as either negative
training or negative test examples. All experiments were repeated with the test/training allocation of negative
examples reversed. This resulted in approximately 2400 negative test sequences for most test families. The
split of negative examples into test and training was done on a fold-by-fold basis, in such a way that



102 JAAKKOLA ET AL.

Table 1. SCOP 1.37 Test Families Used in These Experiments. The First Column
Is a Family Numeric Identi� er Used in Other Graphs1

SCOP SCOP SAM-T98 IDE Percentile
# Superfamily Family HMM Hom 25 50 75

1 Globin-like(46) Phycocyanins(8) 13 840 21.5 - -
2 4-helical cytokines(18) Long-chain cytokines(7) 9 57 - - -
3 Short-chain cytokines(6) 7 104 19.4 18.5 16.6
4 Interferons/interleukin-10(5) 8 68 20.1 17.9 -
5 EF-hand(24) Parvalbumin(6) 13 761 23.4 23.3 22.4
6 Calmodulin-like(12) 7 807 18.8 16.8 -
7 Immunoglobulin(252) V set domains(120) 7 1827 25.5 - -
8 C1 set domains(103) 15 4701 - - -
9 C2 set domains(5) 15 4701 21.4 19.8 -

10 I set domains(8) 10 5791 24.3 20.2 -
11 E set domains(16) 13 5410 19.8 14.3 -
12 Cupredoxins(35) Plastocyanin/azurin-like(18) 1 737 - - -
13 Multidomain cupredoxins(15) 8 152 19.7 18.3 -
14 Viral coat and capsid Plant virus proteins(8) 16 152 18.4 16.6 -
15 proteins(50) Animal virus proteins(37) 10 19 14.8 - -
16 ConA-like lectins/ Legume lectins(9) 7 104 - - -

glucanases(25)
17 Trypsin-like serine Prokaryotic proteases(8) 9 793 24.0 - -
18 proteases(37) Eukaryotic proteases(26) 5 52 29.6 26.2 -
19 Acid proteases(20) Retroviral protease(6) 8 280 - - -
20 Lipocalins(18) Retinol binding protein-like(6) 6 178 - - -
21 Glycosyl- alpha-Amylases, 15 92 - - -

transferases(35) N-terminal domain(12)
22 beta-glycanases(11) 9 89 18.3 17.8 -
23 type II chitinase(6) 11 115 19.1 18.8 -
24 NAD(P)-binding Alcohol/glucose dehydrogenases, 8 650 - - -

Rossmann-fold C-terminal domain(7)
25 domains(54) Glyceraldehyde-3-phosphate 8 650 - - -

dehydrogenase-like,
N-terminal domain(12)

26 Formate/glycerate 8 650 20.1 19.1 18.2
dehydrogenases, NAD-domain(5)

27 Lactate and malate dehydrogenases, 8 650 19.9 - -
N-terminal domain(15)

28 P-loop containing Nucleotide and nucleoside kinases(11) 5 510 - - -
29 nucleotide triphosphate G proteins(8) 9 112 18.5 17.1 -

hydrolases(27)
30 Thioredoxin-like(20) Thioltransferase(7) 2 276 - - -
31 Glutathione S-transferases, 9 269 18.3 - -

N-terminal domain(9)
32 alpha/beta- Fungal lipases(8) 9 105 29.4 18.4 -

Hydrolases(25)
33 Periplasmic binding Transferrin(6) 8 89 - - -

protein-like II(16)
1The number of PDB90 superfamily or family domains is in parenthesis following the name. SAM-T98 has the number

of HMMs used as models for the family and the average number of homologs used in training each of the HMMs. The
last three columns are the highest percent sequence identity with the SCOP training families, as described in the text.
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FIG. 1. Separation of the SCOP PDB90 database into training and test sequences, shown for the G proteins test
family.

folds were never split between test and train. This insured that a negative training example was never
similar to a negative test example, which might give a signi� cant advantage to discriminative methods.
In actual applications, this requirement could be relaxed, and further improvements might be realized by
using discriminative methods.

For positive training examples, in addition to the PDB90 sequences in the superfamily of the test family
(but not in the test family itself), we also had available the � nal set of domain homologs found by the
SAM-T98 method for the HMM models built from the subset of SCOP sequences in the superfamily. We
tried two types of experiments, in which the positive training examples consisted of

1. only PDB90 sequences in the superfamily of the test family but excluding those in the test family
itself and

2. in addition to the above sequences, all the domain homologs found by each individual SAM-T98 model
built for the selected guide sequences that belong to the superfamily but not to the test family itself.

The results for the latter method were slightly superior for the SVM-Fisher method, and we report them
here.

3.4. BLAST methods

Two BLAST methodologies were used for comparison, each using WU-BLAST version 2.0a16 (Althschul
and Gish, 1996). These are family pairwise search homology methods, as explored in Grundy (1998). In
both methods, the PDB90 database was queried with each positive training sequence, and E-values were
recorded. One method, referred to as BLAST:SCOP-only in the results section, used positive training
examples as de� ned by (1) above. The other, which we call BLAST:SCOP1 SAM-T98-homologs, included
the SAM-T98 domain homologs as positive examples, as in (2) above. In both cases, the scores were
combined by the maximum method, so the � nal score of a test sequence in the PDB90 database was taken
to be the maximum ¡ log E-value for any of the positive training example query sequences. This score
measures the BLAST-detectable similarity of the test sequence to the closest sequence in the set of positive
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training sequences. In Grundy (1998), a related combination rule, which instead used the average of the
BLAST bit scores, was suggested. We tried a similar average method, taking the average of the ¡ log
E-values, which should in theory be more accurate than averaging the bit scores. However, the maximum
method performed best, so we report results for that combination method only.

3.5. Generative HMM scores

Finally, we also report results using the SAM-T98 method as a purely generative model. The null model
used here is the reverse sequence model from Park et al. (1998) and Karplus et al. (1998). We used the
same data and the same set of models as in the SVM-Fisher score experiments; we just replaced the SVM-
Fisher score with the SAM-T98 score. However, the scores were combined with the maximum method,
since that performed slightly better in this case.

In these experiments we also tried two different types of positive training examples. In the � rst set of
experiments, we used only the domain homologs found by the SAM-T98 method itself as a training set
for each HMM. Thus, we simply used the SAM-T98 models as they were given in the existing library of
models. In the second experiment, we retrained each of these models using all of the data in (2) above. That
is, using all of the SCOP sequences in the superfamily being modeled (but not in the family itself), and
all of the domain homologs found by the given SAM-T98 model and by the models built from other guide
sequences from this superfamily (but not in the family itself). Thus in this latter case, each HMM was
trained on same set of positive training examples used by the SVM-Fisher and BLAST:SCOP+SAMT98-
homologs methods. Performance was somewhat better in the latter case at higher rates of false positives
(RFP, see below), but was worse at lower RFP, making the method of less practical value. Therefore, we
report the results of the � rst experiment here.

4. RESULTS

Here we provide a comparison of the results of the best performing approaches for each of the methods.
Since the numeric scores produced by each method are not directly comparable, we use the rate of false
positives (RFP) as our performance measure, as in Park et al. (1998). The RFP for a positive test sequence
is de� ned as the fraction of negative test sequences that score as high or better than the positive sequence.

4.1. G-proteins

Here, as an example, we look at the results for the G proteins family of the nucleotide triphosphate
hydrolases SCOP superfamily.

The HMMs used in the recognition of members of the G proteins family were taken from two other
families in the superfamily: nucleotide and nucleoside kinases, and nitrogenase iron protein-like (Table 2).

Table 2. Models Used for Detection of Members
of the SCOP G Proteins Family1

Family HMM # Homologs

Nucleotide and nucleoside kinases 1dekA 8
1aky 131
1ukz 136
3adk 128
1gky 131
1ukd 126

Nitrogenase iron protein-like 1dts 46
1nipA 268
1adeA 41

1The HMM column gives the PDB id of the guide sequence used to
create the model followed by the number of homologs in the � nal SAM-
T98 alignment.
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Table 3. SCOP PDB90 Members of the Nucleotide Triphosphate Hydrolases Superfamily1

Family SCOP domains

Nucleotide and nucleoside kinases 1ak2 1akeA 1aky 1dekA 1gky 1ukd 1ukz 1vtk 1zin(1) 2ak3A 3adk
G proteins 1dar(2) 1eft(3) 1etu 1gia(2) 1guaA 1hurA 1tadA(2) 5p21
Motor proteins 1mmd(2) 2mysA(2)
Nitrogenase iron protein-like 1adeA 1dts 1nipA
RecA protein-like (ATPase-domain) 1bmfA(3) 1bmfD(3) 2reb(1)

1The domains are identi� ed by their PDB chain identi� er. For partial-chain domains, the SCOP domain number within
the chain is included.

The positive training examples were the SCOP PDB90 sequences from all families in the superfamily except
the G protein family (Table 3) along with the HMM domain homologs found by the models corresponding
to the guide sequences, as listed in Table 2.

This experiment tested the ability of the methods to distinguish the 8 PDB90 G proteins from 2439
sequences in other SCOP folds. The results are given in Table 4. It is seen that the SVM-Fisher method
scores 5 of the 8 G proteins better than all 2439 negative test sequences and gets a lower rate of false
positives than the other methods on the other 3 sequences, with the exception of 1eft-3.

We summarize the performance of the four methods in recognizing this family by looking at two overall
� gures of merit. The � rst is the RFP obtained when it is demanded that all of the sequences in the family
are recognized. This is the same as the maximum RFP of any sequence in the family. Under this measure of
performance, we get 0.867 for BLAST:SCOP-only, 0.568 for BLAST:SCOP1 SAMT98-homologs, 0.428
for SAM-T98, and 0.051 for SVM-Fisher for the G-proteins family.

Since the maximum RFP can be dominated by a few outliers, which for some reason may be particularly
hard for a method to recognize, we also consider the median RFP for the sequences in the family. This
is obtained by sorting the RFPs for the test sequences from smallest to largest and taking the value that
occurs in the middle of this list. To get a good median RFP requires only that at least half of the sequences
in the family be easy for the method to recognize. For each method, different sequences may be included
in this “easier half” of the family. Under this measure of performance, we get 0.378 for BLAST:SCOP-
only, 0.330 for BLAST:SCOP+SAMT98-homologs , 0.007 for SAM-T98, and 0.0 for SVM-Fisher for the
G-proteins family.

4.2. Overall results

In Table 5 we give the performance of all four methods on each of the 33 protein families we tested,
as measured by the maximum and median RFP. We also computed these statistics for the � rst and third
quartiles, and the relative performance of the four methods was similar (data not shown).

A graphical comparison of the overall results for the 33 test families is given in Figures 2 through 7.

Table 4. Rate of False Positives for G proteins Family1

Sequence BLAST B-Hom S-T98 SVM-F

5p21 0.043 0.010 0.001 0.000
1guaA 0.179 0.031 0.000 0.000
1etu 0.307 0.404 0.428 0.038
1hurA 0.378 0.007 0.007 0.000
1eft(3) 0.431 0.568 0.041 0.051
1dar(2) 0.565 0.391 0.289 0.019
1tadA(2) 0.797 0.330 0.004 0.000
1gia(2) 0.867 0.421 0.017 0.000

1BLAST 5 BLAST:SCOP-only, B-Hom 5 BLAST:SCOP+SAMT-98-
homologs, S-T98 5 SAMT-98, and SVM-F 5 SVM-Fisher method.
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Table 5. Maximum and Median Rates of False Positives for All 33 Families1

Maximum RFP Median RFP

# Family BLT BLH ST98 SVM BLT BLH ST98 SVM

1 Phycocyanins 0.882 0.743 0.950 0.619 0.391 0.342 0.450 0.364
2 Long-chain cytokines 0.847 0.526 0.994 0.123 0.721 0.397 0.446 0.035
3 Short-chain cytokines 0.686 0.658 0.513 0.023 0.407 0.114 0.109 0.002
4 Interferons/interleukin-10 0.613 0.799 0.765 0.119 0.324 0.440 0.289 0.004
5 Parvalbumin 0.098 0.000 0.000 0.000 0.000 0.000 0.000 0.000
6 Calmodulin-like 0.433 0.002 0.000 0.000 0.023 0.000 0.000 0.000
7 Immunoglobulin V dom 0.720 0.115 0.974 0.016 0.135 0.000 0.000 0.000
8 Immunoglobulin C1 dom 0.624 0.000 0.000 0.063 0.033 0.000 0.000 0.000
9 Immunoglobulin C2 dom 0.263 0.124 0.136 0.019 0.119 0.006 0.000 0.000

10 Immunoglobulin I dom 0.157 0.190 0.251 0.495 0.007 0.004 0.000 0.000
11 Immunoglobulin E dom 0.792 0.797 0.899 0.683 0.168 0.329 0.178 0.073
12 Plastocyanin/azurin-like 0.869 0.895 0.730 0.772 0.016 0.049 0.039 0.013
13 Multidomain cupredoxins 0.775 0.853 0.233 0.360 0.342 0.116 0.003 0.002
14 Plant virus proteins 0.975 0.940 0.782 0.410 0.641 0.391 0.088 0.133
15 Animal virus proteins 0.962 0.997 0.941 0.513 0.750 0.630 0.204 0.066
16 Legume lectins 0.551 0.895 0.643 0.552 0.278 0.298 0.278 0.083
17 Prokaryotic proteases 0.962 0.025 0.000 0.000 0.080 0.002 0.000 0.000
18 Eukaryotic proteases 0.846 0.000 0.000 0.000 0.000 0.000 0.000 0.000
19 Retroviral protease 0.500 0.195 0.183 0.187 0.238 0.108 0.012 0.003
20 Retinol binding 0.827 0.843 0.940 0.121 0.475 0.293 0.165 0.051
21 alpha-Amylases, N-term 0.935 0.953 0.737 0.037 0.630 0.851 0.007 0.000
22 beta-glycanases 0.974 0.939 0.370 0.079 0.517 0.338 0.009 0.008
23 type II chitinase 0.724 0.905 0.945 0.263 0.350 0.426 0.110 0.031
24 Alcohol/glucose dehydro 0.610 0.203 0.050 0.025 0.041 0.004 0.019 0.008
25 Rossmann-fold C-term 0.713 0.883 0.593 0.107 0.121 0.299 0.015 0.005
26 Glyceraldehyde-3-phosphate 0.791 0.537 0.062 0.004 0.315 0.102 0.009 0.002
27 Formate/glycerate 0.702 0.295 0.302 0.074 0.022 0.049 0.001 0.002
28 Lactate&malate dehydro 0.947 0.851 0.132 0.297 0.530 0.330 0.024 0.002
29 G proteins 0.867 0.568 0.428 0.051 0.378 0.330 0.007 0.000
30 Thioltransferase 0.205 0.072 0.986 0.029 0.000 0.000 0.000 0.000
31 Glutathione S-transfer 0.566 0.597 0.825 0.590 0.311 0.201 0.273 0.238
32 Fungal lipases 0.957 0.591 0.089 0.007 0.044 0.053 0.000 0.000
33 Transferrin 0.940 0.859 0.035 0.072 0.875 0.433 0.007 0.026

1BLT 5 BLAST:SCOP-only, BLH 5 BLAST:SCOP+SAMT-98-homologs , ST98 5 SAMT-98, and SVM 5 SVM-Fisher method.

4.3. Further experiments

We did further experiments to verify that the SVM-Fisher method was not relying too heavily on length
and compositional bias in discriminating one protein domain family from another, as suggested by a referee
of this paper. Such information would not be derivable from the test sequence in the case that the domain
to be classi� ed is contained in a larger test protein sequence. To simulate this situation, we appended
randomly generated amino acids onto the ends of all the sequences in PDB90, creating a set of padded
PDB90 sequences that all had length 1200 (the largest domain in PDB90 has length 905). The distribution
of these random amino acids was determined from the overall amino acid frequencies in PDB90. The
fraction of the padding that occurred at the beginning of the sequence versus at the end of the sequence
was determined uniformly at random as well.

We reran the experiments reported above with this padded PDB90 data set. In cases where homologs
were used, these were randomly padded as well. Apart from a slight reduction of the gap between SVM-
Fisher and the other methods, the results were on average qualitatively similar to those obtained without
padding, as shown in Figures 8 and 9.

The datasets for all the experiments are available from our web site (Jaakkola et al., 1998a).
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FIG. 2. Here we compare the overall performance for the four methods on the 33 test families. For each family we
computed the maximum RFP for that family, as shown in Table 5. Possible values for this RFP are shown on the
X-axis. On the Y-axis we plot the number of SCOP families, out of the 33 families that we tested, for which the given
method achieves that RFP performance or better.
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FIG. 3. This plot is similar to that of Figure 2, however the performance is measured as the median RFP.

5. DISCUSSION

We have developed a new approach to the recognition of remote protein homologies that uses a dis-
criminative method built on top of a generative model such as an HMM. Our experiments show that this
method signi� cantly improves on previous methods for the classi� cation of protein domains based on
remote homologies.

All the methods considered in this paper combine multiple scores for each query sequence. The multiple
scores arise either from several models that are available for a particular superfamily (HMM and SVM-
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FIG. 4. Detail plot of the low RFP region of Figure 2.
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FIG. 5. Detail plot of the low RFP region of Figure 3.

Fisher) or because each known sequence can be scored against the query sequence (BLAST, see Grundy
(1998)). The simple combination rules employed in this paper for each method are not necessarily optimal
and further work needs to be done in this regard. It should be noted that while our methods for combining
BLAST and HMM scores are essentially the same as those explored in Grundy (1998), the relative perfor-
mance of the simple generative HMM method versus the family pairwise search homology methods using
BLAST is reversed in our experiments: here the HMM performs better. This is not surprising, since our
tests consisted of � nding very remote homologies for the most part, whereas the tests in Grundy (1998)
were for � nding sequences that were mostly in the same family as the training sequences. Furthermore,
the families in Grundy (1998) were not de� ned by structure using SCOP, but rather by sequence similarity
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itself. There were also differences in the construction of the HMMs.4 Our experimental results show, how-
ever, that it may be wise to build more powerful, discriminatively trained protein classi� cation methods
on top of HMM methods, rather than replace HMM methods with combinations of BLAST scores.

The discriminative SVM-Fisher method relies on the presence of multiple training examples from the
superfamily of interest and works best when these training sequences are not the same as those used to
estimate the parameters of the underlying HMM. This presents us with an allocation problem, i.e., which
sequences should be used for estimating the parameters of the HMM and which ones are left for the

4Our tests used the SAM-T98 method for constructing HMMs, whereas the tests in Grundy (1998) used an earlier
version of the HMMER system (Eddy, 1997), with the default parameters, which does not perform as well (Karchin
and Hughey, 1998); more recent and carefully tuned versions of HMMER would likely have performed better.
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FIG. 8. Comparison of the overall performance for the four methods on the 33 test families at the median RFP using
padded sequences.
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FIG. 9. Detail plot of the low RFP region of Figure 8.

discriminative method. This issue becomes especially important in cases where there are relatively few
known sequences and homologs in the superfamily of interest. A possible solution to this problem, and one
that we have already successfully experimented with, concerns the use of generic protein models rather
than those tuned to the particular family of interest. By generic models, we mean HMMs constructed
on the basis of statistical properties of short amino acid sequences that map onto structurally conserved
regions in proteins (Bystroff and Baker, 1997). Since the role of the HMM in our discriminative formalism
is to provide features relevant for identifying structural relationships, the use of such generic models seems
quite natural.

In the future, it will also be important to extend the method to identify multiple domains within large pro-
tein sequences. Since our experiments with arti� cially padded sequences were successful, we are con� dent
that these methods can be adapted to the identi� cation of multiple domains. However, this work remains
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to be done. Finally, while this discriminative framework is speci� cally developed for identifying protein
homologies, it naturally extends to other problems in biosequence analysis, such as the identi� cation and
classi� cation of promoters, splice sites, and other features in genomic DNA.

APPENDIX A: COMPUTATION OF THE FISHER SCORES

Here we specify in more detail the computation of the Fisher scores, the gradients with respect to the
parameters of the HMM. We will only consider the gradients with respect to the emission probabilities
since the Fisher score vectors used in the experiments in this paper correspond to only those gradients.
For a tutorial on HMMs see (Rabiner and Juang (1986).

We use P (x js, h) 5 hx js to denote the probability of emitting a residue x from the amino acid alphabet
while in state s 2 f1, . . . , mg. Thus

P
x hx js 5 1 for all s. Furthermore, let P (s 0js, t) 5 ts0js be the

transition probability from the current state s to the next state s 0. For simplicity, we assume that there is a
� xed, silent starting state s0. The HMM de� ned in this way assigns a probability value to each sequence
X 5 [x1, . . . , xn] given by

P (X jh, t ) 5
X

s1, ...,sn

Y

i

P (xi jsi , h)P (si jsi ¡ 1, t ) 5
X

s1, ...,sn

Y

i

hx i jsi tsi jsi ¡ 1 (16)

where fs1, . . . , sn g speci� es a hidden state sequence and the summation is over all possible such sequences.
Our interest here is to compute the derivatives of log P (X jh, t ) with respect to the emission probabilities

hx js , as these are the components of the Fisher score vector UX we use. Since the hx js parameters are tied in
the sense that they sum to one for each � xed state s, we � rst rewrite them in terms of a set of independent
parameters

hx js 5
hx ,sP
x 0 hx 0 ,s

(17)

and assume that the current values of hx ,s are set so that
P

x 0 hx 0 ,s 5 1, implying that hx ,s 5 hx js .
Consequently,

@

@hx̃ , s̃
log P (X jh, t ) 5

1

P (X jh, t )

X

s1 ,..., sn

@

@hx̃ , s̃

Y

i

hx i ,siP
x 0 hx 0,si

tsi jsi ¡ 1 . (18)

Let us � rst consider

@

@hx̃ , s̃

Y

i

hx i ,siP
x 0 hx 0 ,si

tsi jsi ¡ 1 5
X

k

µ
@

@hx̃ , s̃
(

hxk ,skP
x 0 hx 0,si

)
¶

tsk jsk ¡ 1

Y

i 65 k

hxi ,siP
x 0 hx 0 ,si

tsi jsi ¡ 1

5
X

k

µ
dsk , s̃dxk , x̃P

x 0 hx 0 ,si

¡
hxk ,sk

P
x 0 dsk , s̃dx 0, x̃

(
P

x 0 hx 0 ,si )
2

¶
tsk jsk ¡ 1

Y

i 65 k

hx i ,siP
x 0 hx 0,si

tsi jsi ¡ 1

5
X

k

£
dsk , s̃dxk , x̃ ¡ hxk jsk dsk , s̃

¤
tsk jsk ¡ 1

Y

i 65 k

hx i jsi tsi jsi ¡ 1

5
X

k
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dsk , s̃dxk , x̃

hxk jsk

¡ dsk , s̃

¶ Y

i

hx i jsi tsi jsi ¡ 1

5
X

k

µ
dsk , s̃dxk , x̃

hx̃ js̃
¡ dsk , s̃

¶ Y

i

hx i jsi tsi jsi ¡ 1
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where the � rst two equalities follow from the chain rule and the third one from our previous setting:
hx ,s 5 hx js and so

P
x 0 hx 0 ,s 5 1. Inserting this result back into (18) and � ipping the order of the

summations we get

@

@hx̃ , s̃
log P (X jh, t ) 5

X

k

1
P (X jh, t )

X

s1 ,..., sn

µ
dsk , s̃dxk , x̃

hx̃ js̃
¡ dsk , s̃

¶ Y

i

hxi jsi tsi jsi ¡ 1

5
1

hx̃ js̃

X

k

E fdsk , s̃dxk , x̃ jX , h, t g ¡
X

k

E fdsk , s̃ jX , h, t g

5
j(x̃ , s̃)

hx̃ js̃
¡ j(s̃) (19)

where j(s̃) 5
P

x 0 j(x 0, s̃) and the posterior expectations

X

k

E fdsk , s̃dxk , x̃ jX , h, t g 5 j(x̃ , s̃) (20)

are the suf� cient statistics for the emission probabilities. They are obtained directly and ef� ciently via the
standard forward-backward algorithm (Rabiner and Juang, 1986). Also, j(x̃ , s̃) can be seen as the expected
posterior frequency of visiting state s̃ and generating residue x̃ from that state.

To summarize so far, the Fisher score vector UX relative to the emission probabilities is a vector whose
components are indexed by (x , s) and the corresponding values given by (19). We emphasize that j(x̃ , s̃)
come from the standard forward-backward algorithm and thus the cost of computing the Fisher score vector
is of the same order as simply evaluating P (X jh, t ).

A.1. Fisher score from a mixture decomposition

The Fisher score vectors used in the experiments in this paper do not come directly from the emission
probabilities but from a mixture decomposition of the emission probabilities. It is often advantageous to
decompose the emission probabilities into a mixture

hx js 5
X

l

cljsh
(l)
x js (21)

where
P

l cljs 5 1 and each component h
(l)
x js concentrates on a particular subclass of residues such as the

hydrophobic residues. Computing the Fisher score vector on the basis of the mixture coef� cients cljs allows

us to abstract away from the residue identity.5 The components h
(l)
x js in our case were extracted from a

9-component Dirichlet mixture developed by Karplus (available on www). To � nd the components of this
new Fisher score vector we can proceed analogously to the previous derivation. We get

@

@cl ,s
log P (X jh, c, t ) 5

X

x

j(x , s)

"
h

(l)
x js

hx js
¡ 1

#
(22)

for all values of l 2 f1, . . . , 9g and s 2 f1, . . . , mg. A rather surprising and a very convenient property
of these derivatives is that we do not need to know explicitly the values of the coef� cients cljs , only the

values hx js and those of the component probabilities h
(l)
x js . This holds whenever hx js can be decomposed in

terms of h
(l)
x js as in Equation (21).

5By adjusting the components h
(l)
x js , the information about the residue identity can be preserved if necessary.
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