
Factoring by Quantum Computers

Ragesh Jaiswal

University of California, San Diego

A Quantum computer is a device that uses quantum phenomenon to perform a computation. A
classical system follows a single computation path. On the other hand a quantum system utilizes

the superposition of input states to simultaneously move along all possible paths and finally

move to one definite state when measured. This type of parallelism is exploited to find efficient
algorithms for problems that are hard in a classical system. In this paper we will study one such

classically hard problem. We will study efficient randomized algorithm for Integer Factorization

problem for quantum computers.

1. INTRODUCTION

In 1982, Richard P. Feynman observed that a quantum system is exponentially
hard to simulate on a classical system. He hypothesized that a quantum computer
might be exponentially more powerful than a classical computer. The power of
quantum computers was revealed when Peter Shor in 1994 came out with efficient
randomized algorithms for Integer Factorization and Discrete Logarithm problem.

In this paper we will look at one of the two problems discussed in Peter Shor’s
paper. We will consider the Integer Factorization problem. The next section con-
tains preliminaries for the quantum phenomenons that would help in understanding
the algorithm later. Section 3 defines the problem and gives the algorithm. Section
4 gives some of the follow up work.

2. PRELIMINARIES

2.1 Qubit

A qubit is a 2 state quantum system with probability amplitudes of occurring in
either of the states. The system is said to be in superposition of these two states.
We denote these two basis states by |0 > and |1 >. If the probability amplitudes
are α and β then the state of the system is denoted by α|0 > +β|1 > (α, β ∈ C).
The probability of the system being in state |0 > is |α|2 and in state ‖1 > is |β|2
when measured. Therefore |α|2 + |β|2 = 1.

2.2 Multiple Qubits and Measurement

Suppose we have a 2 qubit system, we will have 4 basis states 00, 01, 10, 11. The
quantum state of this 2 qubit system will then be represented by the vector:

|ψ >= α00|00 > +α01|01 > +α10|10 > +α11|11 > (1)

where
∑

x={0,1}2 |αx|2 = 1. α’s are the probability amplitudes. The quantum state
of multiple qubit system with the qubits in the quantum state ψ1, ψ2, ..., ψm can
be found by taking the tensor product, |ψ >= |ψ1 > ⊗|ψ2 > ...⊗ |ψm >.



2 · Factoring by Quantum Computers

If measurement of only the first bit is made in the 2 qubit system, the post-
measurement quantum state would be the superposition of all the states(present in
pre-measurement) which have the first bit same as measured, normalized to have
unit length. For example consider equation 1, if the first bit is measured to be in
state 0, then the post-measurement state would be:

|ψ′ >=
α00|00 > +α01|01 >√

|α00|2 + |α01|2
(2)

2.3 Quantum Gates

Quantum gates are simple transformations that can be applied to qubits(linear
transformations to quantum vector state). Any change in the quantum state can be
modeled by a quantum circuit consisting of wires and quantum gates. For example
consider the following single qubit gate which flips the probability amplitudes.(

0 1
1 0

) (
α1

α2

)
=

(
α2

α1

)
The following CNOT gate represents a 2 qubit gate(input and outputs both are

2 qubits). Classically it basically outputs the first bit as it is, and flips the second
bit if the first input bit was 1. The transformation matrix for the CNOT gate is:

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


Note that both the above gates are reversible, which is in fact true for all quantum
gates.

2.4 Reversible Computation

Since
∑

x={0,1}n |αx|2 = 1 for any n-qubit quantum state, the transformation that
can be applied to a quantum state are unitary. It can be shown that any linear
transformation U , is unitary iff U−1 = U c. This implies that a quantum gate is
essentially reversible, making quantum computation reversible.

2.5 Quantum Fourier Transforms

A quantum Fourier transform is basically a unitary transformation which is defined
as:

|a >−→FTZq

1
q1/2

q−1∑
c=0

ωca|c > (3)

|a > is basis state, 0 ≤ a < q for some q, and ω is the qth root of unity.
Some observations about ω that will be helpful later are:

1 + ωj + ω2j + ω3j + ...+ ω(q−1)j = 0 if j 6= 0 (mod q) (4)

1 + ωj + ω2j + ω3j + ...+ ω(q−1)j = q if j = 0 (mod q) (5)
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[3] gives a quantum circuit that gives the quantum fourier transform in time poly-
nomial in the number of qubits.

3. INTEGER FACTORIZATION

3.1 Problem

Given an odd composite N , find N1 such that N1 6= 1 and N1|N
The best known classical randomized algorithm for this problem is sub-exponential
(2(logN)1/3

). The quantum algorithm presented runs in polynomial number of steps.

3.2 Basic Idea and Number Theory

Given N , consider the multiplicative group < Z∗
N , . >. Let r be the order of any

randomly chosen element x ∈ Z∗
N . We have:

xr − 1 = 0 (mod N)
⇒ (xr/2 − 1)(xr/2 + 1) = 0 (mod N)

Note that xr/2− 1 6= 0 (mod N) when r is even(else it becomes the order of x). So
if r is not odd and xr/2 + 1 6= 0 (mod N), we can compute a non-trivial factor of
N by finding gcd(xr/2 − 1, N). This can be done in linear lime. We will now show
that for randomly chosen x there is a high probability that these two properties
hold.

Let N =
∏k

i=1 p
αi
i , pi’s are the odd prime factors of N . Let ri be the order of

element x (mod pαi
i )

Fact 1: r = LCM(r1, r2, ..., rk).

Claim 1: The algorithm fails if and only if the largest powers of 2 dividing the ri’s
are the same.(Note that the algorithm fails iff r is odd or xr/2 + 1 = 0 (mod N))
proof: Let ri = 2li ∗ qi, qi is odd.

(⇒)
Case 1: li = 0,∀i : 1 ≤ i ≤ k
In this case r is odd, so the algorithm fails.

Case 2: li = c,∀i : 1 ≤ i ≤ k
In this case r = 2c ∗ t, t is odd.
For any j we will have:
xr/2 − 1 (mod pαj

j ) = x2c−1t − 1 (mod pαj

j )

The RHS is 0 (mod p
αj

j ) iff 2c−1t = 0 (mod 2c ∗ qj) which is not possible. Now,
since pj is an odd prime we will have

xr/2 + 1 = 0 (mod pαj

j ) (6)

From Chinese remaindering theorem [1] we get xr/2 + 1 = 0 (mod N) {since 6 is
true for all j}. So the algorithm fails.

(⇐)
Now suppose the powers are not the same.
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Let LCM(r1, r2, ..., rk) = 2m ∗ k, where m = max(li), k is odd.
Now consider a j such that lj < m (Note that such a j exists from our assumption).
We have:
r = 2m−lj ∗ 2lj ∗ qj ∗ t, t is odd, m− lj > 0

Therefore,
xr/2 − 1 (mod pαj

j )

= x2lj 2m−lj−1qjt (mod pαj

j )

= (x2lj qj )t2m−lj−1
- 1 (mod pαj

j )
= (xrj )(...) - 1 (mod pαj

j )
= 0 (mod pαj

j ){since rj is the order of x mod pαj

j }

⇒ xr/2 + 1 6= 0 (mod pαj

j ){since pj is an odd prime}
⇒ xr/2 + 1 6= 0 (mod N) [From Chinese Remaindering Theorem [1]]
So the algorithm succeeds.
(proved)

Choosing a random x (mod N) is same as choosing for each i a random numberxi

(mod pαi
i ). Now < Z∗

pα , . > is a cyclicgroup for any prime power pα, so for any pαi
i

the probability of choosing an xi such that the largest power of 2 that divides its
order is the same as that for pαi−1

i−1 is 1/2. Therefore the probability that our choice
of x would fail is 1− 1/2k−1 which is reasonably small.

3.3 Simple Case

Let us consider a simple case to understand the basic techniques of quantum algo-
rithms. We start with two quantum registers in the initial state |0 > |0 >. We will
take fourier transforms over Zq. In the simple case we assume r|q.
We apply fourier transform to the first register to get a uniform superposition of
states.

|0 > |0 >−→FTZq
1/
√
q

∑
a∈Zq

|a > |0 > (7)

We then apply modular exponentiation to get the state:

1/
√
q

∑
a∈Zq

|a > |xa (mod n) > (8)

At this point we observe the second register. Suppose the state observed is xk (mod n).
The post-measurement of the system would be:

1
√
q

1√
q/r

∑
∀b∈Zq,st xb=xk mod n

|b > |xk mod n > (9)

since r is the order of x mod n, b = lr + k 0 ≤ l < q/r. So we have:

√
r

q

q/r∑
l=0

|lr + k > |xk mod n > (10)
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Now we again apply fourier transform to the first register to get.
√
r

q

q/r∑
l=0

∑
u∈Zq

ω(lr+k)u|u > |xk mod n > (11)

or,

√
r

q

∑
u∈Zq

ωku

q/r∑
l=0

(ωr)lu |u > |xk mod n > (12)

Now ωr is the q/rth root of unity. From equations 4 and 5 we get that the ampli-
tudes of all states except those where u = 0 mod q/r, cancel out. Only terms with
u = 0 mod q/r remain. So we get the state:

√
r

q

q

r

r−1∑
l=0

|l q
r
> (13)

We get uniform superposition of all states that are multiples of q/r. With high
probability gcd(l, q

r ) = 1, in such a case gcd(q, l qr ) = q
r . So with high probability

we get r by dividing q by gcd(q, l qr ).
To get a better idea let us try to intuitively understand equation 11 which is the

most important step. In this step we are, in some sense, taking a discrete fourier
transform over Zq, on the general function f : Zq → C, which in this case:

f(x) = constant, 0 ≤ x < q, x = lr + k and (14)

f(x) = 0, otherwise. (15)

Now f is a periodic function with a period of r. This implies that in the transformed
domain the peaks will occur at multiples of q/r (analogous to frequency in signal
processing). Which means that states which are multiples of q/r would occur with
high, uniform probability which is exactly what we get in equation 13.

3.4 General Case

Now that we are familiar with the techniques used in quantum computing we can
go to the general case when we drop the assumption that r|q. The initial steps of
the algorithm until equation 10 remain the same. We start with:

√
r

q

bq/rc∑
l=0

|lr + k > |xk mod n > (16)

Applying fourier transform to the first register we get:
√
r

q

∑
u∈Zq

ωku

bq/rc∑
l=0

(ωru)l |u > |xk mod n > (17)

If ru mod q is small, the summation
∑bq/rc

l=0 (ωru)l (for certain u) covers a small
angle in the complex plane, so there is a constructive interference for such u. On
the other hand if ru mod q is large the summation will be distributed evenly around
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the unit circle and the terms will cancel out, reducing the chances of occurrence of
such u. We will analyze a specific case of small ru mod q to get the value of r. Let:

−r/2 ≤ ru mod q ≤ r/2 (18)

Note that in this case the summation covers only half of the unit circle. Now, for
some l:

−r/2 ≤ ru− lq ≤ r/2 (19)

Dividing the inequality by rq:

|u
q
− l

r
| ≤ 1

2q
(20)

If we chose q > N2 then there is at most one value of l
r satisfying the above

inequality. The denominator of l
r is less than N . The difference of two fractions

with their denominators at most N can be at least N2. So we can get the value of
l
r by continued fraction expansion of u

q until the denominator is less thanN .
Now what remains to show is that the case −r/2 ≤ ru mod q ≤ r/2 occurs

with reasonably high probability. [3] presents a detailed analysis to compute the
probability with a small error. Here we will look at a coarser analysis given in [4]
which serves our purpose.

The summation
∑bq/rc

l=0 (ωru)l is distributed uniformly over half of the unit circle
in the complex plane. This implies that at least half of the terms in the summation
make less than 45o with the resulting complex number. Each of these terms make
a contribution of at least 1√

2
to the sum. So the probability amplitude |αu| ≤

√
r

q
q
r

1
2

1√
2

= 1√
r

1
2
√

2
. So such a u will be observed with a probability, at least 1/8r

which is a constant.

4. FOLLOW UP WORK

At present Quantum Computing remains in its pioneering stage. Error correction,
decoherence and possible hardware architecture are the obstacles in coming up
with a quantum computer. Quantum error correction proposed in 1995 increased
the possibility of such systems. Presently work is in progress in realizing a quantum
computer using NMR techniques.

[2] gives a comprehensive coverage on the developments in Quantum theory.
There have been interesting developments in the theory of quantum computing after
Shor’s work. In 1996, Grover gave a quadratic speed-up quantum search algorithm.
The limits of quantum computers was explored by Bennet, Bernstein, Brassard and
Vazirani who showed that quantum computation cannot speed up search by more
than a quadratic factor and that, relative to a random oracle, quantum computers
cannot solve NP-complete problems. The class BQNP, the quantum analog of NP
was studied by Kitaev and he showed that QSAT(quantum analog of satisfiability)
is complete for the class. Watrous showed that the class IP (Interactive proofs
with polynomially number of rounds) can be simulated with only three rounds of
communication. Burhman, Cleve and Wigderson showed how two parties could
decide set disjointness by communicating only square root n quantum bits. There
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has also been good amount of work in Quantum Information Theory and Quantum
Cryptography.
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