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1 Direct Product Theorems
My main research focuses on Direct Product Theorems and their applications in Cryptography, Derandomization,
Average-case Complexity, and Error Correcting Codes. Direct Product Theorems are more formal statements with
the following general intuition:

“if there is a problem which is hard to solve on the average, then solving multiple instances of the problem
becomes even harder.”

Such theorems are useful in the following settings:
(i) Cryptography: Much of Cryptography is based on existence of problems which are hard to solve on average.
Direct Product Theorems provide a consistent way to amplify security properties of certain cryptographic protocols.
For instance, [IJK07] uses such theorems to show amplification of the gap between the success of a human user and
a computer in solving a CAPTCHA2 test in order to distinguish between the two.
(ii) Derandomization: A series of results (e.g. [NW94, IW97]) show a very interesting Hardness-vs-Randomness
tradeoff. These results show the following sequence of implications: if there is a function which is hard in the
worst-case, then there exists a function which is mildly hard-on-average. A Direct Product construction is then
used to amplify the average-case hardness of such functions. The harder function is then used to construct a
pseudorandom generator. This generator, which can extend a random seed by an exponential amount, is finally
used to derandomize probabilistic computation. In short, a non-trivial circuit lower bound implies that randomness
does not help as long as efficient computation is concerned.
(iii) Average-case Complexity: In the theory of average-case complexity, Direct Product Theorems help to
address questions of the form: if there is a function within some worst-case complexity class C which is hard with
respect to probabilistic computation, then is there another function in C which is even harder? More specifically,
there is great interest in studying uniform hardness amplification within the complexity class NP (e.g. [O’D04,
Tre05]).
(iv) Error Correcting Codes: Most of the proofs of Direct Product Theorems are constructive. This essentially
means that the proof is by contradiction and has the following structure: starting with a solver which computes
the strongly hard function on the average, the proof explicitly constructs a solver which computes the mildly hard
function on the average. In certain cases, the construction of the strongly hard function can be viewed as an error
correcting code, whereas the constructive proof of the theorem, gives a decoding algorithm. We will see such an
error correcting code here.
Suppose we are given a boolean function f : {0, 1}n → {0, 1} which is hard on average for bounded size circuits. The
classical Direct Product Theorem shows that the function fk defined as fk(x1, ..., xk) = f(x1)|...|f(xk) (| denotes
concatenation) is much harder. Almost synonymous with the Direct Product Theorem is the classical Yao’s XOR
Lemma which says that the boolean function f⊕k defined as f⊕k(x1, ..., xk) = f(x1)⊕ ...⊕ f(xk) is much harder to
compute than f . The proof of these Theorems is given by contradiction; that is, if the harder function fk (f⊕k) can
be computed by a circuit C (considering a nonuniform setting) of size s on at least ε fraction of the inputs, then
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we give an explicit construction of a circuit C ′ of certain smaller size s′ < s which computes f on at least (1 − δ)
fraction of the inputs, where ε is exponentially small in k. Such constructions require random samples (input-output
pairs) from f , which in the nonuniform setting is accounted for as the nonuniform advice. Next, I will discuss some
specific instances of Direct Product Theorems and applications that I have been interested in.

1.1 Uniform Direct Product Theorems

Trevisan [T03] and Impagliazzo [I02] independently make the following interesting observation regarding the con-
nection between the Direct Product Theorem and Error Correcting Codes: Considering the truth table of f as
the message, the truth table of fk can be interpreted as the k-wise Direct Product encoding of the message. The
constructive proof of the Direct Product Theorem then gives an algorithm for list-decoding this code. Given this,
we observe that the list size that all previously known proofs give is exponentially large (2poly(1/ε)) compared to the
optimal (which should be poly(1/ε)). This makes decoding using such constructive proofs highly inefficient. In joint
works [IJK06, IJKW08] with Russell Impagliazzo, Valentine Kabanets and Avi Wigderson, we give a list decoding
algorithm which is optimal with respect to the list size and running time. This also gives us an advice-efficient proof
of the XOR Lemma which is used to show uniform hardness amplification within the the complexity class PNP|| .
Following are some interesting open questions of this work:
(i) This work considers the case when the inputs for fk are chosen independently. It will be interesting to obtain
an advice-efficient Direct Product Theorem even when the inputs are not completely independent. In other words,
we want to obtain a “derandomized” version of our theorems. In [IJKW08] we obtain such a derandomized version.
Further derandomization seems possible and is a subject of future investigation.
(ii) Our advice-efficient XOR Lemma helped us to show a uniform hardness amplification result within the com-
plexity class PNP|| . A bottleneck in showing uniform hardness amplification within NP is that even if f is in NP,
f⊕k is not necessarily in NP (unless NP = co− NP). So the question is, can we show similar results for a monotone
combination function instead of ⊕? That would give a uniform hardness amplification result within NP.
Our theorems have recently found an interesting application in a seemingly unrelated problem known as Proofs
of Retrievability (PoR). The basic idea is to construct a scheme such that an untrusted server, which stores some
client data, should be able to prove to the client that it holds its data with an efficient audit protocol. One of
the popular PoR schemes [JK07] uses Direct Product construction and our theorems turn out to be very useful in
showing efficiency of their scheme [DVW09].

1.2 Chernoff-type Direct Product Theorems

Classical Direct Product Theorems are statements of the following form: If a problem is hard on at least δ fraction of
the instances, then answering k independent instances of the problem is exponentially harder to solve. Intuitively,
the following statement also seems plausible: If a problem is hard on δ fraction of the instances, then making
mistakes on smaller than δk problems from the list of k independent problems should drop exponentially. In a joint
work [IJK07] with Russell Impagliazzo and Valentine Kabanets, we make this intuition precise by showing, what we
call, a “Chernoff-Type” Direct Product Theorem. We prove this theorem for a very generic class of problems called
weakly verifiable puzzles which has been studied in the Cryptography community [CHS05]. These puzzles capture
two round challenge-response protocols (for example the CAPTCHA protocol).
This immediately finds the following application in Cryptography: Consider a two round challenge-response protocol
where even a legitimate party has some chance of failure. For example, in the CAPTCHA test, even a human user
can make a mistake sometimes due to a typing error or mis-reading. In this case, we want to amplify the security of
the protocol by asking the user to solve multiple independent instances of a problem but allowing the user to make
mistakes on certain fraction of problems so that the legitimate party, even though imperfect, gets accepted. The
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problem of proving security for such a parallel repetition with threshold protocol translates to our “Chernoff-Type”
Direct Product Theorem.
The generic nature of weakly-verifiable puzzles allows us to extend the result easily to various other settings where
we want to answer similar gap amplification questions. One such example would be to obtain a Chernoff-Type
Direct Product Theorem for multi-valued functions. Another interesting setting is a secret agreement protocol with
a passive eavesdropper. If the communicating parties have a higher chance (over their random tapes) of agreeing on
a secret message than an eavesdropper figuring out the secret message by looking at the communication, then the
theorem says that by having multiple independent communication rounds the valid parties can share more secret
messages than the eavesdropper could guess. An interesting open question then is whether we can use this property
to construct a secret agreement protocol where the valid parties have a high chance of agreeing on a message while
the eavesdropper remains clueless about the secret message.

1.3 Security Amplification for Interactive Cryptographic Primitives

Direct Product Theorems have been used to show security amplification in cryptographic primitives such as one-
way functions, collision-resistant hash functions, encryption schemes and weakly verifiable puzzles. However, there
are instances [BIN97, PW07] where Direct Product Theorems do not show security amplification, specifically in
protocols where the security analysis involves multiple rounds of interaction between two parties. This essentially
means that Direct Product Theorems cannot be used to show security amplification for protocols in general and we
need to give specific arguments to show security amplification. In a joint work [DIJK08] with Yevgeniy Dodis, Russell
Impagliazzo, and Valentine Kabanets, we study security amplication of interactive cryptographic primitives, such as
message authentication codes (MACs), digital signatures (SIGs) and pseudorandom functions (PRFs). This work
leads us to some interesting future challenges. For instance, for the case of MACs, we show security amplification
but on the cost of increasing the size of the MAC and the keys which is undesirable from a practical point of view.
An interesting future direction is to show security amplification without increasing the size of the MAC and/or the
keys.

1.4 A Cryptographic Channel Model

In a joint work [IJKKK07] with Russell Impagliazzo, Valentine Kabanets, Bruce M. Kapron and Valerie King we
propose a very general model of channel with states, which makes fewer assumptions about the way the channel
is constructed or the computational resources of the users and attackers. Much of the previous work on using
communication primitives (e.g. a channel) to achieve security goals uses a functional model of the primitives3. The
problem with this model is that the actual implementation gives out side information which has not been accounted
for, and which an adversary can make use of. In contrast, this proposal models channels operationally, by a list
of security and reliability properties that the channel is assumed to have, that is, by what the users and attackers
can do. If the protocol is proven secure, then any attack on the protocol will yield an attack on the underlying
channel that violates one of these properties. Secondly, in most information theoretic results, the functionally
defined channels are used in protocols to achieve security goals which are defined operationally. This means that
results in information-theoretic security do not necessarily compose. Unlike these results, reductions for the channel
model proposed here securely compose, because both assumptions and conclusions are operational. We hope that
many of the powerful results of information-theoretic security can be reproved in the proposed model.
The model poses some interesting hardness amplification questions. For example, the first question we are interested
in is the question of security amplification. Here when Alice sends a random bit, Bob has a certain minimum
probability of guessing the bit (reliability property) while Eve can only guess with some bounded probability

3For example, a broadcast channel would be modeled by the function that, on input Send m from any user, outputs m to all users
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(security property). Given that there is a certain minimum gap between these probabilities can we amplify this gap
(by some kind of repetition protocol) so that Bob almost certainly guesses the bit while Eve cannot do much better
than random guessing?

2 Bounded Independence Fools Halfspaces

Halfspaces, or threshold functions, are a central class of Boolean functions h : {−1,+1}n → {−1,+1} of the form:

h(x) = sign(w1x1 + · · ·+ wnxn − θ),

where the weights w1, . . . , wn and the threshold θ are arbitrary real numbers. These functions have been studied
extensively in a variety of contexts like Computational Complexity, Learning Theory, and Social Choice Theory. In
this work we make progress on a natural complexity-theoretic question about halfspaces. In a joint work [DGJSV09]
with Ilias Diakonikolas, Parikshit Gopalan, Rocco Servedio, and Emanuele Viola, we construct the first explicit
pseudorandom generators G : {−1,+1}s → {−1,+1}n with short seed length s that “fool” any halfspace h :
{−1,+1}n → {−1,+1}, i.e. satisfy |Expx∈{−1,+1}s [h(G(x))] − Expx∈{−1,+1}n [h(x)]| ≤ ε, for a small ε. More
specifically, we show that any k-wise independent distribution4 fools any halfspace provided k ≥ C

ε2
log2(1

ε ), where
C is some absolute constant. We then use standard explicit constructions of k-wise independent distributions over
{−1,+1}n [CG89, ABI86] that have seed length O(k · log n) to obtain explicit pseudorandom generators that fool
any halfspace with error ε and have seed length s = O(log n · ε−2 log2(ε−1)). One of the future goals is to understand
the degree of independence that is required to ε-fool degree d > 1 polynomial threshold functions over {−1,+1}n

3 Streaming Algorithms for Clustering

In joint work [AJM09] with Nir Ailon and Claire Monteleoni, we investigate Streaming and Online algorithms for
Clustering problems that arise in Unsupervised Learning. For instance, the k-means and the k-medoid problem.
In some recent development, we extend the k-means++ algorithm [AV07] (a very useful approximation algorithm
for the k-means problem in the batch setting) to obtain a bi-criterion approximation algorithm with a better
approximation guarantee with respect to the cost of the solution. We hope to use this improved algorithm to obtain
better streaming algorithms for the k-means problem. This work is currently in progress.

4 Some other Projects
Here are some other projects I have been interested in.
(i) Maximum Independent Set in Degree Bounded Graphs Given a graph with bounded degree 3, we
consider the problem of finding a good exact algorithm for finding a Maximum Independent Set in the graph. In a
joint work [IJa] with Russell Impagliazzo, we give a 2n/6-time backtracking algorithm which was the best running
time for the problem at the time of discovery5. In the future I hope to examine the possibility of improving our
algorithm and extending our techniques to graphs with higher degree bound.
(ii) Convergence Properties of Hierarchical Markov Chains We study convergence properties of some
special classes of markov chains which occur frequently in local search and randomized approximate counting. In a
joint work [IJb] with Russell Impagliazzo, we give general sufficient conditions for uniform rapid convergence of the
Metropolis algorithm at all temperatures on hierarchical search graphs ,where edges are between solutions of same or
consecutive integer values. Such problems include graph matching and independent set. Our conditions generalize

4A distribution D on {−1, +1}n is called k-wise independent if the projection of D on any k indices is uniformly distributed over
{−1, +1}k.

5more recent work of Furer [F06] gives an algorithm which achieves a better bound.
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the results of Jerrum and Sinclair showing rapid convergence for Metropolis on the chain of matchings of dense
graphs. In the future, I hope to revisit this study and explore some other useful applications of our generalization.
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