
Lovász Local Lemma Date: 27 January, 2006
Scribe: Ragesh Jaiswal Instructor: Prof. Mohan Paturi

2.1 Motivation

To be able to appreciate the power of Lovász Local Lemma (LLL), let us look at the following
example problem:

Consider a boolean formula in CNF such that each clause contains exactly k literals (a k-
CNF formula) and that the frequency of each variable is ≤ 2k

e·k . Show that any such formula
is satisfiable. (The frequency of a variable is the number of occurrences of the variable or its
negation in the formula.)

To see that the frequency bound influences the satisfiability of a boolean formula, consider the
following simple exercise suggested by Chris.

Exercise 1: Show that a 3-CNF formula with a frequency bound of 3 is satisfiable. (Hint:
Use Hall’s theorem to show that each clause has a unique variable that can be set to make
the clause true)

Let ϕ denote such a boolean formula with n variables and m clauses. Let us analyze the simple
randomized algorithm which assigns each variable 0 or 1 with equal probability. Let Ei be the
event that the ith clause is not satisfied. Then we know

∀i, Pr[Ei] = 2−k (2.1.1)

We want to show that there is at least one satisfying assignment. So it will be sufficient to
show that

Pr[
m∧

i=1

Ēi] > 0 (2.1.2)

Let make an attempt to do this by using a familiar tool from the previous lecture, union bound.
We have

Pr[
m∧

i=1

Ēi] = 1− Pr[
m∨

i=1

Ei]

≥ 1−
m∑

i=1

Pr[Ei] (using union bound)

= 1−m · 2−k

So the union bound fails if m ≥ 2k. The reason that this fails is due to the fact that the union
bound does not use the dependence of the events. This tells us that we need to incorporate the

1

interdependence of these events in our analysis. The information we have is that one variable
can appear in at most 2k

ek clauses and the formula is a k-CNF. This implies that any event Ei

is independent of all but at most 2k

e events. This, in some sense is the degree of dependence
of the events and the important question we need to answer is whether this information is
sufficient to show 2.1.2. This leads us to Lovász Local Lemma which we state and prove in the
next section. We will revisit our example problem in the section 2.3.

2.2 Lovász Local Lemma

We are given events E1, . . . , Em in some probability space. We are also given a directed graph
G(V,E) called the dependency graph in which there is a vertex representing each event and the
edges are such that the events corresponding to two non-connected pair of vertices are mutually
independent. It is important to note that for two mutually independent events Ei, Ej there
may be an edge going between i, j. This answers Vadim’s question regarding the dependency
graph being directed. We can now state and prove the most general version of the Lemma.

Lemma 2.2.1 (Lovász Local Lemma) Let G(V,E) be a dependency graph for events E, . . . , Em

in a probability space. Suppose that there exist xi ∈ [0, 1] for 0 ≤ i ≤ m such that

Pr[Ei] ≤ xi

∏
(i,j)∈E

(1− xj) (2.2.3)

Then

Pr[
m∧

i=1

Ēi] ≥
m∏

i=1

(1− xi) (2.2.4)

Proof: Let S be a subset of indices {1, . . . ,m}. We first prove by induction on the size of S
that for any S and i such that i /∈ S

Pr[Ei|
∧
j∈S

Ēj] ≤ xi

Base case: S = φ, this is trivially true from 2.2.3.

Inductive step: For any i and S ⊆ {1, . . . ,m} (i /∈ S), let S1 = {j ∈ S : (i, j) ∈ E} and
S2 = S \ S1. Also let FS =

∧
j∈S Ēj , FS1 =

∧
j∈S1

Ēj and FS2 =
∧

j∈S2
Ēj . We need to show

that Pr[Ei|FS] ≤ xi. Using conditional probabilities we get

Pr[Ei|FS] =
Pr[Ei ∧ FS]

Pr[FS]

=
Pr[Ei ∧ FS1 |FS2]

Pr[FS1 |FS2]
(2.2.5)

We can upper bound the numerator in the following manner:

Pr[Ei ∧ FS1 |FS2] ≤ Pr[Ei|FS2]
= Pr[Ei] (since Ei is mutually independent of all events in FS2)

≤ xi

∏
(i,j)∈E

(1− xj) (from 2.2.3)

2

Let S1 = {j1, . . . , jr}. We can lower bound the denominator as

Pr[FS1 |FS2] = Pr[
r∧

i=1

Ēji |FS2]

= Pr[Ēj1 |
r∧

i=2

Ēji ∧ FS2] · Pr[Ēj2 |
r∧

i=3

Ēji ∧ FS2] . . . P r[Ējr |FS2]

≥
r∏

i=i

(1− xji) (using the induction assumption)

Now we plug the bounds on the numerator and denominator in Equation 2.2.5 to get

Pr[Ei|FS] ≤
xi

∏
(i,j)∈E(1− xj)∏r
i=1(1− xji)

= xi

∏
(i,j)∈E∧j /∈S1

(1− xj)

≤ xi

Finally we use the induction assertion to show the conclusion of the Lemma.

Pr[
m∧

i=1

Ēi] = (1− Pr[E1|
m∧

i=2

Ēi]) · (1− Pr[E2|
m∧

i=3

Ēi]) . . . (1− Pr[Em])

≥
m∏

i=1

(1− xi)

(Note that in the inductive step we need to make sure that Pr[FS] > 0 to be able to express
Pr[Ei|FS] as Pr[Ei∧FS]

Pr[S] . This can be done using induction which essentially follows the last
step shown above.)

The following simpler version of LLL can be more directly applicable to problems in randomized
algorithms.

Corollary 2.2.2 Let E1, . . . , Em be events in a probability space, with Pr[Ei] ≤ p for all i. If
each event is mutually independent of all other events except for at most d, and if ep(d+1) ≤ 1,
then Pr[

∧m
i=1 Ēi] > 0.

Proof: For each i ∈ {1, . . . ,m} we set xi = 1
d+1 and show that the precondition 2.2.3 of the

Lemma 2.2.1 is satisfied. For any i

xi

∏
(i,j)∈E

(1− xj) ≥ 1
d + 1

·
(

1− 1
d + 1

)d

≥ 1
(d + 1) · e

≥ p

Since Pr[Ei] ≤ p we get that Pr[Ei] ≤ xi
∏

(i,j)∈E(1− xj).

Exercise 2: Show that setting xi = 1
d above does not satisfy the precondition.

3

2.3 Applying LLL to k-SAT

In this section we apply the simpler version of the LLL to obtain an answer for our original
problem. Two clauses which do not share a variable are mutually independent. Since one
variable is allowed to appear in at most 2k

ek clauses, the degree of dependence is at most
2k

e − (k − 1). So for applying Corollary 2.2.2 we need to make sure that the precondition is
satisfied. We have

e · 2−k ·
(

2k

e
− (k − 1) + 1

)
≤ 1 (since k ≥ 3)

This implies that Pr[
∧m

i=1 Ēi] > 0. So there is at least one satisfying assignment or in other
words the formula is satisfiable.

2.3.1 Finding a Satisfying Assignment

Using LLL we showed the existence of a satisfying assignment. A natural question to ask at
this point is can we find one? More formally

Given a k-CNF boolean formula ϕ such that no variable appears in more than 2αk clauses, for
a small constant α. Find a satisfying assignment for the formula.

Note how the frequency bound has changed from 2k

ek to 2αk in the problem definition. This is
because of the solution that we have at hand and will be presenting in this lecture. Getting
a randomized algorithm for constructing a satisfiable assignment for much larger value of the
frequency bound is left open. The algorithm that we present here works in the following two
phases:

Phase I: (Setting a subset of variables)

1. Select an ordering of variables

2. Select the next variable x in order

(a) If x is not marked as deferred, set it randomly

(b) Plug x in the current formula

(c) For all clauses of width k/2, mark all the variables in the clause as deferred

Phase II: (Exhaustive search for a satisfiable assignment)

1. Find a satisfying assignment using exhaustive search

For the algorithm to work we need to make sure that the formula obtained after phase I has a
satisfying assignment. We show this using LLL. Each clause has width at least k/2 which means
that the probability that a random assignment makes a clause false is ≤ 2−k/2. The degree of
dependency in the worst case remains the same, which is d = k2αk. So the precondition of the
LLL is satisfied since e · 2−k/2 · (k · 2αk + 1) ≤ 1 for large values of k and small α.

4

A clause which is reduced to have width k/2 during phase I is called a dangerous clause. All
clauses that remain unsatisfied after phase I are called surviving clause. Note that due to the
manner in which we assign values to variables in the first phase, a clause is a surviving clause
if either

(a) it is a dangerous clause, or

(b) it shares a deferred variable with a dangerous clause.

Let G denote the initial dependency graph and G′ denote the dependency graph induced by
the vertices corresponding to the surviving clauses. Note that for two surviving clauses Ci, Cj ,
there may not be an edge between i and j in G′ though they may be connected in G. We
will try to show that with high probability all the connected components in G′ are of size
O(log m). Since different connected components do not share variables, this would mean that
the exhaustive search finds a satisfiable assignment in time polynomial in m.

So we are interested in the probability that there is a large connected component R in G′.
The probability that a clause becomes dangerous is 2−k/2 (note that we do not have a factor
of

(
k

k/2

)
since we work with a fixed order of the vertices). So the probability that a clause

survives is equal to the probability that there is a dangerous clause in its vicinity and which
is ≤ (d + 1) · 2k/2. Since the event that clause survives might not be independent of the event
that some other clause survives(e.g. neighboring clauses in G′), we cannot get a bound on
the probability that a connected component survives by simply multiplying the bounds on the
individual survival probabilities of the clauses in the component. If we can find a subset of
nodes within the connected component such that the events of each of the original clauses
corresponding to these nodes surviving, are mutually independent, then we can get a bound
on the probability that such a subset survives (by taking a product of the survival probabilities
of clauses in the subset). This gives a bound on the probability that the connected component
survives. In this regard, we define a graph object called rooted 4-Tree T with respect to a
connected component R. T has the following properties:

(a) T is rooted tree

(b) Every pair of nodes are at distance at least 4 in G

(c) There can be an edge between two nodes which are at a distance exactly 4 in G

(d) Any node of R is either in T or is at a distance ≤ 3 from a node in T (the distance being
with respect to G)

What is the advantage of a 4-Tree? The following exercise would help to answer this question.

Exercise 3: Show that the events that the clauses corresponding to the nodes in a 4-
Tree survive, are mutually independent. (Hint: For nodes i, j ∈ T consider the minimum
distance between any two dangerous clauses which are at a distance ≤ 1 from them)

5

So the probability that a given 4-Tree of size t survives ≤ [(d + 1)2−k/2]t. Given a connected
component R with r nodes consider the maximal 4-Tree T with respect to R. Since any node
of R is at most at a distance of 3 from a node of T and the degree of each node in G is d,
we get that 3d3|T | ≥ r. This gives that a maximal 4-Tree with respect to R has size at least
r/3d3. Using Exercise 3, the probability that such a T survives is [(d + 1)2−k/2]r/3d3

. So the
probability that there is a such a tree that survives is [(d + 1)2−k/2]r/3d3

times the number of
such 4-Trees. The following exercise helps to get a upper bound on the number of 4-Trees in
a graph with bounded degree d.

Exercise 4: Show that the number of 4-Tree of size s in a graph with bounded degree d is
at most nd8s. (Hint: consider enumerating a 4-Tree by in-order traversal of G4)

The above exercise gives us that the number of 4-Trees of size r/3d3 is at most md8r/3d3
. The

probability that there exists a 4-Tree of size r/3d3 upper bounds that probability that there
exists a connected component of size ≥ r in G′1. Hence the probability that G′ has a connected
component of size ≥ r is bounded by

md8r/3d3
[
(d + 1)2−k/2

]r/3d3

≤ m2rk/3d3(8α+2α−1/2) = o(1)

for r ≥ c log m for some constant c and small constant α. So with probability 1 − o(1) there
are no connected components of size ≥ c log m.

Finally we need to show that the algorithm outputs a a satisfying assignment with high prob-
ability in time polynomial in m. With probability 1 − o(1), all the components of G′ have
size O(log m). We can repeat phase I to obtain G′ with small sized connected components
(repeating twice should suffice in expectation). Since no two connected components share a
variable, exhaustive search runs in time polynomial in m.

References

[MU05] M. Mitzenmacher, E. Upfal.: Probability and Computing. Cambridge University
Press, pp. 138–148, 2005.

[MR95] R. Motwani, P. Raghavan.: Randomized Algorithms. Cambridge University Press, pp.
115–120, 1995.

1For events A, B if A⇒ B, then Pr[A] ≤ Pr[B]

6

