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ABSTRACT
The classical Direct-Product Theorem for circuits says that
if a Boolean function f : {0, 1}n → {0, 1} is somewhat hard
to compute on average by small circuits, then the corre-
sponding k-wise direct product function fk(x1, . . . , xk) =
(f(x1), . . . , f(xk)) (where each xi ∈ {0, 1}n) is significantly
harder to compute on average by slightly smaller circuits.
We prove a fully uniform version of the Direct-Product The-
orem with information-theoretically optimal parameters, up
to constant factors. Namely, we show that for given k and ε,
there is an efficient randomized algorithm A with the follow-
ing property. Given a circuit C that computes fk on at least
ε fraction of inputs, the algorithm A outputs with probabil-
ity at least 3/4 a list of O(1/ε) circuits such that at least one
of the circuits on the list computes f on more than 1−δ frac-
tion of inputs, for δ = O((log 1/ε)/k). Moreover, each out-
put circuit is an AC0 circuit (of size poly(n, k, log 1/δ, 1/ε)),
with oracle access to the circuit C.

Using the Goldreich-Levin decoding algorithm [5], we also
get a fully uniform version of Yao’s XOR Lemma [18] with
optimal parameters, up to constant factors. Our results sim-
plify and improve those in [10].

Our main result may be viewed as an efficient approxi-
mate, local, list-decoding algorithm for direct-product codes
(encoding a function by its values on all k-tuples) with opti-
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mal parameters. We generalize it to a family of “derandom-
ized” direct-product codes, which we call intersection codes,
where the encoding provides values of the function only on a
subfamily of k-tuples. The quality of the decoding algorithm
is then determined by sampling properties of the sets in this
family and their intersections. As a direct consequence of
this generalization we obtain the first derandomized direct
product result in the uniform setting, allowing hardness am-
plification with only constant (as opposed to a factor of k)
increase in the input length. Finally, this general setting
naturally allows the decoding of concatenated codes, which
further yields nearly optimal derandomized amplification.

Categories and Subject Descriptors
F.2.0 [Analysis of Algorithms and Problem Complex-
ity]: General; G.3 [Probability and Statistics]: proba-
bilistic algorithms

General Terms
Theory

Keywords
Direct Product Theorem, Direct Product Code, XOR Code

1. INTRODUCTION
Applications such as cryptography and derandomization

require reliably hard problems, ones that cannot be solved
by any fast algorithm with even a non-trivial advantage over
random guessing. Direct-product theorems are a primary
tool in hardness amplification, allowing one to convert prob-
lems that are somewhat hard into problems that are more
reliably hard. In a direct-product theorem, we start with
a function f such that any feasible algorithm has a non-
negligible chance of failing to compute f(x) given a random
x. We then show that no feasible algorithm can, given mul-
tiple instances of the problem x1, . . . , xk, compute all of the
values f(xi), with even a small probability of success. (Usu-
ally, the xi’s are chosen independently, but there are also
derandomized direct-product theorems where the xi’s are
chosen pseudo-randomly.) Many strong direct product the-
orems are known for non-uniform models, such as Boolean



circuits [18, 13, 6, 9, 12, 15]. Unfortunately, in general,
direct-product theorems fail in completely uniform models
such as probabilistic computation.

However, Trevisan [16] pointed out that proofs of direct
product theorems correspond to (approximate) error-correction
of sparse codes. Using this view, we think of a function f as
being encoded by Code(f) = fk, its values on all k-tuples.
We seek a decoding algorithm which will generate efficient
circuit(s) for f (on most inputs), given access to a circuit C′

which is a highly corrupted codeword, agreeing with fk only
on an ε-fraction of all k-tuples. (Note that this code, like
any code that can be computed locally with oracle access to
f , has extremely poor distance. This precludes exact decod-
ing, i.e., recovering a circuit that computes f on all inputs,
but not approximate decoding.)

The strictly uniform direct-product theorem fails because
these codes are not uniquely decodable. A circuit C′ might
agree on ε-fraction of k-tuples for each of 1/ε different func-
tions. Thus list decoding is essential, and one can quan-
tify uniformity in terms of the list size. However, the non-
uniform direct-product theorems yield list sizes which are
all exponential in 1/ε. In contrast, a strong uniform direct-
product theorems should have the list size which is poly-
nomial in 1/ε. [10] gave the first such proof of the direct-
product theorem. However, their reduction was quite com-
plex and fell short of the information-theoretic bounds in
many respects.

Here, we give a new uniform direct-product theorem that
has the following features:

• Optimality: The parameters achieved by our list de-
coding algorithm are information theoretically optimal
(to within constant factors).

• Efficiency: The decoding algorithm is simply a projec-
tion, namely implementable in uniform NC0 with ora-
cle access to the corrupted circuit C′. The circuits it
produces are implementable in uniform AC0. Thus, our
hardness amplification applies to much simpler uniform
classes than P.

• Simplicity: Both the decoding algorithm and the proof
of correctness are extremely simple (even when compared
with proofs in the non-uniform setting!).

• Generality: The decoding algorithm and its proof turns
out to work without change for a general family of codes
of which the above direct-product code is just an exam-
ple. We define this class of intersection codes, which is
simply specified by the family of k-subsets used to record
values of f in Code(f). We explain how the quality of
the decoding (and thus of the amplification) depend on
the sampling properties of the family of sets, and of their
pairwise intersections.

• Derandomization: As an immediate bonus of the above
setting we get the first derandomized direct-product the-
orems in the uniform setting. A direct application of the
above intersection codes to subspaces yields amplifica-
tion with input size O(n), instead of the trivial bound
of O(kn) when using all subsets. In a more sophisti-
cated application, using a concatenation of two intersec-
tion codes, we get similar savings in randomness, but
with hardly any loss in other parameters.

• Consequences: As observed by [17, 16], efficient list-
decoding has the same consequences as unique decoding

in terms of hardness amplification within many natural
complexity classes, e.g., NP,PNP‖,#P,PSPACE and EXP.

1.1 Statement of the Uniform Direct-Product
theorem

We say that a circuit C ε-computes a function F if C(z) =
F (z) for at least ε fraction of inputs z. A function F is
(1− ε)-hard for size t(n) if no circuit of size t(n) ε-computes
F .

Following [17], we define the“semi-uniform”class BPP// log
as the class of probabilistic algorithms with advice of length
O(logn) that depends on the random coin tosses of the algo-
rithm, but not on the input. We can view such an algorithm
as producing a polynomial-sized list of polynomial-size cir-
cuits: the algorithm then is judged by how well the best
circuit on its list does. A probabilistic polynomial-time al-
gorithm with advice, A(x, r, z), ε-computes F if, for every
length n, there is a function z(r) taking a polynomial-size
string r to a logarithmic length output, so that Prx,r[A(x, r, z(r)) =
F (x)] ≥ ε. A function F is (1− ε)-hard for BPP// log if no
such algorithm and function z(r) exist. For superpolynomial
time complexity t = t(n), we can generalize in the obvious
way to the class BPTIME(poly(t))// log t.

Given a Boolean function f : {0, 1}n → {0, 1}, the k-wise
direct-product function fk maps every k-set (x1, . . . , xk) of
n-bit strings (ordered according to some fixed ordering of the
universe {0, 1}n) to the k-tuple (f(x1), . . . , f(xk)).1 One of
our main results is the following.

Theorem 1.1 (Uniform Direct-Product Theorem).
There is an absolute constant c > 0 so that for any functions
δ = δ(n), k = k(n), t = t(n), and ε = ε(n) ≥ e−δk/c and ε >

t−1/c, if f is δ-hard for BPTIME(poly(t(nk)))// log t(nk) ,
then fk is (1− ε)-hard for BPTIME(poly(t))// log t.

The proof is via the following reconstruction algorithm,
which is information-theoretically optimal up to constant
factors.

Theorem 1.2 (Approximate list-decoding algorithm).
There is a constant c and a probabilistic algorithm A with the
following property. Let k ∈ N, and 0 < ε, δ < 1 be such that
ε > e−δk/c. Let C′ be a circuit that ε-computes the Direct-
Product fk, for some Boolean function f : {0, 1}n → {0, 1}.
Given such a circuit C′, algorithm A outputs with probability
Ω(ε) a circuit C that (1− δ)-computes f . The algorithm A
is a uniform randomized NC0 algorithm (with one C′-oracle
gate), and the produced circuit C is an AC0 circuit of size
poly(n, k, log 1/δ, 1/ε) (with C′-oracle gates).

The circuit output by algorithm A will have the following
structure. Fix s = k/2. Let A = (a1, . . . , as) be an s-subset
of {0, 1}n, and let v = (v1, . . . , vs) be an s-bit string. For
intuition, imagine that vi = f(ai) for all 1 6 i 6 s.

We define the following randomized circuit CA,v:

“On input x ∈ {0, 1}n, check if x = ai for some ai ∈ A; if
so, then output vi. Otherwise, repeatedly sample random k-
sets B such that A∪{x} ⊆ B, discarding any B where C′ is
inconsistent with our answers v for A (i.e., where C′(B)|A 6=
v). For the first consistent B, output C′(B)|x. Produce

1The usual definition of k-wise direct product is in terms
of k-tuples rather than k-sets, but it is easily seen to be
equivalent, by randomly reordering the input tuple.



some default (error) output if no consistent B is found even
after 100 · (ln 1/δ)/ε iterations.”

Intuitively, if each vi = f(ai), we are checking consistency
on a subset of inputs to see whether we believe C′(B) on
another input. In addition to having the correct values,
the algorithm CA,v requires that C′(B) is correct for many
B with A ⊂ B (and thus, the algorithm usually finds a
consistent B). Finally, we need that consistency implies
correctness: for most B for which C′(B) is consistent with v
on A, it should be the case that C′(B) is (almost) the same
as f |B. We show that these three properties are strongly
correlated, so that they simultaneously happen with good
probability.

The main algorithm algorithm A is simply:

“Pick at random a k-set B0, an s-subset A ⊆ B0. Set v =
C′(B0)|A. Output the circuit CA,v.”

1.2 Generalized direct-product encoding: in-
tersection codes

Our analysis for direct products immediately generalize to
decoding the following form of possibly derandomized direct
product codes. Let f : U → R, where U is some universe.
Usually, U will be {0, 1}n, or Fmq , an m-dimensional vector
space over a finite field Fq. The range R is an arbitrary
set (R = {0, 1} for Boolean f). Without loss of generality,
we identify an s-tuple of elements of U with the s-subset of
elements appearing in the tuple.

For 1 ≤ s < k ∈ N, a k-intersection code is specified by
two families of subsets of U , T a family of k-subsets of U ,
and S, a family of s-subsets of U (with s < k). The family
S is only used in the analysis. The encoding of f using
Code = Code(T ,S) is the restriction of the direct product
fk to sets B ∈ T .

Our two running examples of these families are:

• Independent: T are all k-subsets of U , and S are all
s-subsets of U ; we only use the case s = k/2.

• Subspaces: We identify U with the vector space Fmq .
For positive integers d > 8 and r = d/2, we take T to
be all d-dimensional affine subspaces of U , and S to be
all r-dimensional affine subspaces of U . Here we have
k = qd and s = qr =

√
k.

The Independent example is the k-wise direct-product
function considered earlier. The Subspaces example will
give us a derandomized version of the direct-product the-
orem, where inputs of fk will be all points in a given affine
d-dimensional subspace of U . Note that to specify k = qd

such points, we only need to specify the d + 1 vectors of U
that define the d-dimensional affine subspace (d basis vectors
plus a shift vector). In our case, d and r will be constants,
and so these affine subspaces are specified with only O(n)
bits.

The code Code is δ-approximately (ε, `)-list decodable if for
every function C′ : T → Rk there is a collection of at most `
functions g1, g2, · · · , g` such that, for every function f : U →
R, if Code(f) ε-agrees with C′, then f will (1−δ)-agree with
some gi, for 1 6 i 6 `. The code Code is efficiently locally
decodable if there is an efficient algorithm that uses oracle
access to C′ to generate circuits for the functions gi’s (which
also use that oracle).

Our decoding algorithm for Code(S, T ) is exactly the same
as the algorithm A described in the previous section, with
sets A coming from S, and sets B from T . We show that

this algorithm A produces a good circuit for f , provided
that families S, T satisfy certain sampling conditions. In
particular, we prove the following.

Theorem 1.3. Both Independent and Subspaces codes are
efficiently, locally, δ-approximately (ε, O(1/ε))-list decodable,
where
• Independent: δ = O((log 1/ε)/k),

• Subspaces: δ = O(1/(ε2k1/4)).

Moreover, the decoder for the Independent code is a uniform
randomized NC0 algorithm that outputs AC0 circuits.

Informally, the only properties of T ,S we use are:

Computational assumptions: It is efficiently possible to:
choose B uniformly in T ; given B ∈ T , uniformly pick
A ∈ S with A ⊂ B; given A ∈ S and x ∈ U\A, uniformly
pick B ∈ T with A ∪ {x} ⊂ B.

Symmetry: For a fixed B ∈ T , for a random A ∈ S with
A ⊂ B, the elements of A are individually uniform over
B. For a fixed A ∈ S, and random B ∈ T with A ⊂ B,
the elements in B\A are individually uniform over U \A.

Sampling: For a fixed B ∈ T and any sufficiently large
subset W ⊂ B, with high probability over a random
A ∈ S, A ⊂ B, |A ∩W |/|A| is approximately the same
as |W |/|B|. For a fixed A ∈ S, and any sufficiently large
subset H ⊂ U \ A, with high probability over a random
B ∈ T , A ⊂ B, we have that |(B \ A) ∩ H|/|B \ A| is
approximately the same as |H|/|U \A|.

1.3 Concatenated codes and hardness condens-
ing

We also prove a stronger version of Theorem 1.3 for the
case where we allow an oracle circuit C′ for the direct-
product fk to be only approximately correct on at least ε
fraction of inputs to fk. More precisely, we allow a circuit
C′ such that, for at least ε fraction of T ∈ T , C′(T ) and
fk(T ) agree on at least (1 − δ′) fraction of elements of T .
Note that the usual version of direct-product decoding as-
sumes δ′ = 0. Given such a circuit C′, we show how to
obtain a circuit C which (1− δ)-computes f , for δ = O(δ′).

This relaxed notion of approximate list decoding can be
formalized as follows. The code Code is (δ, δ′)-approximately
(ε, `)-list decodable if for every function C′ : T → Rk there is
a collection of at most ` functions g1, g2, · · · , g` such that, for
every function f : U → R, if the k-tuples fk(T ) and C′(T )
(1 − δ′)-agree on at least ε fraction of sets T ∈ T , then f
will (1− δ)-agree with some gi, for 1 6 i 6 `. Efficient local
decodability means, as before, that a collection of circuits for
such gi’s can be efficiently generated, given oracle access to
a circuit C′.

We prove the following “approximate” version of Theo-
rem 1.3.

Theorem 1.4. Both Independent and Subspaces codes are
efficiently, locally, (δ,Ω(δ))-approximately (ε, O(1/ε))-list de-
codable, where
• Independent: δ = O((log 1/ε)/k),

• Subspaces: δ = O(1/(ε2k1/4)).

While interesting in its own right, Theorem 1.4 will also
allow us to obtain a strong derandomized version of uniform
direct product theorem for a Boolean function f : {0, 1}n →



{0, 1}. The direct product code using affine subspaces al-
ready yields a harder function on inputs of size O(n), but
only with hardness polynomial in 1/k. In non-uniform set-
tings, there are derandomized direct product theorems with
input size O(n) and hardness exponentially small in n( [12,
15]). We will be able to meet this goal partially: we define

a function h of hardness ε = e−Ω(
√
n) with input size O(n)

and k = O(log 1/ε).
The function h combines the two direct product theorems.

For k =
√
n and a field F of size q = 2

√
n, h is the restriction

of fk to k-subsets of inputs that all lie within a low dimen-

sional affine subspace of F
√
n. We can specify the input to

h by specifying a basis for the subspace with O(n) bits, and
then specifying

√
n elements of the subspace in terms of this

basis, using O(
√
n) bits each. We view h as a concatenation

of two encodings. First, for K = qd = 2O(
√
n), we think of

the K-direct product code for f using affine subspaces. This
code, for each subspace, lists the value of f for all inputs in
the subspace. This would be very large, so instead, we en-
code each block of the subspace code with the Independent
k-direct product code, for k =

√
n, listing the values on sub-

sets within each a affine subspace. To decode, we use the
Independent direct product decoding within a given affine
subspace as a subroutine in the affine subspace decoding
procedure. Since the Independent direct product decoding
is only approximate, we need Theorem 1.4 to handle errors
created in the decoding of the inner code. The complete
proof is deferred to the full paper.

Theorem 1.5. (Uniform Derandomized Direct Prod-
uct Theorem) There is an absolute constant c > 0 so
that for any constant 0 < δ < 1, and any functions t =

t(n), k = k(n), ε = ε(n) ≥ max{e−δk/c, e−Ω(
√
n), t−1/c},

and K = K(n) = O(1/(εδ)8), if f : {0, 1}n → {0, 1} is
δ-hard for BPTIME(poly(t(cn))// log t(cn) , then the func-
tion h defined from f as described above is (1 − ε)-hard for
BPTIME(poly(t))// log t. The input size of h is O(n).

We give an interpretation of Theorem 1.5 in terms of
“hardness condensing” in the spirit of [3]. We obtain some
form of“hardness condensing”with respect to BPTIME(t)// log t.
For an affine subspace B ∈ T , think of g(B) = f |B as
the truth table of the Boolean function mapping b ∈ B to
f(b). Since B is an affine d-dimensional subspace, each el-
ement of B can be described by a d-tuple of field elements
(α1, . . . , αd) ∈ Fdq , and so each f |B : Fdq → {0, 1} is a Boolean
function on d log q-size inputs. Also, each B ∈ T can be de-
scribed with (d+ 1)m log q bits, and so each function in the
function family {f |B}B∈T has a short description.

Consider the problem: Given (a description of) B ∈ T ,
construct a circuit that computes f |B well on average. We
show the following.

Theorem 1.6 (Hardness condensing). There is an
absolute constant c > 0, so that, if a function f is δ-hard
for BPTIME(t)// log t, then every probabilistic t1/c-time al-

gorithm C has probability at most ε = max{q−d/16, t−1/c}
(over random B ∈ T and the internal randomness of C) of
producing a circuit that (1− Ω(δ))-computes f |B.

Intuitively, for almost every B, the function f |B has al-
most the same hardness as f , but is defined on inputs of
smaller size. Thus the reduction from f to fB can be thought
of as “hardness condensing”.

Finally, we can convert our uniform direct product theo-
rem into a uniform version of the Yao XOR Lemma [18].
While a qualitative version of this conversion follows imme-
diately from [5], we obtain a quantitatively optimal version,
up to constant factors. A uniform version of XOR Lemma
is an approximate list decoding algorithm for a truncated
version of the Hadamard code, and optimality is defined in
terms of the information-theoretic coding properties of this
code ([10]). For f : {0, 1}n → {0, 1} and k ∈ N, the k-XOR
encoding of f is the function f⊕k mapping each k-subset of
n-bit strings (x1, . . . , xk) to the value ⊕ki=1f(xi).

Theorem 1.7. The k-XOR code is efficiently, locally, δ-
approximately (1/2 + ε, O(1/ε2))-list decodable,
for δ = O((log 1/ε)/k).

Again the proof is deferred to the full paper.

1.4 Relation to previous work

1.4.1 Non-uniform Direct Product Theorem
The classical Direct-Product Theorem (and closely related

Yao’s XOR Lemma [18]) for circuits has many proofs [13, 9,
6, 12]. The basic idea behind all these proofs is the following:
If a given circuit C′ ε-computes fk(x1, . . . , xk), for some δ-
hard function f : {0, 1}n → {0, 1}, with ε > (1 − δ)k, then
it must be the case that the correctness of the answers of
C′ at some position i is correlated with the correctness of
its answers in the remaining positions (since otherwise it
would be the same as trying to compute f(x1), . . . , f(xk)
independently sequentially, which obviously cannot be done
with probability greater than (1− δ)k).

This correlation of C′’s answers can be exploited in vari-
ous ways to get a circuit (1 − δ)-computing f from the cir-
cuit C′ (yielding different proofs of the direct-product the-
orem in [13, 9, 6, 12]). Usually, one takes a random k-tuple
(x1, . . . , xk) containing a given input x in some position i,
runs C′ on that tuple, and checks how well C′ did in posi-
tions other than i. To perform such a check, one obviously
needs to know the true values of f at the inputs xj for j 6= i;
these are provided in the form of non-uniform advice in the
circuit model. Then one decides on the guess for the value
f(x) based on the quality of C′’s answers for xj , j 6= i. For
example, in [12], one flips a random coin with probability
that is some function of the number of incorrect answers
given by C′ outside position i.

1.4.2 Uniform Direct Product Theorem, and decod-
ing vs. testing

To get a uniform algorithm for f , we need to remove (or at
least minimize the amount of) the non-uniform advice f(xj),
j 6= i. The first result of that type was obtained in [10].
Their idea was to use the circuit C′ itself in order to get
enough labeled examples (x, f(x)), and then run the direct-
product decoding algorithm of [12] on C′ and the obtained
examples.

To get sufficiently many examples, [10] use a method they
called direct product amplification, which is to take an al-
gorithm solving the k-wise direct product to one that (ap-
proximately) solves the k′-wise direct product problem with
k′ � k. This amplification is essentially equivalent to ap-
proximate list decoding when there are only k′ possible in-
stances in the domain of the function f . Their list-decoding



algorithm used one random “advice set” (where the algo-
rithm produced correct answers) as a consistency check for
another set that contains the instance to be solved. To be a
meaningful consistency check, the advice set and instance-
containing set need to have a large intersection. For inde-
pendent random sets, this implies by the birthday-paradox
bounds, that k′ � k2. Because of this constraint, [10] had
to use direct-product amplification iteratively, to cover the
whole domain size of 2n instances. These iterations compli-
cated the construction and made the parameters far from
optimal.

We instead pick the instance-containing set conditioned
on having a large intersection with the advice set. This can
be done at one shot, on any domain size, so no iterations
are needed.

This idea is similar in spirit to the direct-product testing
methods used by [7, 4], and we were inspired by these papers.
However, while they showed that this is sufficient in the
unique decoding regime (where the algorithm is computing
the direct product with high probability), we were surprised
that this one idea sufficed in the list-decoding case as well.
Our derandomized subspace construction was also inspired
by [14, 1], who list-decode functions correlated to multi-
variable polynomials by using consistency checks on small
dimensional subspaces.

While our results were inspired by similar results on direct-
product testing, we have not found any formal connection
between the testing and decoding problems. In particular,
passing the consistency test with non-negligible probabil-
ity is not sufficient to test non-negligible correlation with a
direct-product function. It would be very interesting to find
such a connection.

Remainder of the paper..
Section 2 contains some background facts, and basic sam-

pling properties of graphs used in decoding of intersection
codes. The analysis of our algorithm A is given in Sec-
tion 3, where we state the conditions on the pair (S, T ) that
are sufficient for A to produce a good circuit CA,v. Sec-
tion 4 contains sketches of proofs of Theorems 1.4, 1.5, 1.6,
and 1.7. Section 5 contains concluding remarks and open
questions.

2. PRELIMINARIES

2.1 Concentration bounds
The standard form of the Hoeffding bound [8] says that,

for any finite subset F of measure α in some universe U , a
random subset R of size t is very likely to contain close to
αt points from F . The following is a natural generalization
for the case where F is any [0, 1]-valued function over U .

Lemma 2.1 (Hoeffding [8]). Let F : U → [0, 1] be
any function over a finite universe U with the expectation
Expx∈U [F (x)] = α, for any 0 6 α 6 1. Let R ⊆ U
be a random subset of size t. Define a random variable
X =

P
x∈R F (x). Then the expectation of X is µ = αt,

and for any 0 < γ 6 1, Pr [|X − µ| > γµ] 6 2 · e−γ
2µ/3.

Lemma 2.2. Let X1, . . . , Xt be random variables taking
values in the interval [0, 1], with expectations µi, 1 6 i 6 t.
Let X =

Pt
i=1 Xi, and let µ =

Pt
i=1 µi be the expectation

of X. For any 0 < γ 6 1, we have the following:

• [Chernoff-Hoeffding] If X1, . . . , Xt are independent,

then Pr[|X − µ| > γµ] 6 2 · e−γ
2µ/3.

• [Chebyshev] If X1, . . . , Xt are pairwise independent,
then Pr[|X − µ| > γµ] 6 1/(γ2µ).

2.2 Pairwise independence of subspaces
Let U = Fmq be an m-dimensional linear space over a

finite field Fq. An affine d-dimensional subspace A of U is
specified by a collection of d linearly independent vectors
a1, . . . , ad ∈ U and an arbitrary vector b ∈ U so that A =
{b +

Pd
i=1 αiai | αi ∈ Fq, 1 6 i 6 d}. Thus the elements of

A are in one-to-one correspondence with d-tuples of scalars
(α1, . . . , αd).

We will use the following easy facts.

Claim 2.3. A sequence of all qd elements of a randomly
chosen d-dimensional affine subspace of U are pairwise in-
dependent and uniform over U .

Claim 2.4. For t = (qd − 1)/(q − 1), let ᾱ1, . . . , ᾱt ∈ Fdq
be pairwise linearly independent vectors. Let A be a random
d-dimensional linear subspace of U . Then the t vectors of A
that correspond to ᾱ1, . . . , ᾱt are pairwise independent and
uniform over U .

2.3 Graphs
We will consider bipartite graphs G = G(L,R) defined on

a bipartition L∪R of vertices; we think of L as left vertices,
and R as right vertices of the graph G. For a vertex v of
G, we denote by NG(v) the set of its neighbors in G; if the
graph G is clear from the context, we will drop the subscript
and simply write N(v). We say that G is bi-regular if the
degrees of vertices in L are the same, and the degrees of
vertices in R are the same.

2.3.1 Auxiliary graphs for (S, T )-codes
The following three graphs will be useful for the analysis

of our intersection codes. Let U be any finite set. Let T be
a family of k-subsets of U , and let S be a family of s-subsets
of U , for some s < k.

Definition 2.5 (inclusion graph). The inclusion graph
I(S, T ) is the bipartite graph that has an edge (A,B) for ev-
ery A ∈ S and B ∈ T such that A ⊆ B.

The inclusion graph I(S, T ) is called transitive if, for every
B,B′ ∈ T , there is a permutation π of U which moves B to
B′ and induces an isomorphism of I, and similarly, for every
A,A′ ∈ S, there is a permutation σ of U which moves A to
A′ and induces an isomorphism of I.

Definition 2.6 (S-graph). For every B ∈ T , the S-
graph H(B,NI(B)) is the bipartite graph that has an edge
(x,A) for every x ∈ B and A ∈ NI(B) such that x ∈ A.

Definition 2.7 (T -graph). For every A ∈ S, the T -
graph G(U \ A,NI(A)) is the bipartite graph that has an
edge (x,B) for every x ∈ U \ A and B ∈ NI(A) such that
x ∈ B \A.

Note that if I(S, T ) is transitive, then the structure of
the S-graph H(B,N(B)) is independent of the choice of B,
and similarly, the structure of the T -graph G(U \A,N(A))



is independent of the choice of A. This will simplify the
analysis of the properties of these graphs. One can easily
check that the inclusion graph I for both of our running
examples of families (S, T ), Independent and Subspaces, is
transitive.

2.3.2 Samplers
Let G = G(L,R) be any bi-regular bipartite graph. For

a function λ : [0, 1] → [0, 1], we say that G is a (µ, λ(µ))-
sampler if, for every function F : L→ [0, 1] with the average

value µ
def
= Expx∈L[F (x)], there are at most λ(µ) · |R| ver-

tices r ∈ R where˛̨̨
Expy∈N(r)[F (y)]− µ

˛̨̨
> µ/2.

Note that the case of a Boolean function F : L → {0, 1}
with the average µ corresponds to the property that all but
λ(µ) fraction of nodes r ∈ R have close to the expected
number of neighbors in the set {x | F (x) = 1} of measure µ.
The sampler defined above is a natural generalization to the
case of [0, 1]-valued F ; it is also a special case of an oblivious
approximator [2] or approximating disperser [19].

For the analysis of intersection codes Code(S, T ) based
on families S and T , we will need that the corresponding S-
graphs and T -graphs be samplers. We show that this is true
for both of our running examples. Since both our inclusion
graphs (for Independent and Subspaces cases) are transitive,
the structure of the S-graphs and T -graphs is independent
of the choices of B ∈ T and A ∈ S, respectively.

Lemma 2.8. For both Independent and Subspaces families
(S, T ), the S-graph H is (α, ν(α))-sampler, where

• Independent: ν(α) = 2 · e−αk/24,

• Subspaces: ν(α) = 4/(α
√
k).

Proof. For Independent, we use the Hoeffding bound of
Lemma 2.1. For Subspaces, we use the fact that points in a
random affine subspace of a given affine space are uniformly
distributed and pairwise independent (cf. Claim 2.3), and
then apply Chebyshev’s bound of Lemma 2.2.

The proof of the following lemma is given in the full ver-
sion of the paper.

Lemma 2.9. For both Independent and Subspaces families
(S, T ), the T -graph G is (β, λ(β))-sampler, where

• Independent: λ(β) = 2 · e−βk/24,

• Subspaces: λ(β) = 4q2/(β
√
k).

2.3.3 Properties of samplers and their subgraphs
Here we prove two properties of samplers, which will be

useful for the analysis of our decoding algorithm. These
properties basically show that samplers are “robust” to dele-
tions of vertices.

The first property says that for any two large vertex sub-
sets W and F of a sampler, the fraction of edges between W
and F is close to the product of the densities of W and F .

Lemma 2.10. Suppose G = G(L,R) is a (β, λ)-sampler.
Let W ⊆ R be any set of measure ρ, and let F ⊆ L be any
set of measure β. Then we have

Prx∈L,y∈N(x)[x ∈ F & y ∈W ] > β(ρ− λ)/2.

Proof. We need to estimate the probability of picking an
edge between F and W in a random experiment where we
first choose a random x ∈ L and then its random neighbor
y. Since the graph G is assumed to be bi-regular, this prob-
ability remains the same in the experiment where we first
pick a random y ∈ R and its random neighbor x ∈ N(y).
The latter is easy to estimate using the sampling property
of the graph G, as we show next.

Let F ′ ⊆ F be of density exactly β. Let W ′ ⊆ W be
the subset of vertices that have at least β/2 fraction of their
neighbors in F . Since G is a (β, λ)-sampler and W is of
measure ρ, we get that W ′ is of measure at least ρ−λ. Then
conditioned on picking a vertex y ∈W ′, the probability that
its random neighbor is in F is at least β/2. The lemma
follows.

The second property deals with edge-colored samplers.
Suppose that all edges in a bi-regular graph G = G(L,R)
are colored with two colors, red and green, so that the num-
ber of red edges is at most t, for some t > 0. Since G is
bi-regular, picking a random vertex x ∈ L and its random
incident edge is the same as picking a random y ∈ R and its
random incident edge, and clearly, the probability of getting
a red edge in both cases is t/|E|, where E is the edge set of
G. Now suppose that we are given a subgraph G′ obtained
from G by removing some vertices from R (and all the edges
incident upon the removed vertices). Let W ⊆ R be a sub-
set of the remaining vertices in G′, and suppose that G′ has
at most t red edges. Since G′ is still right-regular (i.e., all
vertices w ∈ W have the same degree), sampling a random
incident edge of a random vertex w ∈ W still yields a red
edge with probability at most t/|E′|, where E′ is the edge
set of G′. For general graphs G, we can’t say that the prob-
ability of getting a red edge remains the same when we pick
a random incident edge of a random vertex x ∈ L (since
G′ may not be bi-regular). However, we prove that this is
approximately true when G is a sampler.

Lemma 2.11. Suppose G = G(L,R) is a (β, λ)-sampler,
with the right degree D. Let W ⊆ R be any subset of density
ρ, and let G′ = G(L,W ) be the induced subgraph of G (ob-
tained after removing all vertices in R \W ), with the edge
set E′. Let Col : E′ → {red, green} be any coloring of the
edges of G′ such that at most αD|W | edges are colored red,
for some 0 6 α 6 1. Then

Prx∈L,y∈NG′ (x)[Col({x, y}) = red] 6 max{2α/(1−λ/ρ), β}.

Proof. We need to estimate the probability of picking
a red edge in G′ when we first pick a random x ∈ L and
then pick its random neighbor y in G′. For every x ∈ L, let
dx be the degree of x in G′, and let ξ(x) be the fraction of
red edges incident to x in G′. The probability we want to
estimate is exactly µ = Expx∈L[ξ(x)]. If µ 6 β, then we
are done. So for the rest of the proof, we will suppose that
µ > β.

Let W ′ ⊆ W be the subset of those vertices w where
Expx∈N(w)[ξ(x)] > µ/2. (Here we use N(w) to denote

the neighborhood NG′(w) of w in G′, which is the same as
NG(w) by the definition of G′.) Since G is a (β, λ)-sampler
and W has measure ρ in G, we get that W ′ has measure at
least ρ − λ in G, and hence measure 1 − λ/ρ in G′. Hence,



we haveX
y∈W

Expx∈N(y)[ξ(x)] >
X
y∈W ′

Expx∈N(y)[ξ(x)]

> |W |(1− λ/ρ)µ/2. (1)

On the other hand,
P
y∈W

“
D ·Expx∈N(y)[ξ(x)]

”
is sim-

ply the summation over all edges (x, y) inG′ where each edge
(x, y) with x ∈ L contributes ξ(x) to the sum. Since the de-
gree of each x is dx, each x ∈ L contributes exactly dxξ(x),
which is the number of incident red edges at x. Hence, the
total sum is exactly the number of red edges in G′, which is
at most αD|W | by assumption. It follows thatX

y∈W

Expx∈N(y)[ξ(x)] = (1/D)
X
x∈L

dxξ(x) 6 |W |α. (2)

Finally, comparing the bounds in Eqs. (1) and (2), we
conclude that µ 6 2α/(1− λ/ρ).

3. DECODING INTERSECTION CODES
Let (S, T ) be a pair of families of subsets of U , and let

Code(S, T ) be the intersection code defined for these fam-
ilies. Fix a function f : U → R. Let C′ be a circuit that
ε-computes Code(f). We will show how to compute from C′

a deterministic circuit C that (1− δ)-computes f , for δ > 0
being the parameter that depends on ε and (S, T ).

Our decoding algorithm A for Code(S, T ) can be defined
in terms of the inclusion and T -graphs. Fix any edge (A,B)
of the inclusion graph I(S, T ). Let v = C′(B)|A be the
values that the circuit C′(B) gives for the elements in A.

Let G = G(U \ A,N(A)) be the T -graph for A. Let
Cons ⊆ N(A) be the subset of those B′ ∈ N(A) for which
C′(B′)|A = v. We will say that such sets B′ are consistent
with B.

Define the circuit CA,v:

“On input x ∈ U , if x ∈ A, then output the corresponding
value vx. Otherwise, repeatedly sample random neighbors
B′ of x in the T -graph G, discarding any B′ 6∈ Cons, until
the first B′ ∈ Cons is obtained. For this B′ ∈ Cons, output
the value C′(B′)|x. Produce the default (error) output if no
B′ ∈ Cons is found even after O((ln 1/δ)/ε) steps.”

Define the decoding algorithm A:

“On an input circuit C′, pick a random edge (A,B) of the
inclusion graph I(S, T ), set v = C′(B)|A, and output the
circuit CA,v.”

Remark 3.1. For the described algorithm CA,v to be ef-
ficient, we need an efficient procedure for sampling random
neighbors of a given left vertex in the T -graph G(U\A,N(A)).
For both of our running examples, one can easily argue that
such efficient sampling is possible.

We now state the main technical result of our paper: the
conditions on (S, T ) under which the decoding algorithm A
produces a good circuit CA,v. For the rest of this section,
we set ε′ = ε/2.

Theorem 3.2. Suppose that the inclusion graph I(S, T )
is transitive (and hence also bi-regular), the S-graph H is
a (µ, δε′2/(128µ))-sampler for every µ > δ/64, and the T -
graph G is a (δ/16, ε′/2)-sampler. Then the algorithm A

produces with probability ε′/2 a randomized circuit CA,v sat-
isfying

Pr[CA,v computes f ] > 1− δ/4,

where the probability is over the inputs and the internal ran-
domness of CA,v.

Remark 3.3. Note that if a randomized circuit CA,v sat-
isfies the conclusion of Theorem 3.2, then by randomly fixing
its internal randomness we get (with probability at least 3/4)
a deterministic circuit C that (1− δ)-computes f .

We postpone the proof of Theorem 3.2, and use it to prove
Theorem 1.3.

Proof. (Proof of Theorem 1.3) For Independent, we get
by Lemmas 2.8 and 2.9 that both H and G are (µ, λ(µ))-

samplers for λ(µ) 6 e−Ω(µk). For µ > δ/64, write µ = cδ
where c = µ/δ > 1/64. For the graph H, we get that

µ · λ(µ) 6 cδe−Ω(cδk). For δ = d log(1/ε)/k for large enough

constant d, we get e−Ω(cd log 1/ε) = εΩ(cd) 6 ε′2εcd
′
, for some

large constant d′ dependent on d. Assume that ε < 0.9
(if a circuit C′ ε-computes fk for ε > 0.9, it obviously
0.9-computes fk). Choosing sufficiently large constant d,

we can ensure that εcd
′
< 2−c/128, and so cδe−Ω(cδk) 6

cδε′22−c/128 6 δε′2/128. Thus H satisfies the assumptions
of Theorem 3.2. Setting δ = d(log 1/ε)/k for a large enough
d ∈ N will also make the T -graph G satisfy the assumptions
of of Theorem 3.2.

For Subspaces, Lemma 2.8 gives us that H is (µ, λ(µ))-

sampler for λ(µ) = 4/(µ
√
k). Hence, µ · λ(µ) 6 4/

√
k. The

latter is at most δε′2/128 for δ > 512/ε′2
√
k. Lemma 2.9 says

that the graphG is (δ/16, ε′/2)-sampler for δ > 128q2/(ε′
√
k).

Thus, to satisfy the conditions of Theorem 3.2, we can set
δ 6 512q2/(ε′2

√
k)), which is O(1/(ε′2k1/4)) for q 6 k1/8.

By Remark 3.3, we get in both cases a required determin-
istic circuit (1− δ)-computing f .

3.1 Why CA,v works
Here we describe the conditions on our auxiliary graphs

(inclusion, S- and T -graphs) and an edge (A,B) of the inclu-
sion graph, which are sufficient for the circuit CA,v described
above to satisfy the conclusion of Theorem 3.2. Intuitively,
we are using (A, v) as a consistency check to see whether
to believe C′(B′). To be useful as a consistency check, we
should have:

• v = f(A), so if C′(B′) is correct, it will always be
consistent with v on A.

• There are many B′ for A where C′(B′) is correct.

• On average over B′ where C′(B′) is consistent with A,
C′(B′) is correct for most x ∈ B′ \A.

We show that these conditions suffice, and that many such
sets A exist.

We need the following definitions. For a set B ∈ T , let
Err(B) denote the subset of those x’s in B where C′(B)
disagrees with fk(B), and let err(B) = |Err(B)|/|B|. A
set B ∈ T is called correct if err(B) = 0. A set B ∈ T is
called α-incorrect if err(B) > α. For the inclusion graph
I(S, T ), we call an edge (A,B) correct if B is correct. As
before, we set ε′ = ε/2. Call an edge (A,B) good if it is



correct and at least ε′-fraction of all edges (A,B′) incident
to A are correct. An edge (A,B) of the inclusion graph is
called α-excellent if it is good, and moreover,

ExpB′∈Cons[err(B
′)] 6 α,

where the expectation is over uniformly random B′ that are
consistent with B.

In words, for an excellent edge (A,B), we have at least ε′

of correct edges (A,B′) (and so these B′ ∈ Cons), and at the
same time, the average fraction of errors in the neighbors of
A that are consistent with B is less than α. So, conditioned
on sampling a random B′ ∈ Cons, we expect to get a B′

such that C′(B′)|x = f(x) for most x ∈ B′.
Our circuit CA,v is defined so that it only considers ran-

dom B′ ∈ Cons. This circuit will agree with f well on
average, assuming that A, v came from some excellent edge
(A,B), and assuming that the T -graph is a sampler.

Lemma 3.4. Let an edge (A,B) of the inclusion graph
I be α-excellent, and let the T -graph G(U \ A,N(A)) be
a (β, λ)-sampler. Suppose that λ 6 ε′/2, α 6 β/2, and
β 6 δ/16. Then Pr[CA,v computes f ] > 1− δ/4, where the
probability is over uniform x’s and the internal randomness
of CA,v.

To prove Lemma 3.4, we consider two cases. First we
consider the set F ⊆ U \ A of x’s that have too few edges
(x,B′) with B′ ∈ Cons in the T -graph G(U \ A,N(A)).
These are the x’s for which CA,v is unlikely to produce any
answer and hence fails. Secondly, we bound the average con-
ditional probability of CA,v producing an incorrect answer
given that the circuit produces some answer. Note that for
every x ∈ U \ A this conditional probability is the same
for all sampling steps of CA,v. So, we can just analyze this
conditional probability for one sampling step.

First, we bound the size of F .

Lemma 3.5. Suppose an edge (A,B) of I is good, and the
T -graph G(U \ A,N(A)) is a (β, λ)-sampler. Let F be the
subset of U \ A with less than µ fraction of their edges into
Cons, where µ = (ε′ − λ)/2. Then the measure of F is at
most β.

Proof. Suppose that F has density at least β. Let F ′ ⊆
F be of density exactly β. By the assumption of the lemma,
we have that Prx∈U\A,y∈N(x)[x ∈ F ′ & y ∈ Cons] < βµ =
β(ε′ − λ)/2.

On the other hand, we know that Cons has density at least
ε′ (by the definition of goodness of (A,B)). By Lemma 2.10,
the fraction of edges in G that go between F and Cons
is at least β(ε′ − λ)/2, which contradicts our earlier upper
bound.

For a given x ∈ U\A, let h(x) denote the conditional prob-
ability that CA,v produces an incorrect answer, given that it
produces some answer. We will show that the expectation
Expx∈U\A[h(x)] is small.

Lemma 3.6. Suppose (A,B) is α-excellent, and the T -
graph G is a (β, λ)-sampler. Further suppose that α 6 β/2
and λ 6 ε′/2. Then Expx∈U\A[h(x)] 6 β.

Proof. Since CA,v produces an answer on a given input
x only if it samples a consistent neighbor B′ of x in the
T -graph G(U \ A,N(A)), we can view h(x) as follows. Let

G′ = G(U \ A,Cons) be the induced subgraph of G where
we remove all inconsistent vertices from N(A). For each
edge (x,B′) of G′, we color it red if x ∈ Err(B′), and color
it green otherwise. Then h(x) is the fraction of red edges
incident to x in the graph G′.

Let ρ be the measure of Cons in G. We know that ρ > ε′.
Let D = |B| be the right degree of the T -graph G (and
hence also of G′). The total number of red edges in G′ is at
most αD|Cons|, by the definition of α-excellence.

By Lemma 2.11, we conclude that Prx∈U\A,B′∈NG′ (x)[x ∈
Err(B′)] 6 max{2α/(1 − λ/ρ), β}. By assumptions, 1 −
λ/ρ > 1− λ/ε′ > 1/2, and so α/(1− λ/ε′) 6 2α 6 β.

Now we can finish the proof of Lemma 3.4.

Proof. (Proof of Lemma 3.4) Lemma 3.5 implies for ev-
ery x ∈ U \ (A∪F ), where F is of measure at most β, there
are at least ε′/4 fraction of edges into Cons. Hence the prob-
ability of CA,v not producing any answer in t = d(log 1/δ)/ε′

sampling steps for such an x is at most δ/8 for some constant
d, e.g., d = 100. For each such x, the probability that CA,v is
wrong, given that CA,v produces an answer, is h(x). Hence,
the overall probability (over random x and internal random-
ness) that CA,v is wrong is at most β+δ/8+Expx∈U\A[h(x)].
By Lemma 3.6, the last summand is at most β, and so the
total is at most 2β + δ/8 6 δ/4 (since β 6 δ/16).

3.2 Choosing an excellent edge (A,B)

Here we show that if the inclusion graph I is bi-regular
and if the S-graph H is a sampler, then a random edge
(A,B) of I will be excellent with probability Ω(ε).

Lemma 3.7. Suppose the inclusion graph I is bi-regular,
and the S-graph H is an (µ, ν(µ))-sampler2. Moreover, as-
sume that 0 6 α 6 1 is such that, for every α/2 < µ 6 1,
we have µ · ν(µ) 6 αε′2/4. Then a random edge (A,B) of I
is α-excellent with probability at least ε′/2.

First, we argue the following.

Lemma 3.8. A random edge (A,B) of a bi-regular inclu-
sion graph I is good with probability at least ε′.

Proof. Choosing a random edge (A,B) of the inclusion
graph I is equivalent to choosing a random B ∈ T and then
choosing a random A ∈ N(B). By the assumption on C′, a
random B ∈ T is correct with probability at least ε. Thus
we have PrA∈S,B∈N(A)[(A,B) is correct] > ε.

For A ∈ S, let P (A) be the event (over a random choice of
A ∈ S) that PrB′∈N(A)[B

′ is correct] < ε/2. Observe that,
conditioned on A ∈ S such that P (A), we get

PrA∈S,B∈N(A)[(A,B) is correct | P (A)] < ε/2,

and so,

PrA∈S,B∈N(A)[((A,B) is correct) & P (A)] < ε/2.

Finally, the probability that a random edge (A,B) is good
is equal to

(PrA,B [(A,B) is correct]−PrA,B [((A,B) is correct) & P (A)])

> ε− ε/2 = ε/2,

which is equal to ε′, as required.

2Here we only need that, for any measure µ subset F of left
vertices of H, the fraction of right vertices with no incident
edges into F is at most ν.



Now we can prove Lemma 3.7.

Proof. (Proof of Lemma 3.7) To show that an edge (A,B)
is α-excellent, it suffices to argue thatX

B′∈Cons: err(B′)>α/2

err(B′) 6 (α/2)|Cons|,

where Cons is the set of all B′ ∈ N(A) that are consistent
with B. This expression can be equivalently rewritten as

PrB′∈Cons,x∈B′ [err(B′) > α/2 & x ∈ Err(B′)] 6 α/2. (3)

For independent randomA ∈ S andB ∈ N(A), let E1(A,B)
be the event that (A,B) is good, but the inequality (3) does
not hold (i.e., the probability in (3) is greater than α/2).

For independent random A ∈ S, B ∈ N(A), B′ ∈ N(A),
and x ∈ B′, let E(A,B,B′, x) be the event that

(A,B) is correct & B′ ∈ Cons & err(B′) > α/2 & x ∈ Err(B′).

The probability of E is the average over all B′ ∈ T of the
conditional probabilities of E given B′. Consider any fixed
B′ with err(B′) > α/2. For each such B′, the set A is a
uniform element of N(B′) in the inclusion graph. By the
sampling property of the S-graph H(B′, N(B′)), the prob-
ability that a random A ∈ N(B′) completely misses the
subset Err(B′) is at most ν(err(B′)). If A has nonempty
intersection with Err(B′), then it cannot be the case that
both (A,B) is correct and B′ ∈ Cons. Hence, given B′, the
conditional probability of the event E is at most ν(err(B′)) ·
err(B′), and so,

Pr[E] 6
1

|T |
X

B′∈T :err(B′)>α/2

err(B′) · ν(err(B′)),

which is at most αε′2/4 by the assumption of the lemma.
We have

Pr[E | E1] > (α/2)PrB′∈T [B′ ∈ Cons | E1] > αε′/2, (4)

where the first inequality is by the definition of the event E1,
and the second inequality by the definition of goodness of
(A,B). On the other hand, Pr[E | E1] = Pr[E & E1]/Pr[E1] 6
Pr[E]/Pr[E1]. Combined with (4), this implies that Pr[E1] 6
Pr[E] · 2/(αε′) 6 ε′/2.

Clearly, PrA∈S,B∈N(A)[(A,B) is α-excellent] is at least

PrA∈S,B∈N(A)[(A,B) is good]−PrA∈S,B∈N(A)[E1].

By Lemma 3.8, the first probability in the difference above
is at least ε′, and, by what we showed earlier, the second
probability is at most ε′/2. The lemma follows.

Proof. (Proof of Theorem 3.2) The proof follows easily
from Lemmas 3.4 and 3.7. We simply set β = δ/16, λ = ε′/2,
α = β/2 = δ/32, and ν(µ) = αε′2/(4µ) = δε′2/(128µ).

4. EXTENSIONS
Here, we give the intuition for some of the extensions men-

tioned in the introduction, Theorems 1.4, 1.5, 1.6, and 1.7.
The proofs appear in the full paper. 3

3Full paper available on:
http://www.cse.ucsd.edu/users/russell/

4.1 Approximate version of the Uniform Direct-
Product Theorem

To prove the approximate version of the Uniform Direct
Product Theorem, we follow the same outline as for the
exact version. The main changes we need to make are:

Before, if C′(B) was correct, it was correct on the subset
A. Here, we need to bound the chance that, even if C′(B)
is almost correct, its number of mistakes on A is dispropor-
tionately high. We include this in the definition of “correct
edge”, so that two correct edges for A will be (mostly) con-
sistent on A. Second, before, we had the correct values for
A, and any deviation from these values could be used to rule
out C′(B′) as inconsistent. Now, our values for even good
A and B′ are somewhat faulty, and so could be somewhat
inconsistent.

4.2 Derandomized Direct-Product Theorems
Here we will sketch the proof of Theorem 1.5. For K =

poly(1/ε) and k = O(log 1/ε), let K denote the collection of
all k-subsets of {1, . . . ,K}. We need to analyze the function
h : T × K → {0, 1}k mapping (T, i1, . . . , ik) to g(T )|i1,...,ik ,
where T is a collection of affine d-dimensional subspaces of
Fmq .

First we analyze the input size of h. It consists ofO(n) bits
to describe a constant-dimensional affine subspace T , plus
k logK = O((log 1/ε)δ−1 ·(log 1/ε+log 1/δ)) = O((log 1/ε)2)
bits to specify the k-subset of {1, . . . ,K}, for constant δ. For

ε ≥ e−Ω(
√
n), we get that the total input size is O(n).

Suppose h is ε-computable in BPTIME(t1/c)//(1/c) log t.
Given a circuit ε-computing h, we will show how to ef-
ficiently compute a list of circuits one of which (1 − δ)-
computes f . This will imply that f is (1− δ)-computable in
BPTIME(t)// log t, contrary to the assumption of the theo-
rem.

Our argument follows along the lines of a standard analy-
sis of code concatenation (see, e.g., [15]). Suppose we have a
circuit C′ that ε-computes h. By averaging, we get that for
at least ε/2 fraction of T ∈ T , the equality C′(T, κ) = g(T )|κ
holds for at least ε/2 fraction of k-subsets κ ∈ K. Call Tgood
the set of such good T s.

By Theorem 1.3, we know that the Independent intersec-
tion code is δ′-approximately (ε/2, O(1/ε))-list decodable.
So, for every T ∈ Tgood, we can efficiently recover a list of
` = O(1/ε) length-K strings, one of which (1 − δ′)-agrees
with g(T ).

We can then use this algorithm as the input to the de-
coding algorithm for the K-wise direct product using affine
subspace, to get a list of possible functions f .

4.3 Hardness condensing
In this subsection, we reinterpret the results of the previ-

ous section to give a version of hardness condensing for the
semi-uniform model, proving Theorem 1.6.

Imagine the sets B in the affine subspace construction as
being exponentially large but succinctly representable (as is
the case when k = qd is large). The idea is that, instead
of C′(B) explicitly giving the values of f on B, we could
replace C′(B) with a meta-algorithm that produces a circuit
that computes f |B . We could still estimate the agreement
of two such circuits on A. Thus, if f is hard, the restricted
function f |B is hard for almost all B.

4.4 k-XOR code



Here we sketch the proof of Theorem 1.7. First, for a
Boolean function f , consider the function fH2k (x1, ..x2k, r) =
〈f2k(x1, ..x2k), r〉, where r is a 2k bit vector, and we take the
inner product mod 2. Equivalently, fH2k is a function that is
the xor of the values of f not on a fixed number k of inputs,
but of a number of elements between 0 and 2k chosen ac-
cording to the binomial distribution. We can also think of it
as the concatenation of the 2k-wise direct product code and
the Hadamard code. By the decoding algorithm of [5], for a
fixed k-set x1, ..xk, whenever a circuit has a conditional ad-
vantage ε in guessing the inner product, we can list decode to
get a list of size O(1/ε2) containing f2k(x1, ..x2k). Thus, we
can reduce approximate list-decoding fH2k to list-decoding
f2k, albeit with a larger list size due to the change.

Since there is an Ω(1/
√
k) probability that a random string

of length 2k has Hamming weight k, if we have advantage ε
in predicting f⊕k, we get a non-negligible advantage in pre-
dicting fH2k . In particular, for each set B of size 2k where
the conditional advantage of predicting the xor of a subset
of size k is large, we can get a small list of possible values
for f2k(B).

We will show how to select an element from this list so that
the overall probability of selecting a string δ-close to f2k(B)
is Ω(ε2), where δ = O(log 1/ε/k). Combining this with the
list-decoder for approximate direct product, we get an opti-
mal O(1/ε2) list decoding for the truncated Hadamard code.

The procedure is: For each candidate, approximate the
correlation between the circuit’s values on subsets of B and
the corresponding inner product with the candidate. Order
the candidates from highest rank to lowest. Prune the can-
didates that have a higher rank candidate that is δ close to
it, or 1 − δ far from it. Of the ones that are left, pick one
with probability proportional to the square of its bias. With
probability 1/2, output this candidate, otherwise output its
negation.

Let the actual advantage of the algorithm on subset B be
γB , and assume γB ≥ ε. The actual value of f2k(B) prob-
ably appears in the list. If it is pruned, there is a higher
ranked candidate either very close to it or very far from it,
with correlation at least γB . The set of unpruned candi-
dates are all between δ and 1− δ far from each other; hence,
random xor’s of k of their bits are almost uncorrelated. Us-
ing an approximate version of Parseval’s inequality, we show
that the sum of the squares of the correlations for such candi-
dates must be O(1). Thus the probability of picking the can-
didate very close to or very far from f2k(B) is Ω(γB

2). Since
we either keep or flip this output, there is a conditional 1/2
probability of being approximately f2k(B). The global prob-
ability is then Ω(ExpB(γB

2)) ≥ Ω((ExpB(γB))2) = Ω(ε2).

5. CONCLUSIONS
We gave an efficient, approximate, local list-decoding algo-

rithm for the direct-product code, with information-theoretically
optimal parameters (to within constant factors). Our new
decoding algorithm is also very efficient (is in uniform ran-
domized AC0), and has a simple analysis. We also defined a
natural generalization of direct-product codes, intersection
codes, for families of subsets (S, T ), and gave the condi-
tions on (S, T ) that suffice for efficient (approximate, local)
list-decoding of these generalized codes. Finally, we gave
a derandomized version of the direct-product code with an
efficient decoding algorithm.

An interesting remaining open question is to get a deran-
domized uniform direct-product theorem with better param-
eters (pushing the error ε to e−Ω(n), while keeping the new
input size linear in the original input size). Another ques-
tion is to improve the parameters of our approximate ver-
sion of the uniform direct-product theorem (Theorem 1.4),
ideally achieving a uniform version of the “Chernoff-type”
direct-product theorem in the spirit of [11]. Finally, it is
interesting to see if the ideas from our new list-decoding al-
gorithm can help in improving the known uniform hardness
amplification results for NP of [16].
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