
J. Cryptol.
DOI: 10.1007/s00145-008-9029-7

Chernoff-Type Direct Product Theorems

Russell Impagliazzo1 , Ragesh Jaiswal2 , and Valentine Kabanets
University of California San Diego, San Diego, USA

russell@cs.ucsd.edu
and

Institute of Advanced Studies, Princeton, USA
and

University of California San Diego, San Diego, USA
rjaiswal@cs.ucsd.edu

and
Simon Fraser University, Vancouver, Canada

kabanets@cs.sfu.ca

Received 8 November 2007 and revised 26 August 2008

Abstract. Consider a challenge-response protocol where the probability of a correct
response is at least α for a legitimate user and at most β < α for an attacker. One ex-
ample is a CAPTCHA challenge, where a human should have a significantly higher
chance of answering a single challenge (e.g., uncovering a distorted letter) than an at-
tacker; another example is an argument system without perfect completeness. A natural
approach to boost the gap between legitimate users and attackers is to issue many chal-
lenges and accept if the response is correct for more than a threshold fraction, for the
threshold chosen between α and β. We give the first proof that parallel repetition with
thresholds improves the security of such protocols. We do this with a very general result
about an attacker’s ability to solve a large fraction of many independent instances of a
hard problem, showing a Chernoff-like convergence of the fraction solved incorrectly
to the probability of failure for a single instance.

Key words. Challenge-response protocols, Parallel repetition with threshold, Direct
product theorem.

1. Introduction

Cryptographic protocols require problems that are easy for legitimate users but hard for
attackers. The hardness of a problem may be either computational (when attackers are
assumed computationally bounded) or information-theoretic (when attackers are com-
putationally unbounded). Ideally, a problem should be reliably easy for legitimate users

1 Research partially supported by NSF Awards CCR-0515332 and CNS-0716790. Views expressed are
not endorsed by the NSF.

2 Research partially supported by NSF Awards CCR-0515332, CCF-0634909, CNS-0524765 and CNS-
0716790. Views expressed are not endorsed by the NSF.

© International Association for Cryptologic Research 2008

mailto:russell@cs.ucsd.edu
mailto:rjaiswal@cs.ucsd.edu
mailto:kabanets@cs.sfu.ca

R. Impagliazzo et al.

(i.e., the chance of failure for legitimate users should be negligible) but reliably hard
for attackers (i.e., the chance of the attacker’s success is negligible). In reality, one may
have a problem which is only somewhat easier for legitimate users than for attackers,
i.e., the gap between the ability of legitimate users to solve the problem and that of at-
tackers is relatively small. It is thus important to have a method for increasing this gap,
thereby improving the security of cryptographic protocols based on such problems.

Direct product theorems provide one such method for making problems reliably hard
for attackers. The idea is that if an attacker has some chance of failing on a single chal-
lenge, the chance of solving multiple independent challenges should drop exponentially
fast with the number of challenges. Examples of such theorems in cryptography include
Yao’s theorem that weak one-way functions imply strong one-way functions [12] and
the results of [1,2] showing similar drops even when an attacker cannot know for certain
whether a response to a challenge is correct. Direct product theorems are also important
in average-case complexity, circuit complexity, and derandomization. While intuitive,
such results are frequently nontrivial to establish. Moreover, there are settings where
the intuition is incorrect, and many instances are not proportionally harder; examples
where direct products fail are parallel repetition for multiple round protocols and for
nonverifiable puzzles [1,2,10].

A standard direct product theorem can only be used to amplify the gap between legiti-
mate users and attackers if legitimate users are successful with high probability. Indeed,
the legitimate user’s chance of solving k independent challenges also drops exponen-
tially fast with k. So unless the legitimate user’s probability of failure is not much more
than 1/k to start, both legitimate users and attackers will almost certainly fail to solve
all of the problems.

Suppose that a legitimate user has probability α of solving a randomly generated
challenge, while an attacker has probability β < α. For k independent random chal-
lenges, we expect the legitimate user to be correct on αk of them. By Chernoff bounds,
the actual number of correct answers will be very close to αk with high probability. On
the other hand, the expected number of correct answers by the attacker is βk. Intuitively,
it should be unlikely that the actual number of correct answers is much larger than the
expected number. That is, by analogy with Chernoff bounds, the attacker’s probability
of answering correctly on significantly more that the expected number βk of random k

challenges should be exponentially small in the expectation βk.
This intuition turns out to be correct. The main result of our paper is such a strength-

ening of the direct product theorem for a very general class of problems, weakly verifi-
able puzzles, introduced in [2].

1.1. Example: CAPTCHA

Before defining the class of weakly verifiable puzzles, we consider an example of a
cryptographic protocol where our results apply. A CAPTCHA protocol is meant to dis-
tinguish between humans and programs, usually using a visual challenge based on dis-
torted text with extraneous lines [11]. While there seems to be a large gap between the
abilities of typical humans and the best current vision algorithms to solve these chal-
lenges, algorithms can solve a non-negligible fraction of the puzzles, and many humans
(including us) fail a non-negligible fraction of the puzzles.

Chernoff-Type Direct Product Theorems

An obvious, intuitive way to increase the gap is to issue many independent challenges
and accept if the solver is successful on a larger fraction than expected for an attacker,
even if the solver does not succeed on all challenges. The fact that sequential repetition
improves the gap was observed by [11]. The authors of [11] also imply that parallel
repetition improves the gap, referring to the results in [1] for this “more complicated”
case. Indeed, the direct product theorem of [1] (improved by [2]) does apply to parallel
repetition of CAPTCHA protocols, but it only shows that the probability of algorithmic
success decreases with repetitions, not that the gap improves. Our stronger version of the
direct product theorem gives the first proof that the parallel repetition protocol suggested
in [11] does indeed improve the gap between legitimate users and attackers.

A CAPTCHA protocol issues a puzzle (e.g., distorted text) such that the correctness
of a solution to the puzzle is easy to verify by the generator of the puzzle (who knows
the text that was distorted), but not by the attacker (who is just given the puzzle, not the
way it was generated). Such puzzles are called weakly verifiable in [2].

1.2. Our Main Result

Before stating our main theorem, we need several definitions. For a weakly verifiable
puzzle P and a natural number k, we denote by P k the k-wise direct product of P , i.e.,
P k is the puzzle that asks k independent challenges from P . For a parameter 0 ≤ δ ≤ 1,
we say that P is δ-hard for time t if every randomized algorithm running in time t (n)

has probability at least δ of answering incorrectly a randomly generated challenge from
P (where the probability is both over input challenges from P and the internal random-
ness of the algorithm), for sufficiently large input size n. Finally, for parameters k ∈ N

and 0 ≤ ν, δ ≤ 1, we say that the k-wise direct product puzzle P k is ν-approximately
δ-hard for time t if every randomized algorithm running in time t (n) has probability at
least δ (over k-tuples of challenges from P k , and its internal randomness) of answering
incorrectly at least νk of the input k challenges.

Our main theorem states that for δ-hard puzzle P , its k-wise direct product P k is,
essentially, δ-approximately (1 − o(1))-hard. That is, not only is it impossible to solve
all k challenges for a non-negligible fraction of k-tuples from P k , but also it is impos-
sible to make significantly fewer than the expected number δk of mistakes on the input
k challenges. More precisely, we have the following.1

Theorem 1.1 (Main Theorem). Let P be a weakly verifiable puzzle that is δ-hard for
time t . Let k ∈ N and γ > 0 be arbitrary, and let ε ≥ (100/γ δ) · e−γ 2δk/40. Then the
direct product puzzle P k is (1 − γ)δ-approximately (1 − ε)-hard for time t ′ = t (n) ·
poly(ε,1/n,1/k).

We call this a Chernoff-type direct product theorem, since it shows that the “tail
bound” on the number of correctly solved puzzles drops exponentially in the region
beyond its expectation.

1 The parameters in the Main Theorem stated here are stronger than those reported in the conference
version of this paper [6]; the improvement comes from using the sampling lemmas of [7] instead of those
from [5].

R. Impagliazzo et al.

Standard Chernoff bounds show that, if the legitimate user can solve the problem
with probability of failure less than, say, (1 − 2γ)δ, then they will succeed in solv-
ing all but (1 − γ)δk of the input k challenges, for almost all k-tuples from P k . Thus
our Chernoff-type direct product theorem indeed provides a way to amplify any gap
between legitimate users and attackers.

Finally, we should also note that for direct products with threshold, it is impossible to
get the bound ε = (1 − δ)k , which is possible for standard direct products [2]. Indeed,
consider the case of a puzzle P such that P is easy for (1 − δ) fraction of inputs but
is information-theoretically impossible to solve on the remaining δ fraction of inputs.
Then the probability of making fewer than δk mistakes on a given random k-tuple of
challenges is the tail bound for the binomial distribution where one flips k independent
coins with the “heads” probability δ. When δk is sufficiently far from 0 and far from k

(e.g., for constant 0 < δ < 1), then the Chernoff bound provides a tight estimate for this
tail bound. Thus the bound of our main theorem cannot be significantly improved, ex-
cept possibly for making the constant in the exponent of ε in Theorem 1.1 (currently 40)
closer to that of the Chernoff bound (which can be as low as 2).

1.3. Weakly Verifiable Puzzles: Definition and Examples

Our result holds for weakly verifiable puzzles defined by [2]. A weakly verifiable puzzle
has two components:

• a distribution ensemble D = {Dn}n≥1 on pairs (x,α), where x is called the puzzle
and α the check string (n is the security parameter); and

• a polynomial-time computable relation R((x,α), y), where y is a string of a fixed
polynomially-related length.

The puzzle is thought of as defining a type of challenge x, with y being the solver’s
response. However, the correctness of the response is not easily verified (and may not
be well defined) given just x. On the other hand, the party generating the puzzle x also
knows α, so can verify correctness.

In [2], the distribution D is restricted to be polynomial-time sampleable. In this case,
without loss of generality, we can assume that α is the n-bit random tape used to gener-
ate the puzzle and check string (if not, we can redefine R as R′ which first generate the
check string from the random tape, then verifies R). Thus, to simplify the notation in
our proofs, we usually assume that α is a uniformly generated n-bit string and that x is
a function of α. A version of our result also holds when D is not polynomial-time sam-
pleable, but only for nonuniform adversaries (since many samples from D are required
as advice).

Here we summarize some important properties of weakly verifiable puzzles. The gen-
eration and verification procedures for the puzzles are polynomial-time algorithms. A
puzzle may have multiple correct answers (since an answer to a puzzle is verified using
a relation). The same puzzle may be generated using multiple random tapes; we call
such puzzles ambiguous. Moreover, since the verification procedure takes as input the
random tape α used to generate a puzzle x, the set of correct answers for x depends
on α, and these sets of corrects answers may be different (even disjoint) for different
random tapes α and α′ that generate the same puzzle x.

Some examples of how weakly verifiable puzzles arise in different settings include:

Chernoff-Type Direct Product Theorems

1. A challenge-response protocol where a prover is trying to get a verifier to ac-
cept them as legitimate (e.g., a CAPTCHA protocol where the prover is trying
to convince the verifier to accept them as human). We assume that the verifier is
polynomial-time with no secret inputs (although an honest prover may have se-
cret inputs). Let α be the random bits used by the verifier. In the first round, the
verifier sends a challenge x = g(α), and the prover sends a response y. The ver-
ifier then decides whether to accept by some polynomial time algorithm R(α,y).
Our results are interesting if there is some chance that the honest prover will be
rejected, such as an honest human user failing a CAPTCHA challenge based on
visual distortion.

2. A secret-agreement protocol with a passive eavesdropper. Let rA be the random
tape used by one party, and rB that by the other party. Then the conversation C

is a function of both rA, rB , as is the message m agreed upon. The eavesdropper
succeeds if she computes m given C. Then consider α = (rA, rB), x = C, and
R(C, (rA, rB), y) if y is the message agreed upon by the two parties using rA
and rB . Note that there may be some tapes where the parties fail to agree and
thus have no success. Our result shows that, if the parties agree more probably
than the eavesdropper can guess the secret, then by running the protocol several
times they will almost certainly have more shared secrets than the eavesdropper
can guess. Note that, unlike for challenge-response protocols, here there is no
restriction on the amount of interaction between the legitimate parties (as long as
the eavesdropper is passive).

3. Let f be a (weak) one-way function, and b a (partially-hidden) bit for f , in the
sense that it is sometimes hard to predict b from x = f (z). Since f may not be
one-to-one, b may be hard to predict for either information-theoretic or compu-
tational reasons. Here, we let α = z, x = f (α), and R(x,α, b′) if b′ = b(α). Our
results say that no adversary given an n-tuple of xi = f (zi)’s can produce a string
closer in relative Hamming distance to b(α1) . . . b(αn) than the hardness of pre-
diction.

4. In the nonuniform setting, our results apply to any function. If f is a function (pos-
sibly non-Boolean, or even multi-valued, as long as it has at most a polynomial
number of values), we can define α to be (the set of all elements in) f (x). Then
y ∈ f (x) if and only if y ∈ α, so this is testable in polynomial-time given α. This
distribution is not necessarily polynomial-time sampleable, so our results would
only apply for nonuniform adversaries (e.g., Boolean circuits).

Note that in some examples, success may be ill defined, in that x may not uniquely
determine α, and so it may not be information-theoretically possible to know whether
R((x,α), y) given only x.

1.4. Related Work

The notion of a Direct Product Theorem, where solving multiple instances of a problem
simultaneously is proven harder than a single instance, was introduced by Yao in [12].
Due to its wide applicability in cryptography and computational complexity, a number
of different versions and proofs of such theorems can be found in the literature; see,
e.g., [3] for a good compilation of such results.

R. Impagliazzo et al.

In this paper, we use some of the proof techniques (namely the trust halving strategy)
introduced by Impagliazzo and Wigderson in [8]. Such techniques were also used to
prove a version of the Direct Product Theorem in a more general cryptographic setting
by Bellare, Impagliazzo, and Naor in [1]. It is shown in [1] that the soundness error
decreases exponentially with parallel repetition in any 3-round challenge-response pro-
tocol, but such error amplification might not be possible for a general (> 3)-round pro-
tocol. Pietrzak and Wikstrom in [10] extend this negative result. On the positive side,
Canetti, Halevi, and Steiner in [2] used ideas from [1] to define a general class of weakly
verifiable puzzles for which they show that parallel repetition amplifies hardness, also
giving a quantitative improvement over [1]. More recently, Pass and Venkitasubrama-
niam [9] show similar positive results for constant-round public-coin protocols.

All the previous results mentioned above consider parallel repetition without thresh-
old, i.e., they consider the hardness of answering all the questions.

Comparing the Techniques of [1] and Those of [2] Our construction uses a version
of the trust-reducing strategy from [1,8]. In a trust-reducing strategy, the input puzzle
is hidden among (k − 1) randomly generated puzzles, and the number of mistakes the
attacker makes on the random puzzles is used to compute the probability with which
the algorithm trusts the attacker’s answer for the input puzzle.

A different approach was used in [2]. Their proof strategy (similar to that of Gol-
dreich, Nisan, and Wigderson [3]) is roughly as follows. Suppose that some attacker
C̄ correctly answers all k challenges for at least ε fraction of k-tuples from some di-
rect product puzzle P k , where P is δ-hard. Then (arguing by induction) one shows that
there exists a position 1 ≤ i ≤ k and fixed inputs x1, . . . , xi−1 for the positions before i

such that the probability of getting a correct answer for the ith input in a given k-tuple,
conditioned on the attacker’s answers for the positions i + 1, . . . , k being correct, is at
least 1 − δ. Thus, to answer a challenge x, one places x into position i, randomly gen-
erates challenges for the positions higher than i, runs the attacker C̄ on the constructed
k-tuple, and outputs the answer of C̄ for x if the answers of C̄ on all the (k − i) random
challenges are correct; otherwise one repeats with new (k − i) random challenges.

The argument of [2] allows one to conclude that ε = (1 − δ)k , which is information-
theoretically the best possible bound, is a quantitative improvement on the bound on ε

shown in [1]. While the techniques of [2] yield stronger (optimal) bounds for the direct
product than those of [1], we do not see how to use the techniques of [2] for the case of
direct products with threshold that we consider in the present paper. In our case, we need
to deal with a variable number of mistakes even for “good” k-tuples, and we manage to
adapt the techniques of [1] to handle such mistakes.

1.5. Our Techniques

As in [1,8], our proof of the main theorem is constructive: we show how to use a break-
ing strategy that solves the threshold puzzle with probability ε as a subroutine in an
algorithm that solves a single puzzle with probability greater than 1 − δ. However, we
need to deviate substantially from the previous analysis.

The way it is argued in [1,8] that all but δ fraction of inputs are easy is as follows.
Suppose an algorithm A succeeds on a significant fraction of k-tuples of random puzzle
instances. Then one constructs another algorithm A′ such that, for every subset of puzzle

Chernoff-Type Direct Product Theorems

instances H of density at least δ, algorithm A′ succeeds almost surely on a random
instance in H . Now consider the set of all puzzle instances where A′ gives a wrong
answer. By the above, this set must have density less than δ (or else A′ would succeed
almost surely on a random element in the set).

In contrast, in the threshold scheme, it is not possible to construct an algorithm A′
with the similar guarantee that A′ succeeds almost surely on a random instance in H ,
for every subset H of density at least δ. Indeed, for a given puzzle P , there may be a
subset H ′ of density (1 − γ)δ of input instances where no algorithm can succeed with
non-negligible probability, while all the other instances outside H ′ are easy to solve.
In this case, there is an algorithm that solves almost all k-tuples of puzzle instances if
we allow up to about (1 − γ)δk errors. However, for any set H of density δ such that
H ′ ⊆ H , no algorithm A′ can succeed on more than γ fraction of elements of H .

In order to get around this obstacle, we need a more global way of analyzing the
trust-reducing strategy. Our main tools for doing this are sampling lemmas from [7]. The
high-level idea is as follows. Let G be the set of k-tuples of puzzle instances where some
algorithm A is correct in all but (1 − γ)δk positions. Suppose that G has density ε. The
trust-reducing strategy essentially allows us to construct an efficient oracle for testing
membership in G. The overall strategy for solving a puzzle instance x is then to sample
random k-tuples containing x, until getting the tuple that falls into G; for such a tuple,
we output the value A gives for the xth position in the tuple.

Since G has density ε, we are almost sure to sample a tuple from G within poly(1/ε)

iterations. We use a sampling lemma to argue that, conditioned on sampling a random
k-tuple from G, the position of the input x is distributed almost uniformly within the
tuple. Hence, in that case, we get the correct answer for x with probability at least
1 − (1 −γ)δ = 1 − δ +γ δ (since every tuple in G has at most (1 −γ)δk bad positions).
Accounting for possible errors of our membership oracle for G, the probability of our
sampling procedure missing the set G, and the fact that the xth positions is only almost
uniform within the tuple, we conclude that our algorithm succeeds on at least 1 − δ

fraction of inputs x.

2. Preliminaries

2.1. Basics

For a natural number k, we will denote by [k] the set {1, . . . , k}.

Lemma 2.1 (Hoeffding bound). Let X1, . . . ,Xt be independent identically distrib-
uted random variables taking values in the interval [0,1], with expectation μ. Let
χ = (1/t)

∑t
i=1 Xi . For any 0 < ν ≤ 1, we have Pr[χ < (1 − ν)μ] < e−ν2μt/2.

2.2. Samplers

We will consider bipartite graphs G = G(L ∪ R,E) defined on a bipartition L ∪ R of
vertices; we think of L as left vertices, and R as right vertices of the graph G. We allow
graphs with multiple edges. For a vertex v of G, we denote by NG(v) the multiset of its
neighbors in G; if the graph G is clear from the context, we will drop the subscript and

R. Impagliazzo et al.

simply write N(v). Also, for a vertex x of G, we denote by Ex the set of all edges in G

that are incident to x. We say that G is bi-regular if the degrees of vertices in L are the
same and the degrees of vertices in R are the same.

Let G = G(L ∪ R,E) be any bi-regular bipartite graph. For a function λ : [0,1] ×
[0,1] → [0,1], we say that G is a λ-sampler if, for every function F : L → [0,1] with
the average value Expx∈L[F(x)] ≥ μ and any 0 < ν < 1, there are at most λ(μ, ν) · |R|
vertices r ∈ R where Expy∈N(r)[F(y)] ≤ (1 − ν)μ.

We will use the following properties of samplers (proved in [7] for the special case of
ν = 1/2); for completeness, we state them with the proofs. The first property says that
for any two large vertex subsets W and F of a sampler, the fraction of edges between
W and F is close to the product of the densities of W and F .

Lemma 2.2 ([7]). Suppose G = G(L ∪ R,E) is a λ-sampler. Let W ⊆ R be any set
of measure at least τ , and let V ⊆ L be any set of measure at least β . Then, for all
0 < ν < 1 and λ0 = λ(β, ν), we have Prx∈L,y∈N(x)[x ∈ V & y ∈ W] ≥ β(1 − ν)(τ −
λ0), where the probability is for the random experiment of first picking a random node
x ∈ L uniformly at random and then picking a uniformly random neighbor y of x in the
graph G.

Proof. We need to estimate the probability of picking an edge between V and W

in a random experiment where we first choose a random x ∈ L and then its random
neighbor y. Since the graph G is assumed to be bi-regular, this probability remains the
same in the experiment where we first pick a random y ∈ R and its random neighbor
x ∈ N(y). The latter is easy to estimate using the sampling property of the graph G as
follows. Consider the function F : L → [0,1] defined as

F(x) =
{

1 if x ∈ V ;

0 otherwise.

Since the measure of V is at least β , we have Expx∈L[F(x)] ≥ β . Let W ′ ⊆ W be the
subset of vertices that have at least (1 − ν)β fraction of their neighbors in V . In other
words, W ′ contains those vertices r ∈ R such that Expy∈N(r)[F(y)] ≥ (1 − ν)β . Since
G is a λ-sampler and W is of measure at least τ , we get that W ′ is of measure at least
τ − λ0. Then, conditioned on picking a vertex y ∈ W ′, the probability that its random
neighbor is in V is at least (1 − ν)β . The lemma follows. �

The second property deals with edge-colored samplers. It basically says that remov-
ing some subset of right vertices of a sampler yields a graph which (although not nec-
essarily bi-regular) still has the following property: Picking a random left node and
then picking its random neighbor induces roughly the same distribution on the edges as
picking a random right node and then its random neighbor.

Lemma 2.3 ([7]). Suppose G = G(L ∪ R,E) is a λ-sampler with the right degree D.
Let W ⊆ R be any subset of density at least τ , and let G′ = G(L∪W,E′) be the induced
subgraph of G (obtained after removing all vertices in R \ W) with the edge set E′. Let
Col : E′ → {red,green} be any coloring of the edges of G′ such that at most ηD|W |

Chernoff-Type Direct Product Theorems

edges are colored red for some 0 ≤ η ≤ 1. Then, for all 0 < ν,β < 1 and λ0 = λ(β, ν),
we have

Prx∈L,y∈NG′ (x)

[
Col({x, y}) = red

] ≤ max
{
η/

(
(1 − ν)(1 − λ0/τ)

)
, β

}
,

where the probability is for the random experiment of first picking a uniformly random
node x ∈ L and then picking a uniformly random neighbor y of x in the graph G′.

Proof. For every x ∈ L, let dx be the degree of x in G′, and let ξ(x) be the fraction
of red edges incident to x in G′. The probability we want to estimate is exactly μ =
Expx∈L[ξ(x)]. If μ ≤ β , then we are done. So for the rest of the proof, we will suppose
that μ > β .

Let W ′ ⊆ W be the subset of those vertices w where Expx∈N(w)[ξ(x)] ≥ (1 − ν)μ.
(Here we use N(w) to denote the neighborhood NG′(w) of w in G′, which is the same
as NG(w) by the definition of G′.) Since G is a λ-sampler and W has measure at least
τ in R, we get that W ′ has measure at least 1 − λ0/τ in W . Hence, we have

∑

y∈W

Expx∈N(y)

[
ξ(x)

] ≥
∑

y∈W ′
Expx∈N(y)

[
ξ(x)

] ≥ |W |(1 − λ0/τ)(1 − ν)μ. (1)

On the other hand,
∑

y∈W(D · Expx∈N(y)[ξ(x)]) is simply the summation over all
edges (x, y) in G′ where each edge (x, y) with x ∈ L contributes ξ(x) to the sum.
Since the degree of each x is dx , each x ∈ L contributes exactly dxξ(x), which is the
number of incident red edges at x. Hence, the total sum is exactly the number of red
edges in G′, which is at most ηD|W | by assumption. It follows that

∑

y∈W

Expx∈N(y)

[
ξ(x)

] = (1/D)
∑

x∈L

dxξ(x) ≤ |W |η. (2)

Finally, comparing the bounds in (1) and (2), we conclude that μ ≤ η/((1 − ν)(1 −
λ0/τ)). �

We shall also need a generalization of Lemma 2.3 for the case of weighted graphs.
Here we consider bipartite graphs G = G(L ∪ R,E) whose edges are assigned weights
in the interval [0,1] satisfying the following property: for every right vertex y ∈ R, all
the edges incident on y are assigned the same weight. Let w0,w1, . . . be the distinct
weights of the edges of G, in decreasing order. The vertex set R of such a weighted
graph is naturally partitioned into subsets W0,W1, . . . , where Wi is the subset of all
those vertices in R whose incident edges have weight wi . Intuitively, such a partitioning
of R defines a new induced graph G′ where a vertex in Wi is present in G′ with prob-
ability wi . (In the setting of Lemma 2.3, there are two sets W0 = W and W1 = R \ W

with w0 = 1 and w1 = 0.)
Suppose that the edges of G are partitioned into red and green edges. Let Red denote

the set of all red edges, and, for every x ∈ L, let Redx denote the set of all red edges
incident to x.

First, consider the experiment where one picks a vertex y ∈ R with probability pro-
portionate to wi , where y ∈ Wi , and then picks a uniformly random edge incident to y.
What is the probability of picking a red edge?

R. Impagliazzo et al.

Let wt : E → [0,1] be the edge weight function for our graph G = G(L∪R,E), and
let D be the right degree of the graph G. For a fixed red edge e of G, the probability of
choosing this edge in the random experiment described above is

wt(e)
∑

i≥0 |Wi |wi

· 1

D
,

where wt(e)/(
∑

i≥0 |Wi |wi) is the probability of choosing the vertex y ∈ R that is the
end vertex of the edge e, and 1/D is the probability of picking one of the D edges
incident to y. The probability of picking some red edge is then simply the sum of the
probabilities of picking an edge e over all red edges e of G.

Next consider the following experiment. Pick a vertex x ∈ L uniformly at random,
then pick an edge e incident to x with probability proportionate to wt(e) (i.e., the proba-
bility wt(e)/(

∑
e′∈Ex

wt(e′))). The probability ξ(x) of picking a red edge incident to x is
then the sum of the probabilities of choosing an edge e incident to x, over all red edges
e incident on x. Finally, the overall probability of picking a red edge in this experiment
is simply the average Expx∈L[ξ(x)].

The next lemma basically says that, for sampler graphs G, the probabilities of picking
a red edge in the two experiments described above are almost the same. More precisely,
we have the following:

Lemma 2.4. Suppose G = G(L ∪ R,E) is a λ-sampler with the right degree D. Let
wt : E → [0,1] be the weight function over the edges of G such that, for each y ∈ R, the
weights of the edges e ∈ Ey incident to y are the same. Let w0,w1, . . . be the distinct
weights of the edges of G in decreasing order, and let W0,W1, . . . be the partitioning of
the vertex set R so that each Wi is the subset of all those vertices in R whose incident
edges have the weight wi . Suppose that W0 has the measure at least τ in the set R.

Let Col : E → {red,green} be any coloring of the edges of G. For each x ∈ L, let
Redx be the set of all red edges incident to x, and let Red be the set of all red edges
in G. Suppose that the total weight of red edges

∑
e∈Red wt(e) is at most ηD|R|, and let

ξ(x) = (
∑

e∈Redx
wt (e))/(

∑
e∈Ex

wt(e)).
Then, for all 0 < ν,β < 1 and λ0 = λ(β, ν), we have

Expx∈L[ξ(x)] ≤ max

{
η|R|

(1 − ν)(1 − λ0/τ)
∑

i≥0 |Wi |wi

,β

}

.

Proof. Let μ = Expx∈L[ξ(x)]. If μ ≤ β , then we are done. So for the rest of the
proof, we will suppose that μ > β . We will bound the following sum from below and
from above:

∑

i≥0

∑

y∈Wi

wi · Expx∈N(y)

[
ξ(x)

]
. (3)

To bound it from below, let Bad ⊆ R be the subset of those vertices u where
Expx∈N(u)[ξ(x)] < (1 − ν)μ. Since G is a λ-sampler, we get that Bad has measure
at most λ0 in R. Each vertex y outside the set Bad contributes at least wi(1 − ν)μ to the
sum (3) for y ∈ Wi . Since w0 ≥ w1 ≥ · · · , the sum of such contributions is minimized

Chernoff-Type Direct Product Theorems

when all the bad vertices are in W0, i.e., Bad ⊆ W0 (otherwise, we can always make the
sum smaller by placing a bad vertex into W0 and creating a good vertex in some Wi for
i > 0). Since W0 has measure at least τ , we get that Bad has measure at most λ0/τ in
W0, and so
∑

i≥0

∑

y∈Wi

wi · Expx∈N(y)

[
ξ(x)

] ≥ (1 − λ0/τ)|W0|w0(1 − ν)μ +
∑

i≥1

|Wi |wi(1 − ν)μ

≥ (1 − λ0/τ)(1 − ν)μ
∑

i≥0

|Wi |wi.

For the upper bound on the sum in (3), we use the definition of the ξ(x), change the
order of summation, and finally use the definition of η to obtain the following:

∑

i≥0

∑

y∈Wi

wi · Expx∈N(y)

[
ξ(x)

] = (1/D)
∑

y∈R

∑

x∈N(y)

ξ(x)wt
(
(x, y)

)

= (1/D)
∑

x∈L

ξ(x)
∑

e∈Ex

wt(e)

= (1/D)
∑

x∈L

∑

e∈Redx

wt(e)

= (1/D)
∑

e∈Red

wt(e)

≤ |R|η.

Comparing the obtained lower and upper bounds, we conclude that

μ ≤ |R|η
(1 − ν)(1 − λ0/τ)

∑
i≥0 |Wi |wi

,

completing the proof of the lemma. �

We conclude this section by showing that the direct product gives rise to a sampler.
Consider the following bipartite graph G = G(L∪R,E): the set of left vertices L is the
set of n-bit strings {0,1}n; the right vertices R are all k-tuples of n-bit strings {0,1}nk ;
for every y = (u1, . . . , uk) ∈ R, there are k edges (y,u1), . . . , (y,uk) ∈ E.

Lemma 2.5. The graph G defined above is a λ-sampler for λ(μ, ν) = e−ν2μk/2.

Proof. This is immediate from Lemma 2.1. �

3. Proof of the Main Theorem

The proof is by contradiction. Suppose that a solver C̄ solves the direct product puzzle
P k with fewer than (1 − γ)δk mistakes for more than ε fraction of k-tuples of puzzle

R. Impagliazzo et al.

instances. We will describe a solver C which solves the puzzle P with probability at
least 1 − δ, where the probability is over the internal randomness of the solver and
uniformly chosen α ∈ {0,1}n.

We first give the proof under the simplifying assumptions that all puzzles are non-
ambiguous (i.e., a puzzle x uniquely determines the random tape α that generated x)
and that we can test if a given k-tuple of puzzle instances (x1, . . . , xk) is such that
C̄(x1, . . . , xk) makes fewer than (1 − γ)δk mistakes. Later we remove these assump-
tions.

3.1. Proof Under Simplifying Assumptions

Let Good be the subset of k-tuples of puzzle instances where C̄ makes few mistakes.
More precisely, Good is the set of those k-tuples of random tapes (α1, . . . , αk) such
that, for the corresponding k-tuple of puzzles (x1, . . . , xk), the solver C̄ makes fewer
than (1 − γ)δk mistakes. Since we assume that all puzzles are non-ambiguous, we can
define the set Good′ of all those k-tuples of puzzles (x1, . . . , xk) such that the k-tuple
of corresponding random tapes (α1, . . . , αk) is in G. That is, Good′ is the set of all k-
tuples of puzzle instances where the solver C̄ makes fewer than (1 − γ)δk mistakes.2

Our second assumption is that we have an oracle for testing membership in the set
Good′.

Consider the following algorithm C :

On input x, choose k − 1 random tapes α1, . . . , αk−1 uniformly at random.
Let x1, . . . , xk−1 be the puzzles corresponding to the chosen random tapes.
Pick i ∈ [k] at random and set x̄ = (x1, . . . , xi−1, x, xi, . . . , xk−1). Test if
x̄ ∈ Good′ (using the assumed membership oracle for Good′). If x̄ ∈ Good ′,
then output C̄(x̄)i ; otherwise repeat with new random α’s and i. If no out-
put is produced within 4 ln(20/γ δ)/ε iterations, then output the error sym-
bol ⊥.

We want to analyze the success probability of solver C on a given input x. To this end,
we need to argue that (1) the probability of the timeout is small and (2) conditioned on
the output being different from ⊥, it is a correct output with high probability (greater
than 1 − δ).

Recall the λ-sampler G defined at the end of Sect. 2.2. It has as its left vertices all
possible n-bit random tapes α and as its right vertices all possible k-tuples of such tapes.
For a left vertex α, its neighbors in G correspond to all possible ways of embedding this
α in a k-tuple, as done by our algorithm C . The algorithm C times out on an input x

corresponding to the random tape α iff it never samples a neighbor w of α in G such
that w ∈ Good. To bound the probability of timeout, we consider the set H ⊆ {0,1}n of
all those left vertices α of G such that α has less than ε/4 fraction of its neighbors fall
into the set Good.

Claim 3.1. The set H has density at most γ δ/5.

2 Note that the set Good′ does not make sense if one allows ambiguous puzzles, as the same instance x

may be considered solved correctly or incorrectly by C̄ depending on the particular random tape α used to
generate that x.

Chernoff-Type Direct Product Theorems

Proof. Suppose that the density of H is greater than β = γ δ/5. Let H ′ ⊆ H be any
subset of H of density exactly β . By our assumption, we have that Prα∈L,w∈N(α)[α ∈
H ′ & w ∈ Good] < βε/4. On the other hand, by Lemma 2.2 we get that the same prob-
ability is at least β(ε −λ0)/3 for λ0 = λ(β,2/3). This is a contradiction since λ0 ≤ ε/4
from the assumption of the theorem. �

Claim 3.2. For every α /∈ H and the puzzle x corresponding to that random tape α,
we have Pr[C(x) = ⊥] ≤ γ δ/20, where the probability is over the internal randomness
of C .

Proof. By the definition of H , we get that the probability of timeout on any given
α
∈ H is at most (1 − ε/4)4 ln(20/γ δ)/ε ≤ γ δ/20. �

Next we bound the probability of C making a mistake, conditioned on C outputting
something other than ⊥. First we observe that C produces a definite answer on an in-
put x corresponding to the random tape α exactly when it samples a neighbor w of
α in the graph G such that w ∈ Good. Consider the subgraph G′ of G induced by
removing all right vertices of G except those in Good. For each edge in G′ between
w = (α1, . . . , αk) ∈ R and αi ∈ L, color this edge red if C̄(x1, . . . , xk)i is wrong and
color it green otherwise. Then the requisite conditional probability of C making a mis-
take is exactly Prα∈L,w∈NG′ (α)[(α,w) is red].
Claim 3.3. Prα∈{0,1}n[C(x) is wrong | C(x)
= ⊥] ≤ δ − γ δ/4, where x is the puzzle
corresponding to the random tape α.

Proof. By the discussion above, the required conditional probability is exactly
Prα∈L,w∈NG′ (α)[(α,w) is red]. Observe that, by the definition of the set Good, the num-
ber of red edges in the graph G′ is at most (1 − γ)δk|Good|. By Lemma 2.3 applied
to G′ with η = (1 − γ)δ, β = δ/2, and ν = γ /2, we get that this probability is at most
max{(1 − γ)δ/((1 − γ /2)(1 − λ0/ε)), δ/2}, where λ0 = λ(δ/2, γ /2). This is at most
δ − γ δ/4 if λ0/ε < γ/4. �

Finally, we have

Prα∈{0,1}n
[

C(x) is wrong
] = 1

2n

∑

α∈H

Pr
[

C(x) is wrong
] + 1

2n

∑

α/∈H

Pr
[

C(x) is wrong
]
.

(4)
The first term on the right-hand side of (4) is at most γ δ/5 by Claim 3.1. For the second
term, we upperbound Pr[C(x) is wrong] by Pr[C(x) is wrong | C(x)
= ⊥]+ Pr[C(x) =
⊥]. We know by Claim 3.2 that, for each α
∈ H , Pr[C(x) = ⊥] ≤ γ δ/20. Thus we get
that Prα∈{0,1}n[C(x) is wrong] is at most

γ δ/5 + γ δ/20 + 1

2n

∑

α
∈H

Pr
[

C(x) is wrong | C(x)
= ⊥]

≤ γ δ/4 + Prα∈{0,1}n
[

C(x) is wrong | C(x)
= ⊥]
,

which is at most δ by Claim 3.3.

R. Impagliazzo et al.

3.2. Proof without Simplifying Assumptions

Here we explain how to prove our main theorem without any simplifying assumptions.
Since we cannot test membership in the set Good of k-tuples where C̄ makes fewer
than (1 − γ)δk errors, we will make a “soft” (probabilistic) decision of how likely a
given k-tuple x̄ is in Good based on the number of correct answers of C̄(x̄) in those
(k − 1) positions where we know the α’s (since we have generated them ourselves).
The fewer errors we see, the more likely we are to believe the answer of C̄(x̄) for the
position where the real input x was placed.

More precisely, we will use the following subroutine TRS (Trust Reducing Strategy):

On inputs x̄ = (x1, . . . , xk), i ∈ [k], and αj ’s corresponding to the xj ’s for
j ∈ [k] \ {i}, compute the number err of errors made by C̄(x̄) in positions
other than i, that is, err = |{j ∈ [k] \ {i} | ¬R((xj ,αj), C̄(x̄)j)}|. Set =
err − (1 − γ)δk. If ≤ 0, then output C̄(x̄)i with probability 1. Otherwise,
for the parameter ρ = 1 − γ /10, output C̄(x̄)i with probability ρ and
output ⊥ with probability 1 − ρ.

Now our new randomized algorithm C is as follows:

On input x, choose (k − 1) random tapes α1, . . . , αk−1 ∈ {0,1}n uniformly
at random. Let x1, . . . , xk−1 be the puzzles corresponding to the chosen ran-
dom tapes. Pick i ∈ [k] at random and set x̄ = (x1, . . . , xi−1, x, xi, . . . , xk−1).
Run the subroutine TRS on the inputs x̄, i, and α1, . . . , αk−1. If TRS returns
a value y
= ⊥, then output y; otherwise repeat with new random α’s and i.
If no output is produced within 4 ln(20/γ δ)/ε iterations, then output ⊥.

We will analyze this algorithm C using the λ-sampler G defined at the end of
Sect. 2.2. Recall that G has as its left vertices all possible n-bit random tapes α and
as its right vertices all possible k-tuples of such tapes. For a left vertex α, its neighbors
in G correspond to all possible ways of embedding this α in a k-tuple.

First we will bound the probability of timeout of C . Let x be an input correspond-
ing to the random tape α. The k-tuple x̄ = (x1, . . . , xi−1, x, xi, . . . , xk−1) of puzzles
constructed by the algorithm C corresponds to the k-tuple ᾱ = (α1, . . . , αi−1, α,αi, . . . ,

αk−1) of random tapes. If ᾱ ∈ Good, then the TRS subroutine will return C̄(x̄)i
= ⊥
with probability 1. Hence, the probability of timeout on x is at most the probability that
C never samples a neighbor ᾱ ∈ Good of α in the graph G. As in the previous subsec-
tion, we consider the set H ⊆ {0,1}n of all those left vertices α of G such that α has less
than ε/4 fraction of its neighbors fall into the set Good. We get the following analogs
of Claims 3.1 and 3.2 with exactly the same proofs.

Claim 3.4. The set H has density at most γ δ/5.

Claim 3.5. For every α
∈ H and the puzzle x corresponding to that random tape α,
we have Pr[C(x) = ⊥] ≤ γ δ/20, where the probability is over the internal randomness
of C .

Next we analyze the probability of C outputting a wrong answer, conditioned on its
output being something other than ⊥. For each edge ((α1, . . . , αk),αi) of the graph G,
we color this edge green if C̄(x1, . . . , xk)i is correct, and we color it red otherwise.

Chernoff-Type Direct Product Theorems

Consider the following random experiment E :

Pick a random α ∈ L and its random incident edge e = (α, ᾱ) in G for ᾱ

containing α in position i ∈ [k]. Let err be the number of errors made by
C̄(x̄) in positions other than i, and let = err− (1−γ)δk. If ≤ 0, output
the edge e. Otherwise, output e with probability ρ (for ρ = (1 − γ /10))
and output ⊥ with probability 1 − ρ.

For each α ∈ {0,1}n and the puzzle x corresponding to the random tape α, we have

Pr
[

C(x) is wrong | C(x)
= ⊥]

= Pr[E outputs red edge incident to α | E outputs some edge incident to α], (5)

where the first probability is over internal randomness of C , and the second probability
is over the random choices of E for the fixed α (i.e., over the random choice of an edge
e incident to α, and the random choice whether e is output).

Rather than analyzing the experiment E , however, we will consider another experi-
ment that is the same as E except that err is defined as the total number of errors made
by C̄(x̄) in all positions (i.e., including the position i). That is, we consider the follow-
ing experiment E ′:

Pick a random α ∈ L and its random incident edge e = (α, ᾱ) in G for ᾱ

containing α in position i ∈ [k]. Let err be the number of errors made by
C̄(x̄) in all positions, and let = err − (1 − γ)δk. If ≤ 0, output the
edge e. Otherwise, output e with probability ρ (for ρ = (1 − γ /10)) and
output ⊥ with probability 1 − ρ.

Claim 3.6. For each edge e of G, we have

Pr[E ′ outputs e] ≤ Pr[E outputs e] ≤ (1/ρ)Pr[E ′ outputs e].

Proof. Let p = Pr[E outputs e], and let p′ = Pr[E ′ outputs e]. If edge e is green or
 ≤ 0, then p′ = p. If e is red and > 0, then p′ = ρp. In either case, we have p′ ≤ p

and p ≤ (1/ρ)p′, as required. �

As a corollary of Claim 3.6, we get the following:

Claim 3.7. For each α ∈ {0,1}n and the puzzle x corresponding to α, we have that

Pr[E outputs red edge incident to α | E outputs some edge incident to α]
≤ (1/ρ) · Pr[E ′ outputs red edge incident to α | E ′ outputs some edge incident to α].

Proof. The proof is by Claim 3.6 and the definition of conditional probability. �

Now we can prove the following analog of Claim 3.3.

Claim 3.8. Prα∈{0,1}n[C(x) is wrong | C(x)
= ⊥] ≤ δ − γ δ/4.

R. Impagliazzo et al.

Proof. By (5) and Claim 3.7, we get that Prα∈{0,1}n [C(x) is wrong | C(x)
= ⊥] is at
most

(1/ρ) · Expα∈L

[
Pr[E ′ outputs red edge incident to α | E ′ outputs some edge

incident to α]]. (6)

To upperbound the conditional probability of getting a red edge in the experiment
E ′, we assign weights to the edges of our graph G = G(L ∪ R,E) as follows: An edge
(α, ᾱ) ∈ E between α ∈ L and ᾱ ∈ R gets the weight wt(e) = ρ, where is as in
the definition of the experiment E ′ (i.e., is the total number of errors of C̄(x̄) minus
(1 − γ)δk).

For each α ∈ L, let Redα denote the set of all red edges incident to α, and let

ξ(α) =
∑

e∈Redα
wt(e)

∑
e∈Eα

wt(e)
,

where Eα denotes the set of all edges incident to α. The expectation in (6) is exactly
μ = Expα∈L[ξ(α)].

Let Red be the set of all red edges in G, and let η = (1/k|R|)∑
e∈Red wt(e). Let us

partition the set ({0,1}n)k of k-tuples into the subsets Goodi for i ≥ 0, where Good0 =
Good, and for each i ≥ 1, Goodi contains all those k-tuples ᾱ ∈ R where C̄(x̄) makes
exactly ((1 − γ)δk + i) errors.

Apply Lemma 2.4 to G, the partitioning R = ⋃
i≥0 Goodi with the corresponding

weights ρ0, ρ1, . . . , and the measure τ of Good0 being at least ε. For a parameter β (to
be determined later) and λ0 = λ(β, ν), we get that μ is at most the maximum of β and
the following expression:

|R|η
(1 − ν)(1 − λ0/ε)

∑
i≥0 |Goodi |ρi

. (7)

By the definition of the sets Goodi , we get that η ≤ (1/k|R|)∑
i≥0 |Goodi |((1 −

γ)δk + i)ρi . Using this bound on η, we can upperbound the expression in (7) by
∑

i≥0 |Goodi |((1 − γ)δ + (i/k))ρi

(1 − ν)(1 − λ0/ε)
∑

i≥0 |Goodi |ρi
. (8)

For t = γ δk/4, let us split the sum in the numerator of (8) into two sums: for 0 ≤ i ≤ t

and for i > t . We can bound each of these two sums as follows:

t∑

i=0

|Goodi |
(
(1 − γ)δ + (i/k)

)
ρi ≤ (

(1 − γ)δ + t/k
) t∑

i=0

|Goodi |ρi

≤ (1 − 3γ /4)δ
∑

i≥0

|Goodi |ρi

and
∑

i>t

|Goodi |
(
(1 − γ)δ + (i/k)

)
ρi ≤ ρt |R|.

Chernoff-Type Direct Product Theorems

Plugging these bounds into (8) and recalling that |Good0| ≥ ε|R|, we upperbound (8)
by

1

(1 − ν)(1 − λ0/ε)

(

(1 − 3γ /4)δ + ρt |R|
∑

i≥0 |Goodi |ρi

)

≤ (1 − 3γ /4)δ + ρt/ε

(1 − ν)(1 − λ0/ε)
.

Finally, by (6), we get

Prα∈{0,1}n
[

C(x) is wrong | C(x)
= ⊥] ≤ max

{
(1 − 3γ /4)δ + ρt/ε

ρ(1 − ν)(1 − λ0/ε)
,
β

ρ

}

,

which is at most δ−γ δ/4 for ρ = 1−γ /10, β = (27/40)δ, ν = (3/10)γ , λ0/ε ≤ γ /20,
and ρt/ε ≤ γ δ/100. �

Now we finish the proof of our main theorem.

Proof of Theorem 1.1. The proof follows from Claims 3.4, 3.5, and 3.8 in exactly the
same way as the proof of the main theorem under the simplifying assumptions given at
the end of Sect. 3.1. �

Remark 3.9. Note that in the proof of the main theorem, we implicitly assumed that
the solver C̄ is deterministic. The proof can be generalized for a randomized solver C̄ by
trying to fix the randomness of C̄ and evaluating the constructed circuit C by sampling.

4. Open Problems

While the results here are fairly general, there are some obvious possible extensions.
First, can similar results be proved for other domains, such as public-coin protocols
[9]. Also, our bounds on the adversary’s success probability, although asymptotically
exponentially small, are quite weak when applied to concrete problems such as actual
CAPTCHA protocols with reasonable numbers of repetitions. Can the bounds be im-
proved quantitatively (getting smaller constant in the exponent for ε in Theorem 1.1)?
Finally, we would like to find more applications of our results, for example, to such
problems as making strong secret agreement protocols from weak ones [4].

References

[1] M. Bellare, R. Impagliazzo, M. Naor, Does parallel repetition lower the error in computationally sound
protocols? In Proceedings of the Thirty-Eighth Annual IEEE Symposium on Foundations of Computer
Science (1997), pp. 374–383

[2] R. Canetti, S. Halevi, M. Steiner, Hardness amplification of weakly verifiable puzzles, in Theory of
Cryptography, Second Theory of Cryptography Conference, TCC 2005, pp. 17–33

[3] O. Goldreich, N. Nisan, A. Wigderson, On Yao’s XOR-Lemma. Electronic colloquium on computa-
tional complexity, TR95-050 (1995)

[4] T. Holenstein, Key agreement from weak bit agreement, in Proceedings of the Thirty-Seventh Annual
ACM Symposium on Theory of Computing (2005), pp. 664–673

R. Impagliazzo et al.

[5] R. Impagliazzo, R. Jaiswal, V. Kabanets, Approximately list-decoding direct product codes and uniform
hardness amplification, in Proceedings of the Forty-Seventh Annual IEEE Symposium on Foundations
of Computer Science (2006), pp. 187–196

[6] R. Impagliazzo, R. Jaiswal, V. Kabanets, Chernoff-type direct product theorems, in Advances in
Cryptology—CRYPTO 2007, Twenty-Seventh Annual International Cryptology Conference (2007),
pp. 500–516

[7] R. Impagliazzo, R. Jaiswal, V. Kabanets, A. Wigderson, Uniform direct-product theorems: Simplified,
optimized, and derandomized, in Proceedings of the Fortieth Annual ACM Symposium on Theory of
Computing (2008), pp. 579–588

[8] R. Impagliazzo, A. Wigderson, P=BPP if E requires exponential circuits: Derandomizing the XOR
Lemma, in Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing (1997),
pp. 220–229

[9] R. Pass, M. Venkitasubramaniam, An efficient parallel repetition theorem for Arthur–Merlin games, in
Proceedings of the Thirty-Ninth Annual ACM Symposium on Theory of Computing (2007), pp. 420–429

[10] K. Pietrzak, D. Wikstrom, Parallel repetition of computationally sound protocols revisited, in Theory of
Cryptography, Fourth Theory of Cryptography Conference, TCC 2007, pp. 86–102

[11] L. von Ahn, M. Blum, N.J. Hopper, J. Langford, CAPTCHA: Using hard AI problems for security, in
Advances in Cryptology—EUROCRYPT 2003, International Conference on the Theory and Applica-
tions of Cryptographic Techniques (2003), pp. 294–311

[12] A.C. Yao, Theory and applications of trapdoor functions, in Proceedings of the Twenty-Third Annual
IEEE Symposium on Foundations of Computer Science (1982), pp. 80–91

	Chernoff-Type Direct Product Theorems
	Abstract
	Introduction
	Example: CAPTCHA
	Our Main Result
	Weakly Verifiable Puzzles: Definition and Examples
	Related Work
	Comparing the Techniques of BIN97 and Those of CHS05

	Our Techniques

	Preliminaries
	Basics
	Samplers

	Proof of the Main Theorem
	Proof Under Simplifying Assumptions
	Proof without Simplifying Assumptions

	Open Problems
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

