
Gaussian and Wishart Hyperkernels

Risi Kondor, Tony Jebara
Computer Science Department, Columbia University

1214 Amsterdam Avenue, New York, NY 10027, U.S.A.
{risi,jebara}@cs.columbia.edu

Abstract

We propose a new method for constructing hyperkenels and define two
promising special cases that can be computed in closed form. These we call
the Gaussian and Wishart hyperkernels. The former is especially attractive
in that it has an interpretable regularization scheme reminiscent of that of
the Gaussian RBF kernel. We discuss how kernel learning can be used not
just for improving the performance of classification and regression meth-
ods, but also as a stand-alone algorithm for dimensionality reduction and
relational or metric learning.

1 Introduction

The performance of kernel methods, such as Support Vector Machines, Gaussian Processes,
etc. depends critically on the choice of kernel. Conceptually, the kernel captures our prior
knowledge of the data domain. There is a small number of popular kernels expressible in

closed form, such as the Gaussian RBF kernel k(x, x′) = exp(−‖x− x′ ‖2
/(2σ2)), which

boasts attractive and unique properties from an abstract function approximation point of
view. In real world problems, however, and especially when the data is heterogenous or
discrete, engineering an appropriate kernel is a major part of the modelling process. It is
natural to ask whether instead it might be possible to learn the kernel itself from the data.

Recent years have seen the development of several approaches to kernel learning [5][1].
Arguably the most principled method proposed to date is the hyperkernels idea introduced
by Ong, Smola and Williamson [8][7][9]. The current paper is a continuation of this work,
introducing a new family of hyperkernels with attractive properties.

Most work on kernel learning has focused on finding a kernel which is subsequently to
be used in a conventional kernel machine, turning learning into an essentially two-stage
process: first learn the kernel, then use it in a conventional algorithm such as an SVM to
solve a classification or regression task. Recently there has been increasing interest in using
the kernel in its own right to answer relational questions about the dataset. Instead of
predicting individual labels, a kernel characterizes which pairs of labels are likely to be the
same, or related. Kernel learning can be used to infer the network structure underlying data.
A different application is to use the learnt kernel to produce a low dimensional embedding
via kernel PCA. In this sense, kernel learning can be also be regarded as a dimensionality
reduction or metric learning algorithm.

2 Hyperkernels

We begin with a brief review of the kernel and hyperkernel formalism. Let X be the input
space, Y the output space, and {(x1, y1) , (x2, y2) , . . . , (xm, ym)} the training data. By kernel
we mean a symmetric function k : X × X → R that is positive definite on X . Whenever

we refer to a function being positive definite, we assume that it is also symmetric. Positive
definiteness guarantees that k induces a Reproducing Kernel Hilbert Space (RKHS) F ,
which is a vector space of functions spanned by { kx(·) = k(x, ·) | x ∈ X } and endowed with
an inner product satisfying 〈kx, kx′〉 = k(x, x′). Kernel-based learning algorithms find a

hypothesis f̂ ∈F by solving some variant of the Regularized Risk Minimzation problem

f̂ = arg min
f∈F

[
1

m

m∑

i=1

L(f(xi), yi) +
1

2
‖ f ‖2

F

]

where L is a loss function of our choice. By the Representer Theorem [2], f̂ is expressible

in the form (̂x) =
∑m

i=1 αi k(xi, x) for some α1, α2, . . . , αm ∈ R.

The idea expounded in [8] is to set up an analogous optimization problem for finding k itself
in the RKHS of a hyperkernel K : X × X → R, where X = X 2. We will sometimes view K
as a function of four arguments, K((x1, x

′
1), (x2, x

′
2)), and sometimes as a function of two

pairs, K(x1, x2), with x1 = (x1, x
′
1) and x2 = (x2, x

′
2). To induce an RKHS K must be

positive definite in the latter sense. Additionaly, we have to ensure that the solution of our
regularized risk minimization problem is itself a kernel. To this end, we require that the
functions Kx1,x′

1
(x2, x

′
2) that we get by fixing the first two arguments of K((x1, x

′
1), (x2, x

′
2))

be symmetric and positive definite kernel in the remaining two arguments.

Definition 1. Let X be a nonempty set, X = X × X and K : X × X → R with Kx(·) =
K(x, ·) = K(· , x). Then K is called a hyperkernel on X if and only if

1. K is positive definite on X and

2. for any x∈X , Kx is positive definite on X .

Denoting the RKHS of K by K, potential kernels lie in the cone Kpd =
{ k ∈ K | k is pos.def. }. Unfortunately, there is no simple way of restricting kernel learn-
ing algorithms to Kpd. Instead, we will restrict ourselves to the positive quadrant K+ ={
k ∈ K |

〈
k,Kx

〉
≥ 0 ∀ x∈X

}
, which is a subcone of Kpd.

The actual learning procedure involved in finding k is very similar to conventional kernel
methods, except that now regularized risk minimization is to be performed over all pairs of
data points:

k̂ = arg min
K∗

[
Q(X,Y, k) +

1

2
‖ k ‖2

K

]
, (1)

where Q is a quality functional describing how well k fits the training data and K∗ = K+.
Several candidates for Q are described in [8].

If K∗ has the property that for any S ⊂ X the orthogonal projection of any k ∈ K∗ to the

subspace spanned by
{
Kx | x ∈ X

}
remains in K∗, then k̂ is expressible as

k̂(x, x′) =
m∑

i,j=1

αij K(xi,xj)(x, x
′) =

m∑

i,j=1

αij K((xi, xj), (x, x
′)) (2)

for some real coefficients (αij)i.j . In other words, we have a hyper-representer theorem. It is

easy to see that for K∗ = K+ this condition is satisfied provided thatK((x1, x
′
1), (x2, x

′
2)) ≥ 0

for all x1, x
′
1, x2, x

′
2 ∈ X . Thus, in this case to solve (1) it is sufficient to optimize the

variables (αij)
m
i,j=1, introducing the additional constraints αij ≥ 0 to enforce k̂ ∈ K+.

Finding functions that satisfy Definition 1 and also make sense in terms of regularization
theory or practical problem domains in not trivial. Some potential choices are presented in
[8]. In this paper we propose some new families of hyperkernels. The key tool we use is the
following simple lemma.

Lemma 1. Let {gz : X → R} be a family of functions indexed by z∈Z and let h : Z×Z → R

be a kernel. Then

k(x, x′) =

∫ ∫
gz(x)h(z, z

′) gz′(x′) dz dz′ (3)

is a kernel on X . Furthermore, if h is pointwise positive (h(z, z ′) ≥ 0) and { gz : X ×X → R }
is a family of pointwise positive kernels, then

K ((x1, x
′
1) , (x2, x

′
2)) =

∫ ∫
gz1

(x1, x
′
1)h(z1, z2) gz2

(x2, x
′
2) dz1 dz2 (4)

is a hyperkernel on X , and it satisfies K((x1, x
′
1), (x2, x

′
2)) ≥ 0 for all x1, x

′
1, x2, x

′
2 ∈ X .

3 Convolution hyperkernels

One interpreation of a kernel k(x, x′) is that it quantifies some notion of similarity between
points x and x′. For the Gaussian RBF kernel, and heat kernels in general, this similarity
can be regarded as induced by a diffusion process in the ambient space [4]. Just as physical
substances diffuse in space, the similarity between x and x′ is mediated by intermediate
points, in the sense that by virtue of x being similar to some x0 and x0 being similar to x′,
x and x′ themselves become similar to each other. This captures the natural transitivity of
similarity. Specifically, the normalized Gaussian kernel on R

n of variance 2t= σ2,

kt(x, x
′) =

1

(4πt)
n/2

e−‖ x−x′ ‖2/(4t),

satisfies the well known convolution property

kt(x, x
′) =

∫
kt/2(x, x0) kt/2(x0, x) dx0 . (5)

Such kernels are by definition homogenous and isotropic in the ambient space.

What we hope for from the hyperkernels formalism is to be able to adapt to the inhomoge-
neous and anisotropic nature of training data, while retaining the transitivity idea in some
form. Hyperkernels achieve this by weighting the integrand of (5) in relation to what is
“on the other side” of the hyperkernel. Specifically, we define convolution hyperkernels by
setting

gz(x, x
′) = r(x, z) r(x′, z)

in (4) for some r : X × X → R. By (3), the resulting hyperkernel always satisfies the
conditions of Definition 1.

Definition 2. Given functions r : X×X → R and h : X×X → R where h is positive definite,
the convolution hyperkernel induced by r and h is

K ((x1, x
′
1) , (x2, x

′
2)) =

∫ ∫
r(x1, z1) r(x

′
1, z1)h(z1, z2) r(x2, z2) r(x

′
2, z2) dz1 dz2 . (6)

A good way to visualize the structure of convolution
hyperkernels is to note that (6) is proportional to the
likelihood of the graphical model in the figure to the
right. The only requirements on the graphical model
are to have the same potential function ψ1 at each of
the extremities and to have a positive definite potential
function ψ2 at the core.

3.1 The Gaussian hyperkernel

To make the foregoing more concrete we now investigate the case where r(x, x′) and h(z, z′)
are Gaussians. To simplify the notation we use the shorthand

〈x, x′〉σ2 =
1

(2πσ2)
n/2

e−‖ x−x′ ‖2/(2σ2).

The Gaussian hyperkernel on X =R
n is then defined as

K((x1, x
′
1), (x2, x

′
2)) =

∫

X

∫

X

〈x1, z〉σ2 〈z, x′1〉σ2 〈z, z′〉σ2

h
〈x2, z

′〉σ2 〈z′, x′2〉σ2 dz dz
′. (7)

Fixing x and completing the square we have

〈x1, z〉σ2 〈z, x′1〉σ2 =
1

(2πσ2)
n exp

(
− 1

2σ2

(
‖ z−x1 ‖2

+ ‖ z−x′1 ‖
2
))

=

1

(2πσ2)
n exp

(
− 1

σ2

wwww z − x1+x′1
2

wwww
2

− ‖x1−x′1 ‖
2

4σ2

)
= 〈x1, x

′
1〉2σ2 〈z, x1〉σ2/2 ,

where xi = (xi+x
′
i)/2. By the convolution property of Gaussians it follows that

K((x1, x
′
1), (x2, x

′
2)) =

〈x1, x
′
1〉2σ2 〈x2, x

′
2〉2σ2

∫

X

∫

X

〈x1, z〉σ2/2 〈z, z′〉σ2

h
〈z, x2〉σ2/2 dz dz

′ =

〈x1, x
′
1〉2σ2 〈x2, x

′
2〉2σ2 〈x1, x2〉σ2+σ2

h
. (8)

It is an important property of the Gaussian hyperkernel that it can be evaluated in closed
form. A noteworthy special case is when h(x, x′) = δ(x, x′), corresponding to σ2

h → 0. At
the opposite extreme, in the limit σ2

h → ∞, the hyperkernel decouples into the product of
two RBF kernels.

Since the hyperkernel expansion (2) is a sum over hyperkernel evaluations with one pair of
arguments fixed, it is worth examining what these functions look like:

Kx1,x′

1
(x2, x

′
2) ∝ exp

(
−‖x1 − x2 ‖2

2 (σ2 +σ2
h)

)
exp

(
−‖x2 − x′2 ‖

2

2σ′2

)
(9)

with σ′ =
√

2σ. This is really a conventional Gaussian kernel between x2 and x′2 multiplied
by a spatially varying Gaussian intensity factor depending on how close the mean of x2 and
x′2 is to the mean of the training pair. This can be regarded as a localized Gaussian, and
the full kernel (2) will be a sum of such terms with positive weights. As x2 and x′2 move
around in X , whichever localized Gaussians are centered close to their mean will dominate
the sum. By changing the (αij) weights, the kernel learning algorithm can choose k from a
highly flexible class of potential kernels.

The close relationship of K to the ordinary Gaussian RBF kernel is further borne out
by changing coordinates to x̂ = (x+ x′) /

√
2 and x̃ = (x− x′) /

√
2, which factorizes the

hyperkernel in the form

K((x̂1, x̃1), (x̂2, x̃2)) = K̂(x̂1, x̂2)K̃(x̃1, x̃2) =
[
〈x̂1, x̂2〉2(σ2+σ2

h
)

][
〈x̃1, 0〉σ2 〈x̃2, 0〉σ2

]
.

Omitting details for brevity, the consequences of this include that K = K̂ × K̃, where K̂
is the RKHS of a Gaussian kernel over X , while K̃ is the one-dimensional space gener-

ated by 〈x̃, 0〉σ2 : each k ∈ K can be written as k(x̂, x̃) = k̂(x̂) 〈x̃, 0〉σ2 . Furthermore, the
regularization operator Υ (defined by 〈k, k′〉K = 〈Υk,Υk′〉L2

[10]) will be

〈x̃, 0〉σ2

∫
κ̂(ω) eiωxdω 7→ 〈x̃, 0〉σ2

∫
e(σ

2+σ2

h) ω2/2 κ̂(ω) eiωxdω

where κ̂(ω) is the Fourier transform of k̂(x̂), establishing the same exponential regularization

penalty scheme in the Fourier components of k̂ that is familiar from the theory of Gaussian
RBF kernels. In summary, K behaves in (x̂1, x̂2) like a Gaussian kernel with variance
2(σ2 +σ2

h), but in x̃ it just effects a one-dimensional feature mapping.

4 Anisotropic hyperkernels

With the hyperkernels so far far we can only learn kernels that are a sum of rotationally
invariant terms. Consequently, the learnt kernel will have a locally isotropic character. Yet,
rescaling of the axes and anisotropic dilations are one of the most common forms of variation
in naturally occurring data that we would hope to accomodate by learning the kernel.

4.1 The Wishart hyperkernel

We define the Wishart hyperkernel as

K((x1, x
′
1), (x2, x

′
2)) =

∫

Σ�0

∫

X

〈x1, z〉Σ 〈z, x′1〉Σ 〈x2, z〉Σ 〈z, x′2〉Σ IW(Σ;C, r) dz dΣ. (10)

where

〈x, x′〉Σ =
1

(2π)
n/2 |Σ |1/2

e−(x−x′)>Σ−1(x−x′)/2,

and IW(Σ;C, r) is the inverse Wishart distribution

|C | r/2

Zr,n |Σ |(n+r+1)/2
exp

(
−tr

(
Σ−1C

)
/2

)

over positive definite matrices (denoted Σ� 0) [6]. Here r is an integer parameter, C is an
n× n positive definite parameter matrix and Zr,n = 2 rn/2πn(n−1)/4

∏n
i=1 Γ((r+1−i)/2) is

a normalizing factor. The Wishart hyperkernel can be seen as the anisotropic analog of (7)
in the limit σ2

h → 0, 〈z, z′〉σ2

h
→ δ(z, z′). Hence, by Lemma 1, it is a valid hyperkernel. In

analogy with (8),

K((x1, x
′
1), (x2, x

′
2)) =

∫

Σ�0

〈x1, x
′
1〉2Σ 〈x2, x

′
2〉2Σ 〈x1, x2〉Σ IW(Σ;C, r) dΣ . (11)

By using the identity v>Av = tr(A(vv>)),

〈x, x′〉Σ IW(Σ;C, r) =
|C | r/2

(2π)n/2Zr,n |Σ |(n+r+2)/2
exp

(
−tr

(
Σ−1(C+S)

)
/2

)
=

Zr+1,n

(2π)n/2Zr,n

|C | r/2

|C + S |(r+1)/2
IW(Σ; C+S, r+1) ,

where S = (x−x′)(x−x′)>. Cascading this through each of the terms in the integrand of
(11) and noting that the integral of a Wishart density is unity, we conclude that

K((x1, x
′
1), (x2, x

′
2)) ∝

|C |r/2

|C+Stot |(r+3)/2
, (12)

where Stot = S1 +S2 +S∗; Si = 1
2 (xi −x′i)(xi −x′i)

>; and S∗ = (x1 −x2)(x1 −x2)
>. We

can read off that for given ‖x1−x′1 ‖, ‖x2−x′2 ‖, and ‖x−x′ ‖, the hyperkernel will favor
quadruples where x1−x′1, x2−x′2, and x−x′ are close to parallel to each other and to the
largest eigenvector of C. It is not so easy to immediately see the dependence of K on the
relative distances between x1, x

′
1, x2 and x′2.

To better expose the qualitative behavior of the Wishart hyperkernel, we fix (x1, x
′
1), assume

that C = cI for some c ∈ R and use the identity
∣∣ cI + vv>

∣∣ = cn−1
(
c+ ‖v‖2

)
to write

Kx1,x′

1
(x2, x

′
2) ∝

[
Qc(2S1, 2S∗)(

c+ 4 ‖x1−x2 ‖2)1/4

](r+3)/2 [
Qc(S1 +S∗, S2)(
c+ ‖x2−x′2 ‖

2)1/4

]r+3

where Qc(A,B) is the affinity

Qc(A,B) =
| cI + 2A |1/4 · | cI + 2B |1/4

| cI +A+B |1/2
.

This latter expression is a natural positive definite similarity metric between positive definite
matrices, as we can see from the fact that it is the overlap integral (Bhattacharyya kernel)

Qc(A,B) =

∫ [
〈x, 0〉(cI+2A)−1

]1/2 [
〈x, 0〉(cI+2B)−1

]1/2

dx

between two zero-centered Gaussian distributions with inverse covariances cI+2A and cI +
2B, respectively [3].

−0.1 −0.05 0 0.05
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

−0.15 −0.1 −0.05 0 0.05 0.1 0.15
−0.3

−0.2

−0.1

0

0.1

0.2

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Figure 1: The first two panes show the separation of ’3’s and ’8’s in the training and testing
sets respectively achieved by the Gaussian hyperkernel (the plots show the data plotted by
its first two eigenvectors according to the learned kernel k). The right hand pane shows a
similar KernelPCA plot but based on a fixed RBF kernel.

5 Experiments

We conducted preliminary experiments with the hyperkernels in relation learning between
pairs of datapoints. The idea here is that the learned kernel k naturally induces a distance
metric d(x, x′) =

√
k(x, x) − 2k(x, x′) + k(x′, x′), and in this sense kernel learning is equiv-

alent to learning d. Given a labeled dataset, we can learn a kernel which effectively remaps
the data in such a way that data points with the same label are close to each other, while
those with different labels are far apart.

For classification problems (yi being the class label), a natural choice of quality functional
similar to the hinge loss is Q(X,Y, k) = 1

m2

∑m
i,j=1 | 1 − yijk(xi, xj) |+, where | z |+ = z if

z ≥ 0 and | z |+ = 0 for z < 0, while yij = 1 if yi = yj . The corresponding optimization

problem learns k(x, x′) =
∑m

i=1

∑m
j=1 αijK((x, x′), (xi, xj)) + b minimizing

1

2

∑

i,j

∑

i′,j′

αijαi′j′K((xi, xj), (xi′ , xj′)) + C
∑

i,j

ξij

subject to the classification constraints

yij

(∑

i′,j′

αi′j′K((xi′ , xj′), (xi, xj)) + b
)
≥ 1 − ξij ξij ≥ 0 αij ≥ 0

for all pairs of i, j ∈ {1, 2, . . . ,m}. In testing we interpret k(x, x′) > 0 to mean that x and
x′ are of the same class and k(x, x′) ≤ 0 to mean that they are of different classes.

As an illustrative example we learned a kernel (and hence, a metric) between a subset of
the NIST handwritten digits1. The training data consisted of 20 ’3’s and 20 ’8’s randomly
rotated by ±45 degrees to make the problem slightly harder. Figure 1 shows that a kernel
learned by the above strategy with a Gaussian hyperkernel with parameters set by cross
validation is extremely good at separating the two classes in training as well as testing. In
comparison, in a similar plot for a fixed RBF kernel the ’3’s and ’8’s are totally intermixed.
Interpreting this as an information retrieval problem, we can imagine inflating a ball around
each data point in the test set and asking how many other data points in this ball are of
the same class. The corresponding area under the curve (AUC) in the original space is just
0.5575, while in the hyperkernel space it is 0.7341.

1Provided at http://yann.lecun.com/exdb/mnist/ courtesy of Yann LeCun and Corinna
Cortes.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

σ

A
U

C

σ
h
=0σ

SVM
Linear HyperKernel
Conic HyperKernel

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

σ

A
U

C

σ
h
=1σ

SVM
Linear HyperKernel
Conic HyperKernel

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

σ

A
U

C

σ
h
=2σ

SVM
Linear HyperKernel
Conic HyperKernel

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

σ

A
U

C

σ
h
=4σ

SVM
Linear HyperKernel
Conic HyperKernel

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

σ

A
U

C

σ
h
=6σ

SVM
Linear HyperKernel
Conic HyperKernel

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

σ

A
U

C

σ
h
=10σ

SVM
Linear HyperKernel
Conic HyperKernel

Figure 2: Test area under the curve (AUC) for Olivetti face recognition under varying σ
and σh.

We ran a similar experiment but with multiple classes on the Olivetti faces dataset, which
consists of 92 × 112 pixel normalized gray-scale images of 30 individuals in 10 different
poses. Here we also experimented with dropping the αij ≥ 0 constraints, which breaks the
positive definiteness of k, but might still give a reasonable similarity measure. The first
case we call “conic hyperkernels”, whereas the second are just “linear hyperkernels”. Both
involve solving a quadratic program over 2m2+1 variables. Finally, as a baseline, we trained
an SVM over pairs of datapoints to predict yij , representing (xi, xj) with a concatenated
feature vector [xi, xj] and using a Gaussian RBF between these concatenations.

The results on the Olivetti dataset are summarized in Figure 2. We trained the system with
m = 20 faces and considered all pairs of the training data-points (i.e. 400 constraints) to find
a kernel that predicted the labeling matrix. When speed becomes an issue it often suffices
to work with a subsample of the binary entries in the m ×m label matrix and thus avoid
having m2 constraints. Also, we only need to consider half the entries due to symmetry.
Using the learned kernel, we then test on 100 unseen faces and predict all their pairwise
kernel evaluations, in other words, 104 predicted pair-wise labelings. Test error rates are
averaged over 10 folds of the data. For both the baseline Gaussian RBF and the Gaussian
hyperkernels we varied the σ parameter from 0.1 to 0.6. For the Gaussian hyperkernel we
also varied σh from 0 to 10σ. We used a value of C = 10 for all experiments and for all
algorithms. The value of C had very little effect on the testing accuracy.

Using a conic hyperkernel combination did best in labeling new faces. The advantage over
SVMs is dramatic. The support vector machine can only achieve an AUC of less than 0.75
while the Gaussian hyperkernel methods achieve an AUC of almost 0.9 with only T = 20
training examples. While the difference between the conic and linear hyperkernel methods
is harder to see, across all settings of σ and σh, the conic combination outperformed the
linear combination over 92% of the time. The conic hyperkernel combination is also the
only method of the three that guarantees a true Mercer kernel as an output which can
then be converted into a valid metric. The average runtime for the three methods was
comparable. The SVM took 2.08s ± 0.18s, the linear hyperkernel took 2.75s ± 0.10s and
the conic hyperkernel took 7.63s± 0.50s to train on m = 20 faces with m2 constraints. We
implemented quadratic programming using the MOSEK optimization package on a single
CPU workstation.

6 Conclusions

The main barrier to hyperkernels becoming more popular is their high computational de-
mands (out of the box algorithms run in O(m6) time as opposed to O(m3) in regular learn-
ing). In certain metric learning and on-line settings however this need not be forbidding,
and is compensated for by the elegance and generality of the framework.

The Gaussian and Wishart hyperkernels presented in this paper are in a sense canonical, with
intuitively appealing interpretations. In the case of the Gaussian hyperkernel we even have
a natural regularization scheme. Preliminary experiments show that these new hyperkernels
can capture the inherent structure of some input spaces. We hope that their introduction
will give a boost to the whole hyperkernels field.

Acknowledgements

The authors wish to thank Zoubin Ghahramani, Alex Smola and Cheng Soon Ong for
discussions related to this work. This work was supported in part by National Science
Foundation grants IIS-0347499, CCR-0312690 and IIS-0093302.

References

[1] N. Cristianini, J. Shawe-Taylor, A. Elisseeff, and J. Kandola. On kernel-target alignment.
In T. G. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information
Processing Systems 14, pages 367 – 373, Cambridge, MA, 2002. MIT Press.

[2] G. S. Kimeldorf and G. Wahba. Some results on Tchebycheffian spline functions.
J. Math. Anal. Applic., 33:82–95, 1971.

[3] R. Kondor and T. Jebara. A kernel between sets of vectors. In Machine Learning: Tenth
International Conference, ICML 2003, 2003.

[4] R. Kondor and J. Lafferty. Diffusion kernels on graphs and other discrete input spaces. In
Machine Learning: Proceedings of the Nineteenth International Conference (ICML ’02), 2002.

[5] G. Lanckriet, N. Cristianini, P. Bartlett, L. El Ghaoui, and M. I. Jordan. Learning the kernel
matrix with semi-definite programming. Journal of Machine Learning Research, 5:27 – 72,
2004.

[6] T. P. Minka. Inferring a Gaussian distribution, 2001. Tutorial paper available at
http://www.stat.cmu.edu/ minka/papers/learning.html.

[7] C. S. Ong and A. J. Smola. Machine learning using hyperkernels. In Proceedings of the
International Conference on Machine Learning, 2003.

[8] Cheng Soon Ong, Alexander J. Smola, and Robert C. Williamson. Hyperkernels. In S. Thrun
S. Becker and K. Obermayer, editors, Advances in Neural Information Processing Systems 15,
pages 478–485. MIT Press, Cambridge, MA, 2003.

[9] Cheng Soon Ong, Alexander J. Smola, and Robert C. Williamson. Learning the kernel with
hyperkernels. Sumbitted to the Journal of Machine Learning Research, 2003.

[10] B. Schölkopf and A. J. Smola. Learning with Kernels. MIT Press, 2002.

