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1 Introduction

MADA' is a system for Morphological Analysis and Disambiguation for Arabic.
TOKAN is a general tokenizer for MADA-disambigauted text. Internally, MADA
also makes use of ALMORGEANA, an Arabic lexeme-based morphology analyzer.

2 Requirements

MADA+TOKAN is built for Unix/Linux systems, is Perl-based, and depends on
a small number of third-party software tools. These tools, listed below, need to
be successfully installed on the user’s system prior to installing MADA+TOKAN.
See the Installation section for details.

e SVMTools version 1.3.1
Download SVMTool version 1.3.1 from:
http://www.Isi.upc.es/ nlp/SVMTool/

'Mada (spelled in Buckwalter as madaY) is the Arabic word for "atmost/maximum
point/degree".



e SRI’s Language Modeling Toolkit
Download the SRILM library (version 1.5.6 or later) from:
http://www.speech.sri.com/projects/srilm/download.html

e LDC’s Standard Arabic Morphological Analyzer (SAMA) version 3.1
Obtain version 3.1 (catalog number LDC2009E73) from the LDC:
http://www.ldc.upenn.edu/

SAMA version 3.0 will also work, but MADA has been tuned for SAMA
3.1

As of the time of this writing, SAMA is only available to members of the
GALE project. If you are unable to obtain it, it is possible to run MADA us-
ing SAMA’s predecessor, BAMA 2.0 (LDC catalog number LDC2004L02).
However, using BAMA will result in a slight drop in MADA’s selection
accuracy (2-4% absolute, depending on the evaluation metric used). We
therefore encourage the use of SAMA if at all possible.

3 Installation

For this version of MADA, we have included an INSTALL.pl Perl script to
simplify and test the installation. MADA+TOKAN can be installed in six steps:

1. Unpack the MADA installation archive

Untar the MADA-3.0 archive file in a whatever directory you would like to
install it to. This directory will be referred to as MADAHOME throughout this
document. For reference, a list of changes that occurred for each MADA
version can be found under MADAHOME /MADA . CHANGES.

2. Install SVMTools 1.3.1

Install SVMTools 1.3.1, and take note of its installation directory on your
system (we will refer to this as SVMTOOLSHOME in this document). Note
that version 1.3.1 fixes a crucial problem that existed in version 1.3, namely
that 1.3 was incompatible with Perl 5.10. We therefore strongly recommend
that users upgrade to 1.3.1 if they have not done so already.



3. Install SRILM toolkit

Install the SRILM toolkit, specifically the disambig executable. Take
note of the main SRI installation directory (we will refer to this as SRTHOME
in this document).

4. Acquire LDC’s SAMA 3.1 (or BAMA 2.0)

Acquire the LDC’s Standard Arabic Morphological Analyzer, version 3.1.
SAMA is a replacement for the previous Buckwalter Arabic Morphological
Analyzer (BAMA). SAMA and BAMA are collectively referred to as XAMA
in this document. It is unnecessary to install/make the XAMA software;
MADA is specifically interested in the XAMA database files:

dictPrefixes dictStems dictSuffixes
tableAB tableAC tableBC

These files are located in the SAMA-3.1/1ib/SAMA_ DB/v3_1 subdi-
rectory for SAMA-3.1. Locate and record the directory containing these
files (referred to as XAMADIR in this document) for your XAMA version.

Since there are differences in between the different versions of XAMA, we
have built an utility that will read the XAMA data files and build a common-
format database for use with ALMORGEANA. This utility will only need to
be run once during MADA installation; thereafter MADA will rely solely on
the constructed database. Currently, this utility (and MADA in general) is
tuned to function well with SAMA 3.1, but it may also be used with SAMA
3.0 (which gives about the same results as SAMA 3.1) or BAMA 2.0 (not
recommended, as there will be a small accuracy drop).

5. Adjust your PERL5LIB environment variable

Adjust your PERL5LIB environment variable to include both the MADAHOME
and the SVMTools libraries (SVMTOOLSHOME / 1ib). This can be done us-
ing the export command (for bash shells). As an example:

export PERL5LIB=$PERL5LIB:/home/nlp/MADA-3.0: \\
/home/nlp/tools/SVMTool-1.3.1/1ib

It would be best to adjust your system’s .profile or .bashrc file so
that this environment variable is set every time you log in.



6. Run the install script
Run perl INSTALL.pl with the following arguments:

perl INSTALL.pl madahome=MADAHOME srihome=SRIHOME \\
svmhome=SVMTOOLSHOME xamadir=XAMADIR \\

xamaversion=SAMA3.1
or, if SAMA 3.0 is being used:

perl INSTALL.pl madahome=MADAHOME srihome=SRIHOME \\
svmhome=SVMTOOLSHOME xamadir=XAMADIR \\

xamaversion=SAMA3.0

where MADAHOME, SVMTOOLSHOME, SRIHOME, and XAMADIR are the
directory paths as noted from the previous installation steps.

This INSTALL. p1 script will do the following, automatically:

e Verify the existence of the needed SRI, SVMTOOLS, XAMA direc-
tories and files.

e Verify that MADA and SVMTools have been added to PERL5LIB.

e Creates a ALMORGEANA database file using the XAMA files; this
database will be placed in the MADAHOME /MADA/ directory, with the
softlink almor . db pointing to it.

e Creates a template MADA configuration file:

MADAHOME/config-files/template.madaconfig
that uses default values for every MADA configuration variable, but
has the variables MADA_HOME, SRI_NGRAM_TOOL, and
SVM_TAGGER set to the particulars of the user’s system. Users can
use this as their default .madaconfig file, but should customize it
based on what they need MADA+TOKAN to do.

e Runs MADA+TOKAN. pl on the file

MADAHOME/SAMPLE/sample+ID.ar.utf8

as a test of the system. The output files are compared to the
MADAHOME/SAMPLE/GOLD.sample+ID.ar.utf8.«

files, and the result reported.

Should the INSTALL.pl script fail at any step, it will stop and output a
report of the failure. This report should, hopefully, make fixing the problem
straightforward.



If you have a problem with the INSTALL.pl script, send an email de-
scribing the problem, along with a full print out of the INSTALL.pl error
output, to us and we will help you correct the issue.

Assuming that there are no such problems, MADA+TOKAN is now ready
to be used.

4 Running MADA+TOKAN

Once MADA+TOKAN is successfully installed, a few steps need to be followed
to prepare the input data for processing:

1. Create or edit a MADA configuration file

MADA uses a configuration file to control its operation. This file has vari-
ables in the format:

<variable name> = <variable value>

By convention, variable names appear in ALLCAPS, with underscores. Ev-
erything to the right of a "#" character is a comment. The INSTALL.pl
script creates a template MADA configuration file here:

MADAHOME/config-files/template.madaconfig

This template fully documents all the MADA+TOKAN configuration vari-
ables — what they control and what the valid options are.

Typically, users will create one configuration file for each general experi-
ment they want to run, adjusting it as necessary.

2. (Optional) Create or edit a TOKAN schemes file

In previous versions of MADA+TOKAN, the configuration variable
TOKAN_SCHEME was used to control the desired output of TOKAN. This is
still possible. However, as of MADA 3.0 it is now possible to define a sepa-
rate "TOKAN schemes" file that defines more than one TOKAN_SCHEME. If
this file is used, TOKAN will produce a distinct output file for every scheme
so listed. Running all the schemes through TOKAN together leads to some
savings in running time, and is primarily useful for users who need to com-
pare different tokenizations of the same data. The format of the TOKAN
schemes file is one scheme per line, like so:

<scheme extension> <TOKAN_SCHEME to use>



The scheme extension is the string that will be added to the end of the out-
put files to distinguish each scheme output from each other. An example
TOKAN scheme file can be found here:

MADAHOME/config-files/TOKAN. scheme

Once a TOKAN scheme file has been created, you can use it by setting
the MADA variable TOKAN_SCHEME_FILE to point to it in the MADA
configuration file. If a TOKAN scheme file is defined, the MADA configu-
ration variables TOKAN__SCHEME and TOKAN_OUTPUT_EXTENSION are
ignored.

. Prepare your input data

Data that is given to MADA should be formatted to be one-sentence-per-
line, with no metadata, HTML/XML tags, etc. Optionally, you can have the
first word of each line be interpreted as a "sentence ID" — a string of non-
whitespace characters used to identify the sentence, but is not processed as
part of the sentence.

Under MADA 3.0, you can now give MADA raw UTF-8 encoded Arabic
text (previously we required input to be in Buckwalter encoding). MADA
3.0 includes a pre-processor component that can clean UTF8 data, add nec-
essary whitespace between punctuation/numbers and words, tag any ASCII
words (assumed to be foreign words in a UTF8 document), and convert the
whole text to the Buckwalter encoding that MADA uses internally.

The operation of the MADA pre-processor is controlled through the INPUT
FORMAT OPTIONS group of configuration variables in your configuration
file. You will need to ensure that your input data format corresponds to
these settings in your configuration file. For example, if your input data is
already in Buckwalter encoding, but you still want MADA to perform the
whitespace separation of punctuation, make sure your configuration vari-
able RUN_PREPROCESSOR is set to YES, INPUT_ENCODING is set to
Buckwalter and the variable SEPARATEPUNCT is set to YES.

. Run perl MADA+TOKAN.pl
perl MADA+TOKAN.pl config=<config file> file=<text>

where <config file> is the MADA configuration file and <text> is the input
file for MADA to process.



Note that you can, if desired, override any variable in the configuration file
by including it in the command line. This is handy if you want to run an
extra experiment with only a slight change of configuration, and don’t want
to create an new configuration file. For example:

perl MADA+TOKAN.pl config=template.madaconfig \\
file=test RUN_TOKAN=NO COMPRESS_OUTPUTS=YES \\
PRINT_ANALYSES=stars

Here, the values of the three variables on the command line will overwrite
what is in the configuration file. When doing this, use quotes to enclose
variable values consisting of more than one word:

perl MADA+TOKAN.pl config=template.madaconfig \\
file=test TOKAN_SCHEME="SCHEME=D2 MARKNOANALYSIS" \\

In these examples, the output files would be placed in the same directory as
test, and would be named test . bw (pre-processed version of the file),
test.bw.mada (MADA output) and test .bw.mada.tok (TOKAN
output). This assumes that the default configuration options are used.

5 MADA Details

MADA is divided into several sub-components, each with their own control script.
Note that if you run MADA+TOKAN.pl without any arguments, you will get
a list of all the configuration variables used in each sub-component. The sub-
components are:

1. MADA-preprocessor.pl — Formats input data

2. MADA-morphanalysis.pl — Calls ALMORGEANA to generate, for each in-
put word, a list of possible analyses, with no regard to context

3. MADA-generate-SVM+ngram-files.pl — Determines N-gram statistics for
diacritic word forms and lexemes, and creates back-off lexicons for the next
step

4. MADA-runSVMTOOLS.pl — Runs an independent SVM classifier for a
number of MADA features, determining a prediction for that feature value
for each word



5. MADA-selectMA.pl — For each word, examines each of the possible anal-
yses and scores each one. The score is developed by comparing the features
of each analysis to the SVM prediction; analyses that have agreement with
the prediction are given a weighted increase in score. Some additional, non-
SVM features are factored in as well. The scores are then normalized, sorted
and labeled. Tie-breaking in employed to insure that only one analysis for
each word is designated as the correct one.

Each of the above sub-components can be run separately, but this should only
be attempted by advanced users. Like MADA+TOKAN.pl, running any of the
sub-components without any arguments will produce a list of the options and con-
figuration variables that component uses.

When finished, the MADA output (a *.mada file) lists the top analyses for each
word (and possibly the other analyses, depending on the PRINT_ANALYSES
configuration variable).

5.1 MADA Model Data

The current SVM and N-gram models that are included with the MADA release
were created using data from the Penn Arabic Treebank (PATB) 3, version 3.1.
The data was divided into a training set, a tuning set (for feature weight tuning)
and a test set. The PATB documents that correspond to these sets are:

e TRAINING:
ANN20020115.0001 - ANN20021015.0100

e TUNING:
ANN20021015.0101 - ANN20021015.0122
ANN20021115.0001 - ANN20021115.0066

e TESTING:
ANN20021115.0068 - ANN20021115.0119
ANN20021215.0003 - ANN20021215.0045

5.2 MADA Features

Under MADA 3.0, the feature set has been significantly altered; for example, the
old features def and idafa have been combined into a new feature, stt (state).
These changes were made in order to model the language more closely, and also
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to adapt to the changes made in SAMA and the PATB. These differences are sum-
marized in Tables 1- 4.

Table 1 shows the MADA features which have undergone (with the exception
of stt) the least change. For some of these we have added a new value — "Un-
defined (u)". These represent cases where the morphological analyzer does not
provide a value for the feature. Previously, MADA 2.32 would give these cases
the indicated "default’ value.

Table 2 shows the expanded version of the part-of-speach (pos) feature. This
feature has been refined, allowing for greater distinction between values. For
reference, we supply the PATB POS tag that is equivalent to the new pos value.

Table 3 and Table 4 show the MADA proclitic and enclitic features, respec-
tively. We have significantly altered our handling of these features. Previously,
clitic information was carried by four binary features (art, part, conj and clitic),
which would only say whether or not a clitic of a particular type was present.
Under MADA 3.0, we use five new features to exactly specify the clitics that are
present. These features are organized according to the possible location of the
clitic in the word and a consideration of what clitics can co-occur, rather than the
exact clitic type (such as particles). The pattern these clitics can follow is:

[ prc3 [ prc2 [ prcl [ prcO BASEWORD encO ] 1 ] 1

5.3 MADA Output Format

At the top of the MADA output file is a header of comment lines which specify
the command used to generate the file, the classifiers used and other options. Fol-
lowing this each word is presented followed by a listing of its possible analyses
(morphological tags). Word analyses that are selected as the best option given the
word context are marked with a leading “*’. Some analyses may be marked with
a ‘7 ; this indicates that this analysis was tied in score with the ‘*’ analysis, and a
tie-breaking method (arbitrary or random) was used to pick the ‘*’ analysis over
this one. All other, less suitable analyses are marked with a leading ‘_’. Following
the leading marker is a score, and the analysis feature line.

Each analysis feature line consists of a set of <feature>:<value> pairs,
separated by whitespace. Most of these features have a corresponding SVM
classifier (see Tables 1- 4). The rest include the diacritic form (diac), the lex-
eme/lemma (lex), the Buckwalter tag (bw), the gloss (gloss), and a few others
which are only used internally by MADA and ALMORGEANA.

Figure 1 shows an excerpt from a MADA output file. Note that the file lines are
wrapped here for clarity. The "; ; MADA" lines indicate the predictions of the SVM
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[ Feature | Feature Value Definition | MADA 3.0 | MADA 2.32
Aspect LABEL asp aspect
Command c Ccv
Imperfective i v
Perfective p PV
Not applicable na NA
Case LABEL cas case
Nominative n NOM
Accusative a ACC
Genitive g GEN
Not applicable na NA
Undefined u NOCASE (default)
Gender LABEL gen gen
Feminine f FEM
Masculine m MASC
Not applicable na NA
Mood LABEL mod mood
Indicative i 1
Jussive ] J
Subjunctive s S
Not applicable na NA
Undefined u I (default)
Number | LABEL num num
Singular S SG
Plural P PL
Dual d DU
Not applicable na NA
Undefined u SG (default)
Person LABEL per per
Ist 1 1
2nd 2
3rd 3 3
Not applicable na NA
State LABEL stt def and idafa
Indefinite i def:INDEF idafa:NOPOSS
Definitie d def:DEF idafa:NOPOSS
Construct/Poss/Idafa c def:DEF idafa:POSS
Not applicable na def:NA idafa:NA
Undefined u def:DEF idafa:NOPOSS (default)
Voice LABEL voX voice
Active a ACT
Passive p PASS
Not applicable na NA
Undefined u ACT (default)

Table 1: MADA feature and value definitions, with the labels used to represent
them under MADA 3.0 and MADA 2.32. "LABEL" indicates the identifying tag

used for that feature in MADA output files.
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] | POS Definition | MADA 3.0 | MADA 2.32 | PATB Equivalent |

Part-of-speech | LABEL pos pos —
Nouns noun N NN /NNS
Number Words noun_num N NN /NNS

noun_quant N NN /NNS
Proper Nouns noun_prop PN NNP / NNPS
Adjectives adj Al 1
adj_comp Al 1
adj_num Al 1
Adverbs adv AV RB
adv_interrog Q RP
adv_rel REL WP
Pronouns pron PRO PRP
pron_dem D DT
pron_exclam PRO PRP
pron_interrog Q RP
pron_rel REL WP
Verbs verb \Y VBN /VBP/VBD
verb_pseudo A% VBN/ VBP/ VBD
Particles part P IN
part_det D DT
part_focus P IN
part_fut P IN
part_interrog P IN
part_neg NEG RP
part_restrict P IN
part_verb P IN
part_voc P IN
Prepositions prep P IN
Abbreviations abbrev AB NN
Punctuation punc PX PUNC
Conjunctions conj C CC
conj_sub C CC
Interjections interj u UH
Digital Numbers digit NUM CD
Foreign/Latin latin F IN

Table 2: MADA part-of-speech definitions and the labels used to represent them
under MADA 3.0 and MADA 2.32, with the equivalent Penn ATB POS tags given
as reference.
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Proclitic Value Definition MADA 3.0 | MADA 2.32

Proclitic 3 LABEL pre3 —
(AKA question proclitic or QUES) No proclitic 0 —
Not applicable na —
Interrogative Particle >a >a_ques —
Proclitic 2 LABEL pre2 conj
(AKA conjunction proclitic or CONJ) | No proclitic 0 NO
Not applicable na NA
Conjunction fa fa_conj YES
Connective particle fa fa_conn YES
Response conditional fa fa_rc YES
Subordinating conjunction fua fa_sub YES
Conjunction wa wa_conj YES
Particle wa wa_part YES
Subordinating conjunction wa wa_sub YES
Proclitic 1 LABEL prel part
(AKA preposition proclitic or PART) | No proclitic 0 NO
Not applicable na NA
Particle bi bi_part YES
Preposition bi bi_prep YES
Preposition ka ka_prep YES
Emphatic Particle la la_emph YES
Preposition la la_prep YES
Response conditional la la_rc YES
Jussive /i li_jus YES
Preposition /i li_prep YES
Future marker sa sa_fut YES
Preposition ta ta_prep YES
Particle wa wa_part YES
Preposition wa wa_prep YES
Preposition fy fy_prep YES
Negative particle /A 1A_neg YES
Negative particle mA mA_neg YES
Vocative yA yA YES
Vocative wA WA YES
Vocative hA hA YES
Proclitic 0 LABEL prc0 art
(AKA article proclitic or ART) No proclitic 0 NO
Not applicable na NA
Determiner Al YES
Negative particle /A 1A_neg YES
Negative particle mA mA_neg YES
Relative pronoun mA mA_rel YES
Particle mA mA_part YES

Table 3: MADA proclitic definitions and the labels used to represent them under
MADA 3.0 and MADA 2.32. The proclitic number refers to the location of the
clitic, according to [ PRC3 [ PRC2 [ PRC1 [ PROO BASEWORD ENCO ] ] ] ]
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|

Enclitic Value Definition

[ MADA 3.0 | MADA 2.32 |

Enclitics
(AKA pronominals or PRON)

LABEL enc( clitic
No enclitic 0 NO

Not applicable na NA

1st person plural Ip YES
1st person singular 1s YES
2nd person dual 2d YES
2nd person feminine plural 2fp YES
2nd person feminine singular 2fs YES
2nd person masculine plural 2mp YES
2nd person masculine singular 2ms YES
3rd person dual 3d YES
3rd person feminine plural 3fp YES
3rd person feminine singular 3fs YES
3rd person masculine plural 3mp YES
3rd person masculine singular 3ms YES
Vocative particle Ah YES
Interrogative pronoun man man_interrog YES
Interrogative pronoun mA mA_interrog YES
Interrogative pronoun ma ma_interrog YES
Relative pronoun man man_rel YES
Relative pronoun mA mA_rel YES
Relative pronoun ma ma_rel YES
Subordinating conjunction ma ma_sub YES
Subordinating conjunction mA mA_sub YES
Negative particle /A 1A_neg YES

Table 4: MADA enclitic definitions and the labels used to represent them under
MADA 3.0 and MADA 2.32. The clitic number refers to the location of the clitic,
according to [ PRC3 [ PRC2 [ PRC1 [ PROO BASEWORD ENCO ] ] ]]
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;;; SENTENCE_ID SAMPLE_ID:31
;73 SENTENCE blyr yblg bw$ bntA}j jwlth fy AlSrg AlAwsT AlArbEA’ \\

Almgbl

; jWORD blyr
; iMADA: blyr asp:na cas:u enc0:0 gen:m mod:na num:s per:na \\

x1.000623

_0.897942

_0.897918

pos:noun_prop prc0:0 prcl:0 prc2:0 prc3:0 stt:1i vox:na
diac:bliyr lex:bliyr_1 bw:+bliyr/NOUN_PROP+ gloss:Blair \\
pos:noun_prop prc3:0 prc2:0 prcl:0 prc0:0 per:na asp:na \\
vox:na mod:na gen:m num:s stt:i cas:u enc0:0 rat:y \\
source:lex stem:bliyr stemcat:Nprop
diac:biliyr lex:1iydz_1 bw:bi/PREP+1iyr/NOUN_PROP+ \\
gloss:Lear pos:noun_prop prc3:0 prc2:0 prcl:bi_prep \\
prc0:0 per:na asp:na vox:na mod:na gen:m num:s stt:i \\
cas:u enc0:0 rat:y source:lex stem:liyr stemcat:Nprop
diac:biliyr lex:1liydz_1 bw:bi/PART+1iyr/NOUN_PROP+ \\
gloss:Lear pos:noun_prop prc3:0 prc2:0 prcl:bi_part \\
prc0:0 per:na asp:na vox:na mod:na gen:m num:s stt:i \\
cas:u enc0:0 rat:y source:lex stem:liyr stemcat:Nprop

; 7 WORD yblg
; iMADA: yblg asp:1 cas:na enc0:0 gen:m mod:i num:s per:3 pos:verb \\

x0.991246

_0.968597

_0.945947

_0.945947

prc0:0 prcl:0 prc2:0 prc3:0 stt:na vox:a
diac:yabolugu lex:balag-u_1 \\
bw:ya/IV3MS+bolug/IV+u/IVSUFF_MOOD:I gloss:reach;attain \\
pos:verb prc3:0 prc2:0 prcl:0 prc0:0 per:3 asp:i vox:a \\
mod:1 gen:m num:s stt:na cas:na enc0:0 rat:na source:lex \\
stem:bolug stemcat:IV
diac:yabolugu lex:balug-u_1 \\
bw:ya/IV3MS+bolug/IV+u/IVSUFF_MOOD:I gloss:be_eloquent \\
pos:verb prc3:0 prc2:0 prcl:0 prc0:0 per:3 \\
asp:i vox:a mod:i gen:m num:s stt:na cas:na enc0:0 \\
rat:na source:lex stem:bolug stemcat:IV_intr
diac:yuboligu lex:>abolag_1 \\
bw:yu/IV3MS+bolig/IV+u/IVSUFF_MOOD:I \\
gloss:report;inform;notify pos:verb prc3:0 prc2:0 prcl:0 \\
prc0:0 per:3 asp:i1 vox:a mod:i gen:m num:s stt:na cas:na \\
enc0:0 rat:na source:lex stem:bolig stemcat:IV_yu
diac:yubal~igu lex:bal~ag_1 \\
bw:yu/IV3MS+bal~ig/IV+u/IVSUFF_MOOD:I \\
gloss:communicate; convey pos:verb prc3:0 prc2:0 prcl:0 \\
prc0:0 per:3 asp:i1 vox:a mod:i gen:m num:s stt:na cas:na \\
enc0:0 rat:na source:lex stem:bal~ig stemcat:IV_yu

Figure 1: MADA output excerpt. The lines have been wrapped for readability.
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classifiers for that word. Each new sentence starts witha "; ; ; SENTENCE" line
comment, and a "; ;; SENTENCE_ID" comment (if defined). Each sentence
ends with a "SENTENCE BREAK" line (not pictured).

6 TOKAN Details

The output of TOKAN (a *.tok file, by default) contains a tokenized version of
the disambiguated input, generated deterministically. Since Arabic words can
have different analyses which can result in different tokenizations under different
tokenization schemes, both MADA and TOKAN scheme-selection are necessary
to tokenize: MADA selects the contextually apporpriate analysis and TOKAN to-
kenizes it according to a specific (deterministic) tokenization ruleset (a ‘scheme’).
Under some coarse tokenization schemes (e.g., split off the conjunction w+) dif-
ferent analyses of the same word often result in the same tokenization. We discuss
next the different tokenization options that can be used to specify a tokenization
scheme.

The TOKAN_SCHEME configuration variable controls the output format of
TOKAN, i.e., what variety of tokenization is implemented and how it looks. Un-
der MADA 3.0 and later, the customizability of the TOKAN_SCHEME has been
greatly extended. This has had the side effect of causing older scheme formats
(MADA 2.32 and earlier) to be rendered invalid, so be aware of this if you are
migrating from MADA 2.32 or earlier to MADA 3.0. Also be aware that scheme
variables no longer require leading hyphens, and several obsolete variables will
cause TOKAN to exit with an error message.

Under MADA 3.0, the TOKAN__SCHEME can consist of four types of variables:

1. Single Variables — Variables that affect the entire scheme; for example,
GROUPTOKENS will cause all tokens in the scheme to be linked together
by a delimiter character (defaults to ‘_"), rather than whitespace.

2. SPLIT Variables — Variables that control how the input word is broken up,
such as breaking off conjunctions or particles

3. FORM Variables — Variables that control how the different tokens are out-
put, including their arrangement and content

4. Aliases — Variables of the form SCHEME=XXX which are shorthand for
longer, commonly-used schemes. Most users will find it easiest to apply
a known alias (if possible) rather than design an entirely new scheme.
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In general, TOKAN_SCHEMEs are arranged in the format (all on one line):

::SPLIT <SPLIT Variables> \\
: :FORMO <FORM variables for Form id 0> \\
::FORM1 <FORM variables for Form id 1> \\
: :FORM2 <FORM variables for Form id 2> \\

::FORMN <FORM variables for Form id N> \\
<Single Variables>

or, alternatively:
SCHEME=<alias for established scheme> <Single Variables>

Note that more than one ::FORM can be defined in a single scheme, each
identified with a numerical id. The specific form variables for that id must directly
follow the leading ::FORM marker. Similarly, the split variables must directly
follow the ::SPLIT marker.

6.1 TOKAN_SCHEME: Single Variables

These variables affect the entire TOKAN__SCHEME and all the FORMs it includes.
They can appear anywhere in the scheme, but are best placed at the very end to
avoid confusion with SPLIT and FORM variables. They are described in Table 5.

6.2 TOKAN_SCHEME: Split Variables

The SPLIT variables control which clitics are separated from the main word and
in what order they are presented. Users can also add newlines in arbitrary places,
specify where the remainder of the word should appear, and indicate which tokens
or token subgroup should be joined by TDELIM.

Table 6 shows the possible SPLIT variables a scheme can contain. TOKAN
can still interpret the old-style TOKAN_SCHEME variables: w+, £+, b+, 1+,
k+,+P:, and +O:. In addition, it is possible to specify individual clitics (such
as prcl : k), rather than the entire group (PART), but this is an advanced usage
that many users will not require.

One example of a correct SPLIT variable setup for the ATB tokenization is:
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Single Variable \ Description

TDELIM:<characters> | Token Delimiter. If a scheme requires tokens (or a subset) to be
grouped, this is the character(s) that will join them for all forms.
The default delimiter is ‘_ .

FDELIM:<characters> | Form Delimiter. If more than one form is defined, these
will be used to separate the different forms in the output.
The default is the middle-dot character ‘> (Unicode #00B7).

SENT_ID If present, this variable cause TOKAN to look for any
SENTENCE_ID comments in the input MADA file and print
those IDs as the first word in the output of each sentence.
SPLIT and FORM variables are never applied to sentence IDs.

MARKNOANALYSIS If present, this variable will cause any word marked as
NO-ANALYSIS in the MADA input to be presented in the
output with "@ @" as a prefix and suffix, e.g.:
"QR@UNKNOWN_WORDQR". These marks will be repeated in
every form specified, if there are more than one.

GROUPTOKENS If present, this will cause all the tokens of a word to be joined
with the TDELIM character(s).
NOPASSATAT By default, TOKAN will print any word marked as ; ; PASS by

MADA as is, without any alteration (MADA marks any input
word starting with "@ @" as a ; ; PASS word). If this variable is
present in the scheme, however, TOKAN will omit these words
from its output entirely.

Table 5: TOKAN_SCHEME Single Variables

::SPLIT QUES CONJ PART NART REST PRON

This will split off any question marking proclitic, follow it with any present
conjunctions, followed by any present prepositions, followed by any negative ar-
ticles (but not the definite article A1, which remains attached to the word under
ATB), followed by the main part of the word, and ending with any endclitics.

If we wanted to group the QUES, CONJ and PART tokens together and leave
the rest separate, we can do this:

::SPLIT [+ QUES CONJ PART +] NART REST PRON TDELIM:

In this example, we also changed the token delimiter to "", so in this case the
grouped tokens will not have any characters (whitespace or otherwise) between

them. We could have just as easily used hyphens (with TDELIM: ) or triple
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SPLIT Variable | Description

QUES or prc3 pre3 - The ‘question’ proclitic
CONJ or prc2 prc2 - The ‘conjunction’ proclitic
PART or prcl prel - The ‘preposition’ proclitic
ART or prcO prc0 - The ‘article’ proclitic
PRON or enc0 enc0 - Enclitics
FUT or s+ The future marker clitic only (s)
DART or Al+ The definite article only (A1)
NART The negative articles only (1A, mA)
REST The remainder of the word after the specified clitics have been separated
NEWLINE Where a newline character should be inserted
[+and +] Group markers. Any token subset surrounded by [+ and +] will be
grouped with TDELIM character(s).
W+ (Old style) The wa conjunction only
f+ (Old style) The fa conjunction only
b+ (Ol1d style) The bi preposition only
1+ (Old style) The 11 or 1a prepositions only
k+ (Ol1d style) The ka preposition only
+P: (O1d style) Poss enclitics only
+0: (Ol1d style) Other enclitics only

Table 6: TOKAN_SCHEME SPLIT Variables

underscores (with TDELIM: ).
We can also insert newlines wherever we like:

::SPLIT QUES CONJ PART NEWLINE NART REST NEWLINE PRON NEWLINE

This example would create 3 lines of output for every word in the input.

6.3 TOKAN SCHEME: Form Variables

Form variables are used to control how the output looks. In addition, multiple
forms can be specified, allowing additional information (such as part-of-speech,
lexeme or gloss) to be included with each token. Each form in the specification
will be applied to each token defined by the SPLIT variables.

All form definitions begin with the : : FORM<N> keyword, where <N> is a
non-negative numerical id. Every variable that follows the : : FORM<N> keyword
(up to the next : : FORM<N+1> keyword) applies only to that form. Form vari-
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BASE Variable | Description

WORD This simply says that this form will be displaying some version of the
token itself (original, normalized, etc.) It is the most common BASE.
LEXEME This says that this form will be displaying lexeme information
for the token.
GLOSS This form will display the gloss term provided by ALMORGEANA.
STEM This form will display the Buckwalter tag provided by ALMORGEANA.
SURF This form uses the original word form.
POS:ALMOR, These keys indicate that the form will display part-of-speech,
POS:CATIB, using one of four different POS tagsets (ALMORGEANA, CATiB,
POS:PENN, Penn ATB, or Buckwalter).
POS:BW
POS:MADA This form displays a ‘#’-separated list of 14 MADA features and values,
(as defined in Tables 1- 4), including the POS used by MADA internally.
COPY<N> Causes TOKAN to copy the previously defined form specification
of : : FORM<N> to this form, which can then be further modified.
Essentially just a way to avoid repeating common form elements.

Table 7: TOKAN_SCHEME FORM Variables: BASEs

ables are read sequentially from left to right; this means that, while it is possible
to set a variable to two different values in a single form, only the rightmost one
will be remembered and used.

The ::FORM<N> keyword should be immediately followed by one of the
BASE keywords (see Table 7), which tell TOKAN which information is requested.
BASE keywords can then be followed by other form variables (see Table 8) to
determine specifics. Future versions of TOKAN will likely allow additional form
variables.

As an example, the following scheme snippet defines three forms:

: :FORMO WORD NORM:A ENCMARK:PLUS ::FORM1 COPYO NORM:H \\
ENCMARK :HASH ::FORM2 LEXEME

The first form says to write the token, but normalize alefs and add a leading
‘+” character to enclitics. The second (separated from the first by the FDELIM
character(s)) copies : : FORMO and then adjusts it. The second form will write the
token, normalize alefs and hamzas, and will add a leading ‘#’ to enclitics (over-
writting the previous ENCMARK : PLUS of : : FORMO). Finally, the third form
(after another FDELIM character(s)) will print the lexeme. Since SHOWINDEX
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FORM Variable

Allowed BASEs

|

Description

STEM, SURF, COPY

SHOWINDEX LEXEME only Causes the lexeme form to keep the trailing
u,a,i diacritic tags and the "_<number>" suffix
that appear, for example, in the PATB. The
default LEXEME operation is to drop these.

ESC:PAREN WORD, LEXEME, Causes TOKAN to replace any * (’, ‘)’

STEM, SURF, COPY | characters with "-LRB-" and "-RRB-"

NORM: A WORD, LEXEME, Causes TOKAN to normalize alefs in the form.

STEM, SURF, COPY | In Buckwalter, *>’, ‘<’, and ‘I’ become ‘A’
NORM:Y WORD, LEXEME, Normalize yaas in the form. In Buckwalter,
STEM, SURF, COPY | ‘Y’ becomes ‘y’

NORM: H WORD, LEXEME, Normalize hamzas in the form. In Buckwalter,
STEM, SURF, COPY | ‘&’ and ‘}’ become ‘"’

NORM: T WORD, LEXEME, Normalize teh-marbutas in the form. In
STEM, SURF, COPY | Buckwalter, ‘p’ becomes ‘h’

DIAC WORD, LEXEME, Remove all diacritics from the form. In

Buckwalter, these are [aiuo *~FKN], Note
that, if the token consists of nothing but
diacritic characters, none are deleted to avoid
removing an entire token.

ENCMARK:PLUS,
ENCMARK: HASH,
ENCMARK : NONE

All except GLOSS

Referred to as the "enclitic marker"

Specifies whether enclitics should have a
leading ‘+’, a leading ‘#’, or no leading
character inserted. The default is to use none.

PROCMARK:PLUS,
PROCMARK : HASH,
PROCMARK : NONE

All except GLOSS

Referred to as the "proclitic marker"
Specifies whether proclitics should have a
trailing ‘+’, a trailing ‘#’ or no trailing
character inserted. The default is to use none.

Table 8: TOKAN_SCHEME FORM Variables: non-BASEs

wasn’t specified, the lexeme will be stripped of its trailing tags.

6.4 TOKAN SCHEME: Aliases

Finally, to avoid having to specify lengthly scheme definitions, we provide sev-
eral aliases for the most common tokenization schemes we’ve encountered. Users
can activate these aliases by starting the scheme with "SCHEME=<alias>".
TOKAN will replace this tag with the full scheme definition. Advanced users
can futher modify the alias, adding addition forms or making other changes if
they wish, by following the SCHEME tag with additional variables.
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Alias

Description

SCHEME=ATB

Tokenizes all clitics except for the definite article, normalizes alefs/yaa, uses ‘+’ as clitic
markers, and replaces ‘(" and ‘)’ characters. Only one WORD form.

SCHEME=ATB-HASH

Same as ATB, except that enclitics are marked with ‘#

SCHEME=TB

Same as ATB

SCHEME=TB-HASH

Same as ATB#

SCHEME=ATB+POS

Same as ATB, but adds a second form — the PATB POS tag. The middle-dot character ‘-’ is
used as a form separator by default.

SCHEME=ATB-HASH+POS

Same as ATB+POS, except that enclitics are marked with ‘#

SCHEME=ATB4MT

A large scheme consisting of 6 forms (also referred to as a "6-tier" scheme). Form 0 is a
WORD form that tokenizes all clitics except the definite article, uses ‘+’ as a clitic marker,
and replaces ‘(" and ‘)’; Form 1 is the same, but it also normalizes alefs/yaas; Form 2 is a
LEXEME form, using ‘+’ clitic markers and removing diacritics; Forms 3, 4, and 5 are the
CATiB, Penn ATB and Buckwalter POS tags, respectively.

SCHEME=0LDATB

A tokenization that was previously used in the PATB. Only explicitly tokenizes £+, w+,
b+, k+, 1+, and enclitics. Uses ‘+’ as clitic markers, normalizes alefs/yaas, and
replaces ‘(’ and ‘)’ characters.

SCHEME=D1

Tokenizes question and conjunction clitics only; uses ‘+’ as a clitic marker, normalizes
alefs/yaas, and replaces ‘(" and )’ characters. Only one WORD form.

SCHEME=D1-HASH

Same as D1, but enclitics are marked with ‘#

SCHEME=D2 Same as D1, but also tokenizes PART clitics
SCHEME=D2-HASH Same as D2, but enclitics are marked with ‘#’
SCHEME=D3 Same as D2, but also tokenizes all articles and enclitics (basically all clitics are tokenized).

SCHEME=D3-HASH

Same as D3, but enclitics are marked with ‘#

SCHEME=D1-3tier

A three-form (3-tier) scheme. Form O tokenizes question and conjunction clitics only, uses
‘+’ clitic markers, and replaces ‘(" and )’ characters; Form 1 is the same, but also normalizes
alefs/yaas; Form 2 is a LEXEME form, using ‘+’ clitic markers and removing diacritics.

SCHEME=D2-3tier

The same as D1 -3t ier, except that the first two forms also tokenize PART clitics.

SCHEME=D3-3tier

The same as D2-3t ier, except that all clitics are tokenized.

SCHEME=D14MT

Another large 6-form (6-tier) scheme. Effectively the same as ATB4MT, except that only the
question and conjunction clitics are tokenized.

SCHEME=D24MT

Same as D14MT, but also tokenizes PART clitics

SCHEME=D34MT

Same as D2 4MT, but tokenizes all clitics.

SCHEME=S1

Tokenizes only the CONJ, PART, DART and PRON clitics; uses ‘+’ clitic markers,
normalizes alefs/yaas, and replaces ‘(" and )’ characters. Only one WORD form.

SCHEME=S1-HASH

Same as S1, but enclitics are marked with ‘#

SCHEME=S2

Same as S1, except that it explictly groups the CONJ, PART and DART proclitics; there is
no whitespace between the grouped clitics, but the proclitic marker ‘+’ is still present to
distinguish them.

SCHEME=S2-HASH

Same as S2, but uses ‘#° as an enclitic marker

SCHEME=DIAC

A single form consisting of the original word (the surface form), stripped of diacritics,
with no tokenization.

Table 9: TOKAN_SCHEME Aliases
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Table 9 shows the current aliases defined in TOKAN. All schemes with mul-
tiple forms use the middle dot character ‘-’ as the form delimiter (FDELIM) by
default.

By way of example, the SCHEME=D3 alias is equivalent to:

::SPLIT QUES CONJ PART ART REST PRON ::FORMO WORD \\
PROCMARK:PLUS ENCMARK:PLUS NORM:A NORM:Y ESC:PAREN

while the SCHEME=S2 alias is equivalent to:

::SPLIT [+ CONJ PART DART +] REST PRON ::FORMO WORD \\
PROCMARK:PLUS ENCMARK:PLUS NORM:A NORM:Y ESC:PAREN TDELIM:

and the SCHEME=ATB4MT alias is equivalent to (all on one line):

::SPLIT QUES CONJ PART NART REST PRON FDELIM:-\\
: :FORMO WORD PROCMARK:PLUS ENCMARK:PLUS ESC:PAREN \\
::FORM1 COPY0 NORM:A NORM:Y \\
: :FORM2 LEXEME PROCMARK:PLUS ENCMARK:PLUS ESC:PAREN DIAC \\
: :FORM3 POS:CATIB \\
: :FORM4 POS:PENN \\
: :FORM5 POS:BW

6.5 TOKAN Output Format

TOKAN output files are arranged with one sentence per line. If SENT_ID is used
in the TOKAN_SCHEME and were included in the MADA input file, the IDs will
appear as the first word of each sentence, followed by a space.

Figure 2 shows the resulting output of TOKAN for several schemes for a sin-
gle input sentence. The schemes used are all aliases. ATB and D3 are two com-
monly used tokenization schemes. ATB4MT is a multi-form (multi-tier) tokeniza-
tion scheme developed at CCLS as a means of carrying word, lemma and POS
tag information into separate parsing and MT systems. DIAC is just an extrac-
tion of the diacritized forms of the words with no further tokenization. Note that
the final example (DIAC) makes two errors in the case-markers of the second and
third word; case-marking diacritics are famously difficult to predict correctly from
morphology alone.
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Original Input:
SENTENCE_ID_1 wylEb Alfryqg Alswry Dd nZyrh AlSrby

TOKAN_SCHEME = SCHEME=ATB SENT_ID
SENTENCE_ID_1 w+ yl1Eb Alfryg Alswry Dd nZyr +h AlSrby

TOKAN_SCHEME = SCHEME=D3 SENT_ID
SENTENCE_ID_1 w+ ylEb Al+ fryg Al+ swry Dd nZyr +h Al+ Srby

TOKAN_SCHEME = SCHEME=ATB4MT SENT_ID
SENTENCE_ID_1 w+w+wa+PRT-CC-CONJ \\
y1Eb-y1Eb-1aEib-VRB-VBP-IV3MS+IV+IVSUFF_MOOD:I \\
AlfryqAlfrygfariyg-NOM-DT+NN-DET+NOUN+CASE_DEF_GEN \\
Alswry-Alswry-suwriy~-NOM-DT+JJ-DET+ADJ+CASE_DEF_GEN \\
Dd-Dd-Did~-NOM-NN-NOUN+CASE_DEF_ACC \\
nzyrnzyr-naziyr-NOM-NN-NOUN+CASE_DEF_GEN \\
+h-+h-+hu-NOM-PRP$-POSS_PRON_3MS \\
AlSrby-AlSrby-Sirobiy~NOM-DT+JJ-DET+ADJ+CASE_DEF_GEN \\
..+ .'PNX-PUNC-PUNC

TOKAN_SCHEME = SCHEME=DIAC SENT_TID
SENTENCE_ID_1 wayaloEabu Alfariygi Als~uwriy~i Did~a \\
naziyrihi AlS~irobiy~i

Figure 2: TOKAN Output for several schemes. The lines have been wrapped for
readability.
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7 Other Utilities

Included in the MADAHOME directory is a common-tasks/ subdirectory, which
contains a number of utility scripts that users may find valuable. Most of these
take a MADA output file as input and perform some kind of data extraction. These
scripts and their usage are described in brief below. Except for the first two, all
the scripts will output detailed usage information if called with no arguments.

7.1 clean-ut8.pl

cat file.utf8 | perl clean-utf8.pl clean-utf8-MAP >
file.utf8.clean

This script was developed to remove rare and problematic UTF8 characters
from a UTF8 encoded file. For example, the script normalizes different forms
of quotation marks and whitespace, while deleting non-Arabic, non-Latin charac-
ters. This functionality is built into the MADA preprocessor, so most users will
not have a need to call this script directly. The associated clean-ut £8-MAP
file describes how each UTFS8 character is mapped; since it is used by the pre-
processor, this file should not be altered by users.

7.2 tagEnglish.pl

cat file.utf8 | perl tagEnglish.pl > file.utf8.tagged

This script will go through a file and, for every word containing any ASCII
letters (a—z, A-Z), it will prepend a "@@LATQ@" prefix. When run on a UTF8
encoded file, this effectively identifies Latin words in the text. The MADA pre-
processor has this functionality built into it, so most users will not need to call this
script directly.

7.3 extractFeatureIntoSentenceFormat.pl

perl extractFeatureIntoSentenceFormat.pl \\
file=<input.mada> feat=<MADA feature to extract> \\
[includeword] [normdigit] [normalefyaal] [sentids] \\

> file.feat-sent
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This script will read a MADA output file and extract from the MADA “*’
choices the value of a given feature for every word. It will then print (to standard
output) the value of that feature for every word in a sentence-like format (one-
sentence-per-line). In this way, users can create a file that is the same as the input
MADA file except, for example, every word is replaced by its lemma (or its POS,
or its gloss, or its gender, etc.). This script is very useful for generating input for
SRI’s ngram utilities; i.e., when you want to create N-gram models of MADA
features. Valid options for the feat argument are any one of the following:

word normword asp bw cas diac encO gen gloss
lex mod num per pos prcO prcl prc2 prc3 stt

vox normlex normlexeme noanalysis

Most of these are identical to the features described in Section 5. normword
is the word form with alef/yaa/digit normalization. normlex and normlexeme
are identical, and produce the lemma forms without the "_<number>" tags that
XAMA includes. noanalysis produces "YES" if MADA found an analysis
for the word, and "NO" otherwise.

Optional arguments for the script are:

e includeword — if present, the script will, for every word, output
word: feature instead of just feature

e normdigit — If present, all digits in the output will be normalized to ‘8’

e normalefyaa — If present, and if the feature is 1ex or diac, all alefs
and yaas in the output will be normalized to ‘A’ and ‘y.” Does not affect the
other feature choices.

e sentids —If present, the script will place the SENTENCE_ ID comments
of the input MADA file as the first word of each line in the output (unaf-
fected by the above options). Does nothing if the input MADA file does not
include sentence ids.

When the input MADA file has no analysis for a given word, the required
feature value is given a default value equal to the most common value for that
feature (or the word itself if the required feature was lex, diac, or gloss).
Any feature which MADA is not familiar with will get a value of "UNK".
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7.4 extractFeaturesIntoColumns.pl

perl extractFeaturesIntoColumns.pl file=<input.mada> \\

feats=<comma-separated list of MADA feats> > feats

This script is similar to extractFeatureIntoSentenceFormat.pl,
except that it takes in comma-separated (with no whitespace) list of features and
displays them in tab-separated column format. This script allows users to ex-
tract only the features they are interested in from the MADA output, and puts
them into an easy-to-parse format. A feature can be specified more than once
if desired. The original word is always the first column, and the first line will
contain column headers. Sentence breaks are indicated with blank lines. The re-
sult is written to standard output. The list of possible features is the same as in
extractFeaturelIntoSentenceFormat.pl.

7.5 extractFeatureValueList.pl

perl extractFeatureValuelist.pl file=<input.mada> \\

> file.feature-value-list

This script reads a MADA file and writes (to standard output) a list of the
closed-class MADA features and counts of the different feature values it encoun-
ters. The script examines all the analyses in the file, not just the MADA selection
(the “*’ analyses). Output is formated as "feature value:counts", like so:

num d:628 na:1861 p:1220 s:21820
per 1:1210 2:664 3:2219 na:21436

7.6 extractSentenceFormFromMADAFile.pl

perl extractSentenceFormFromMADAFile.pl file=<input.mada> \\

> file.bw.sent

This is just a simple script that will extract the input words from a MADA file
and print them (to standard output) in one-sentence-per-line format. This effec-
tively reproduces the input file to MADA (after pre-processing), and is handy if
that file is needed but has been removed unintentionally.
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the Association for Computational Linguistics (NAACL), New York, 2006.
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