
Nonlexical Chart Parsing for TAG

Alexis Nasr and Owen Rambow

Abstract

Bangalore and Joshi (1999) investigate supertagging as “almost pars-
ing”. In this paper we explore this claim further by replacing their
Lightweight Dependency Analyzer with a nonlexical probabilistic chart
parser. Our approach is still in the spirit of their work in the sense that
lexical information is only used during supertagging; the parser and its
probabilistic model only see supertags.

1 Introduction: Supertags and Parsing

Over the last ten years, there has been a great increase in the performance of
parsers. Current parsers use the notion of lexical head when generating phrase
structure parses, and use bilexical dependencies – probabilities that one partic-
ular head depends on another – to guide the parser. Current parsers achieve
an score of about 90% to 92% when measuring just the accuracy of choosing
these dependencies (Collins, 1997; Chiang, 2003; Charniak, 2000; Clark et al.,
2002; Hockenmaier and Steedman, 2002), also see (Yamada and Matsumoto,
2003). Interestingly, the choice of formalism (headed CFG, TAG, or CCG) does
not greatly change the parsers’ accuracy, presumably because in all approaches,
the underlying information is the same – word-word dependencies, with various
types of backoff.

An alternative approach has been proposed in the literature: supertagging
followed by “lightweight” parsing. The idea behind supertagging (Bangalore
and Joshi, 1999) is to extend the notion of “tag” from a part of speech or a
part of speech including morphological information to a tag that represents rich
syntactic information as well, in particular active valency including subcatego-
rization (who can/must be my dependents?), passive valency (who can be my
governor?), and notions specific to particular parts of speech, such as voice for
verbs. If words in a string can be tagged with this rich syntactic information,
then, Bangalore and Joshi (1999) claim, the remaining step of determining the
actual syntactic structure is trivial. They propose a “lightweight dependency
parser” (LDA) which is a heuristically-driven, very simple program that creates
a dependency structure from the tagged string of words. It uses no information
gleaned from corpora at all, and performs with an (unlabeled) accuracy of about
95%, given the correct supertag. While the supertagging only requires a notion
of syntactically relevant features, the stage of determining a syntactic structure

1

requires a grammar that uses these syntactically relevant features; Bangalore
and Joshi (1999) use Tree Adjoining Grammar (TAG) as a bridge between the
features and the actual syntactic combinations. The approach does not rely on
TAG, however,1 and any lexicalized2 (or lexicalist, in a wider sense) grammar
formalism could be used.

There are several reasons why it is worthwhile pursuing an approach to pars-
ing in which the sentence is first supertagged and then analyzed syntactically.
The main point is that the models involved are potentially simpler than those in
bilexical parsing. More precisely, the probabilistic models of the parser define a
smaller number of parameters and are therefore less prone to data sparseness.3

In particular, no bilexical or monolexical information is used in the parsing
model. This holds the promise that when porting a supertagger-based parser to
a new domain, a nonlexical structural model can be reused from a previous do-
main, and only a supertagged corpus in the new domain is needed (to train the
supertagger), not a structurally annotated corpus. Furthermore, this approach
uses an explicit lexicalized grammar. As a consequence, when porting a parser
to a new domain, learned parser preferences in the supertagger can be over-
ridden explicitly for domain-idiosyncratic words before the parse happens. For
example, suppose that an application of a parser such as that of Collins (1997)
trained on a news corpus is applied to rather different genre, and that sentences
such as John put the book on the table, unseen in training, are mostly analyzed
with the PP attached to the noun, not to the verb (as is always required in
the new domain). In the application, this would need to be fixed by writing
special post-processing code to rearrange the output of the parser since there is
no way to change the parser’s behavior short of retraining it; in our approach,
we could simply state that put should always (or with greatest probability) have
a PP argument. And finally, we point out that is a different approach from the
dominant bilexical one, and it is always worthwhile to pursue new approaches,
especially as the performance of the bilexical parsers seems to be plateauing.

In this paper, we follow the line of research started by Bangalore and Joshi
(1999). Like their work, we in fact use a less powerful tree-rewriting formalism
than TAG, namely TIG. We depart from their work in two ways.

• First, we use a chart parser with a statistical model derived from a corpus,
which however is entirely nonlexical and just uses the supertags, not the
words or lexemes found in the corpus. As we will see, when supertagging

1The morpheme tag in supertagging is of course not the TAG of Tree Adjoining Grammar,
but the English word that means ‘label’.

2We use the term lexicalized to refer to a grammar formalism such that each of its ele-
mentary structures is associated with one lexical item (i.e., terminal symbol in the sense of
formal grammar theory); we use the terms nonlexical, monolexical and bilexical to refer to
probabilistic models that take no, one or two lexical heads into account, respectively. The
more common terms in the literature for these notions, unlexicalized, lexicalized, and bilexical

are confusing and inconsistent.
3Gildea (2001) shows that in fact the bilexical dependencies contribute little to performance

of bilexical parsers, with lexical-structural dependencies being more important. While that
finding is compatible with our results, we structure the parsing process in a completely different
manner.

2

is combined with a full chart parser, the dependency accuracy is about
98% when given correct (gold-standard) supertags. We thus cut the error
rate of the heuristic LDA by more than half. Our approach is still in the
spirit of supertagging, as the parser has no access to lexical information,
only to information about the supertags. We differ from Bangalore and
Joshi (1999) only in that we use, in addition to structural information
contained in the supertag, probabilistic information about the relation
between supertags, as derived from a corpus.

• Second, we use a grammar extracted automatically from the Penn Tree-
bank (PTB) rather than a hand-crafted one mapped to the corpus (Chen,
2001; Xia et al., 2000; Chiang, 2003). We use a grammar derived from a
treebank in order to achiever greater empirical coverage.

The overall goal of this paper is to show that the use of a full probabilistic
chart parser can improve on the results of the LDA, while retaining the intuition
of localizing all lexical information in the supertagging stage. The specific goal
of this paper is to present a nonlexical probabilistic model based on supertags
alone; more specifically, we want to investigate different probabilistic models of
adjunction at the same node.

We present results using the approach of (Nasr and Rambow, 2004b), but
using actual supertagging (while (Nasr and Rambow, 2004b) uses gold-standard
supertags). We explore using n-best results from two supertaggers, namely a
standard n-gram supertagger, and a maximum entropy tagger which performs
better (Bangalore et al., 2005). (Note that the LDA can only take one supertag
per word in input, so we are here making use of the chart parser.) We achieve
about 85% accuracy on dependency arcs. While this performance is below
the state of the art using other methods,4 we believe that the work reported
here can serve as a starting point for more research into this kind of parsing.
In particular, in our architecture we can explore supertagging and parsing as
separate processes, finding ways to improve the performance of either, or as
interdependent processes.

The paper is structured as follows. In Section 2, we discuss related work.
We concentrate on two lines of research which are very similar to ours in certain
respects: the work on parsing CCG by Clark and Curran (2004), and the work
on nonlexical CFG parsing by Klein and Manning (2003). These comparisons
further help clarify the goals of our research. We present the underlying for-
malism in Section 3. In Section 4 we present the parser we use. We discuss the
probabilistic models encoded in the automaton representation of the grammar

4However, we point out that unlike many other dependency structures, our dependency
structure is very “semantic”, in that it directly represents predicate-argument structure. We
give several examples: in the presence of an auxiliary, the subject still depends on the main
verb, as does the auxiliary (which has no dependents); nominal, adjectival, and prepositional
predicates are analyzed with the copula as auxiliary (i.e., the subject depends directly on
the predicate, as does the auxiliary); a strongly governed preposition (for example, to in give

books to Mary) does not govern a verbal argument (Mary in the example), instead the verbal
argument depends directly on the verb. Thus our accuracy figures may not be comparable
directly to other published results.

3

in Section 5, and how to extract a grammar which encodes such models from
a corpus in Section 6. In Section 7, we present and discuss results. We con-
clude in Section 8 with a summary of future avenues of research based on the
preliminary study presented here.

2 Related Work

The work we describe in this paper is closely related in different ways to the work
of Bangalore and Joshi (1999), Clark and Curran (2004), and Klein and Manning
(2003). We have discussed the relation to the work of Bangalore and Joshi
(1999) in Section 1; we discuss the other two in turn in this section. In addition,
there is work on probabilistic TAG parsing which does not use supertagging,
see (Sarkar and Joshi, 2003) for a general overview. The advantage of using
probabilistic TAG is that the bilexical model can be expressed very naturally.
Our (nonlexical) work follows most current probabilistic TAG work in being
based on the (very similar) models of Resnik (1992) and Schabes (1992). Of
particular relevance to our work is (Chiang, 2003), who, while using a bilexical
model, uses a TAG variant similar to the one we use, and also uses a similar
horizontal markovization (Section 5.3). We omit a general comparison to the
growing literature on non-TAG dependency parsing, and refer to (Nivre, 2006)
for a general overview.

2.1 CCG Parsing

Clark and Curran (2004) present a CCG parser which uses a supertagger. It is
the first full parser of any kind to successfully use a supertagger in conjunction
with a parser. In CCG, the supertags correspond to lexical categories. The
corpus used is the CCGbank (Hockenmaier and Steedman, 2002), which fixes the
set of lexical categories to about 1,200, of which 400 occur more than 10 times.
(Note that for our purposes, the CCGbank should be compared to a particular
way of extracting a TAG from the PTB and the resulting annotated corpus,
not directly to the PTB.) Clark and Curran (2004) use a maximum-entropy
tagger which produces more than one result. The parser (described in (Clark
and Curran, 2004)) is a discriminative log-likelihood chart parser, which uses
lexical information as well, unlike our parser, for which all lexical information is
relegated to the supertagging phase. There are several important results. First,
they obtain an oracle parser results of almost 98%, which is comparable to our
oracle result, i.e., our result using the gold supertag. (But note that their parser
is a bilexical parser while ours is nonlexical.) Second, the performance of their
n-best supertagger varies from 96.4% to 98.6%, depending on two parameters
for choosing the n (which differs from word to word), which gives an average
ambiguity per tag ranging from 1.4 to 3.5. This result is better than that of
the supertagger we use, presumably because of their smaller tag set. Finally,
using this supertagger in a parser, the best performance (unordered, unlabeled
dependency recall/precision on the CCG derivation) is 92.5% (precision) and

4

91.1% (recall). Again, this performance is better than our parser, presumably
because their supertagger performs better.

2.2 Nonlexical CFG Parsing

Our approach is similar to that of Klein and Manning (2003) in that we do
not use a bilexical or monolexical probability model. Rather, the generative
probabilistic model that we use only models the relation between the elemen-
tary structures in the grammar. The second important similarity is that the
grammars are extracted from the Penn Treebank, and the probability model
is estimated at the same time using a maximum likelihood estimation. The
principal difference is that Klein and Manning (2003) use a CFG as their un-
derlying grammar formalism, while we use TAG. This difference has important
repercussions: on the one hand, the extracted TAG is much bigger than an
extracted CFG, and the lexicon much more ambiguous (i.e., the tagging task
is harder). On the other hand, the extended domain of locality of TAG makes
the grammar more expressive. As a result, many of the techniques discussed in
Klein and Manning (2003), which are aimed at changing the CFG in order to
boost performance, are not relevant. Specifically:

• In vertical markovization, ancestor nodes are annotated in nonterminal
nodes. In TAG (but not in CFG), each elementary structure contains
the entire syntactic projection from the head. This is different from a
fixed-length “vertical” history, but captures the same kind of information.

• There is no need for special modeling of unary rules. This is because unary
context-free expansions will be part of a larger structure. Furthermore,
many of the cases in which Klein and Manning (2003) deal with unary rules
are in fact not unary because empty categories are explicitly included in
the elementary structures of the grammar. This includes the traces left by
wh-movement, by argument movement (for passive), and empty arguments
(including pro and PRO).

• Many groups of words which receive the same PTB part-of-speech tag
are differentiated by their supertag. To take the example discussed in
Klein and Manning (2003), demonstrative pronouns and demonstrative
determiners have the same tag DT in the PTB, but they have different
elementary trees in our grammar (an initial tree and an auxiliary tree,
respectively). In general, a TAG subsumes the annotation of preterminals,
as no elementary tree has only a preterminal and a terminal symbol.

However, the following techniques are also relevant to nonlexical TAG pars-
ing:

• Horizontal markovization refers to the decomposition of flat rules into a
sequence of rules conditioned on the context, and was first proposed by
Collins (1997) and subsequently used by Klein and Manning (2003) and

5

by Chiang (2003) for a TAG model, among others. We use horizontal
markovization as well (see Section 5.3). However, in our model (as in that
of Chiang (2003), but unlike CFG-based models), the adjunction operation
allows for explicitly modeling the argument/adjunct distinction, and the
markovization only applies to adjuncts, and only to adjuncts adjoined at
the same node, not to any expansion of the derived or derivation tree.

• Attachment errors and conjunction scope are problems that also affect
our approach, though note that attachment errors include only those that
are attachments to the same category (for example, attachment of a VP
modifier to a higher or a lower clause), but not the classical NP-VP at-
tachment ambiguities (which are disambiguated by the supertag). The
technique proposed by Collins (1997) which Klein and Manning (2003)
investigate could also be used in TAG parsing (in appropriately modified
form), but we do not investigate this question in this paper.

In summary, we could consider our approach as an alternate form of nonlex-
ical parsing.

3 Generative Dependency Grammar (gdg)

The formalism we use can be presented in several different ways:

• As a generative string-rewriting system, gdg (Generative Dependency Gram-
mar). We present this formalism in detail in (Nasr and Rambow, 2004a).

• As an implementation of Recursive Transition Networks (rtn).

• As a tree-rewriting formalism, namely Tree Insertion Grammar (Schabes
and Waters, 1995).

In this paper, we choose the presentation as a rtn, and refer to the cited
papers for the other views.

3.1 Informal Definition

A gdg is a set of finite-state automata (fsms) of a particular type, namely lexical-
ized automata. A lexicalized automaton with the anchor (word) m describes all
possible dependents of m. Each automaton has a name, which defines not only
the part-of-speech of m, but also the active valency of m (i.e., all word classes
that can depend on it), as well as their linear order. Thus this name can be
thought of as a supertag in the sense of (Bangalore and Joshi, 1999), and we will
adopt the name “supertag” here to avoid confusion with simple part-of-speech
tags. A sample lexicalized automaton is shown in Figure 1.5 The transitions of
the automaton are labeled with pairs 〈f, c〉, where f is a grammatical function

5The initial state of an automaton is labeled 0 while its accepting states are indicated in
boldface. The empty transitions are represented in dotted lines.

6

(subject, object, different types of adjuncts, etc.), and c is a supertag, or by pairs
〈LEX, m〉, where m is an anchor of the automaton. For expository purposes, in
these examples, the supertags c are simply standard part-of-speech tags, but
one should think of the symbol N in Figure 1, for example, as representing an
initial tree whose anchor is of category N . This automaton indicates that the
verb eat has a dependent which is its subject, obligatory and non-repeatable,
and whose category is noun or pronoun; a dependent which is its object which
is optional and non-repeatable; and an adjunct prepositional phrase which is
optional and repeatable.

3210

〈SUBJ, N〉

〈SUBJ, PRO〉

〈CIRC, P 〉

SUBJ DOBJ

N N

CIRC

NN P

〈CIRC, P 〉
〈LEX, eat〉

eateat

PN

eat

CIRCSUBJ

P

SUBJ

〈DOBJ, N〉

V

CIRC DOBJ

Figure 1: A lexicalized automaton and three elementary dependency trees that
can be derived from it

Each word (in the formal language theory sense), i.e., each sentence (in the
linguistic sense) accepted by an automaton is a sequence of pairs 〈f, c〉. Each
such sequence corresponds to a dependency tree of depth one, which we will call
an elementary dependency tree of the grammar. Three sample elementary de-
pendency trees can be seen in the lower part of figure 1. The word corresponding
to the leftmost tree is: 〈SUBJ, N〉 〈LEX, eat〉 〈CIRC, P 〉.

A gdg derivation is defined like a derivation in an rtn (Woods, 1970). It
uses a stack, which contains pairs 〈c, e〉 where c is the name of an automaton
from the grammar, and e is a state of c. When 〈c, e〉 is on the top of the stack,
and a transition of type 〈f, c′〉 goes from state e to state e′ in automaton c,
〈c, e〉 is popped and 〈c, e′〉 is pushed as well as the machine c′ in its initial state
(〈c′, q〉). When we reach an accepting state q′ in c′, the pair 〈c′, q′〉 is popped,
uncovering 〈c, e′〉, and the traversal of automaton c resumes. We need to use a
stack because, as we saw, during a derivation, several automata can be traversed
in parallel, with one invoking the next recursively.

Since our automata are lexicalized, each traversal of a non-lexical arc (i.e., an
arc of the form 〈f, c〉) corresponds to the establishment of a dependency between
the lexical anchor of the automaton we are traversing and which we then put on
the stack (as governor), and the lexical anchor of the new automaton which we
start upon traversing the arc (as dependent). Thus, the result of a derivation

7

can be seen as a sequence of transitions, which can be bijectively mapped to a
dependency tree.

A probabilistic gdg, pgdg, is a gdg in which the automata of the grammar
are weighted finite state automata. For each state in an automaton of the
grammar, the weights of the outgoing arcs represent a probability distribution
over possible transitions out of that state.

3.2 The Sites of an Automaton

The transitions of a lexicalized automaton do not all play the same role. We
have already seen the lexical transitions which provide the words that anchor
the automaton. In addition, we will distinguish the argument transitions which
attach an argument as a dependent to the lexical anchor. All argument transi-
tions which share the same grammatical function label constitute an argument
site of the automaton. An example can be seen in Figure 2, where site 1 is the
subject site, while site 4 is the object site. Note that since we consider in this
example the grammatical object of eat to be optional, the attachment in site 4
can be skipped using its ε -transition.

〈CIRC, P 〉

10

〈SUBJ,PRO〉

〈CIRC, P 〉

2 3 4 5 6 7
〈LEX, eat〉

〈SUBJ, N〉

site 2 site 3 site 4 site 5site 1

〈DOBJ, N〉

Figure 2: Sites of the automaton in figure 1

The transitions associated with adjuncts are called adjunct transitions. They
are grouped into adjunct sites, such as sites 3 and 5 in figure 2. Each adjunct site
corresponds to all adjunctions that can be made at one node of the tree, from
one side. Some adjunct sites are repeatable, while others (such as determiners
in some languages) are not. When several dependencies are generated by the
same repeatable adjunct site, we distinguish them by their position, which we
mark with integers. The argument and adjunct sites are distinguished from the
lexical transitions, which are called lexical sites.

4 Parsing with a gdg

The parsing algorithm is a simple extension of the chart parsing algorithm for
context-free grammar (CFG). The difference is in the use of finite state machines
in the items in the chart. In the following, we will call t-FSM an FSM M if
its supertag is t. If T is the parse table for input sentence W = w1 · · ·wn and
gdg G, then Ti,j contains (M, q) where M is a t-FSM, and q is one of the final

8

states of M , iff we have a complete derivation of substring wi · · ·wj such that
the root of the corresponding dependency tree is the lexical anchor of M with
supertag t. The main operation we use to fill the table is the following. If
Ti,j contains (M, q1), if there is a transition in M from q1 to q2 labeled t, and if
Tj+1,k contains (M ′, q′) where M ′ is a t-FSM and q′ is a final state, then we add
(M, q2) to Ti,k. Note that because our grammars are lexicalized, this operation
corresponds to establishing a dependency between the lexical anchor of M (as
head) and the lexical anchor of M ′ (as dependent). The algorithm is extended
to lattice input following (Chappelier et al., 1999).

Before starting the parse, we create a tailored grammar by selecting those
automata associated with the words in the input sentence. (Note that the
crucial issue is how to associate automata with words in a sentence, which is
the job of the supertagger; we do not discuss this issue in this paper, and refer
to the literature on supertagging (for example, (Bangalore and Joshi, 1999)).
At the end of the parsing process, a packed parse forest has been built. The
nonterminal nodes are labeled with pairs (M, q) where M is an FSM and q a
state of this FSM. Obtaining the dependency trees from the packed parse forest
is performed in two stages. In a first stage, a forest of binary phrase-structure
trees is obtained from the packed forest and in a second stage, each phrase-
structure tree is transformed into a dependency tree. An extended description
of this algorithm can be found in (Nasr, 2004), and a more compact description
in English can be found in (Nasr and Rambow, 2004b).

5 Probabilistic Models for gdg

The parser introduced in Section 4 associates one or several analyses to a su-
pertag sequence S = S1 . . . Sn. Each analysis A can be seen as a set of n − 1
attachment operations of one lexical node as an immediate dependent of an-
other lexical node, and the selection of one supertag token as the root of the
analysis (the single supertag that is not attached in another supertag). For the
sake of uniformity, we will consider the selection of the root as a special kind
of attachment, and A is therefore of cardinality n. In the following, for an at-
tachment operation A, O(A) returns its type (argument, adjunct, root), which
in the case of argument and adjuncts is determined by the site at which it takes
place. Root designates the unique event in A that selects the root.

From a probabilistic point of view, each attachment operation is considered
as an event and an analysis A as the joint event A1, . . . , An. A large range
of different models can be used to compute such a joint probability, from the
simplest which considers that all events are independent to the model that
considers that they are all dependent. The three models that we describe in
this section vary in the way they model multiple adjuncts attaching at the same
adjunct site. Put differently, the internal structure of repeatable adjunct sites
is the only difference between the models. The three models described below
consider that attachments at argument sites are independent of all the other
attachments that make up an analysis. The general model (following (Resnik,

9

1992; Schabes, 1992)) is therefore:

P (A) = P (Root)

×
∏

A∈A|O(A)=argument

P (A)

×
∏

A∈A|O(A)=adjunct

P (A)

What is important is that the three models we present in this section change
the automata, but the changes are fully within sites; if we abstract to the level of
sites, the automata are identical. Furthermore, while the automata implement
different probabilistic models, the same parser described in Section 4 can of
course be used in conjunction with all of them.

The three models for adjunction will be illustrated on a simple example
where two automata c1 and c2 are candidates for attachment at a given repeat-
able adjunct site (which we will simply refer to as a “site”). In the following
models, we estimate parameters from the corpus obtained by running the TAG
extraction algorithm over the PTB training corpus (see Section 6). We can then
easily count the relevant events.

5.1 Model 1: Independent Attachments

In this model, an attachment at a site is considered independent from the other
attachments that can take place at the same site. The probability of each
attachment depends on the dependent automaton, on the governor automaton,
and on the site of the governor automaton at which the attachment takes place.
However, it is independent of the order of the attachments. The model does
therefore not distinguish between attachments that only differ in their order.
For example, the probability of the sequence c1c2c1c2 being adjoined is modeled
as follows (we use here and subsequently a simplified notation where P (c1)
designates the probability of the attachment of c1 at the relevant site in the
relevant automaton):

P (c1c2c1c2) = P (c1)P (c2)P (c1)P (c2)

It is clear that this probability is the same as that of the sequence c1c1c2c2

adjoining, or of any other permutation.

5.2 Model 2: Positional Model

This model adds to the first one the knowledge of the order of an attachment.
But when modeling the probability that automaton c1 attaches at a given site
in order i, it does not take into account the attachments that happened for
order < i. Such models also add a new parameter which is the maximum num-
ber of attachment that are distinguished (from a probabilistic point of view).

10

1

P (o1 = c1)

P (o1 = c2)

P (o2 = c1)

P (o2 = c2)

P (no = 1|no > 0)

P (no = 0)

P (no > 1|no > 0)P (no > 0)

2 3 4 5

P (no > 2|no > 1)

P (no = 2|no > 1)

P (on = c2)

P (on = c1)

6 7

Figure 3: Positional model: a repeatable site with two positions

The automaton for a repeatable site with two positions is shown in Figure 3.
It consists of a series of transitions between consecutive pairs of states. The
first “bundle” of transitions models the first attachment at the site, the second
bundle, the second attachment, and so on, until the maximum number of attach-
ments is reached. This limit on the number of attachments concerns only the
probabilistic part of the automaton, more attachment can occur on this node,
but their probabilities will not be distinguished. These attachments correspond
to the loops on state 6 of the automaton. ε-transitions allow the attachments to
stop at any moment by transitioning to state 7. (The ε-transitions are shown as
dotted lines for reading convenience, they are formally regular transitions in the
FSM.) Under Model 2, the probability of the sequence c1c2c1c2 being adjoined
is:

P (c1c2c1c2) = P (o1 = c1)×P (o2 = c2)×P (on = c1)×P (on = c2)× P (no > 2)

Here, variables o1 and o2 represent the first and second order adjunctions.
Variable on represents adjunctions of order higher than 2. Variable no represents
the total number of adjunctions.

5.3 Model 3: N-Gram Model

The previous model takes into account the order of an attachment and disregards
the nature of the attachments that happened before (or after) a given attach-
ment. The model described here is the frequently used horizontal markovization
(see Section 2.2). Horizontal markovization is, in a sense, complementary to the
positional model since it takes into account, in the probability of an attachment,
the nature of the attachment that occurred just before and ignores the order
of the current attachment. The probability of a series of attachments on the
same side of the same node will be computed by an order-1 Markov chain, repre-
sented as a finite state automaton in Figure 4. The transitions with probabilities

11

3

41

2
P (c1|START)

P (c1|c1)

P (c2|c2)

P (END|START)

P (c1|c2)

P (END|c1)

P (END|c2)

P (c2|c1)

P (c2|START)

Figure 4: N-Gram model: repeatable site with bigram modeling

P (x|START) (respect. P (END|x)) correspond to the occurrence of automaton x
as the first (respectively the last) attachment at this node and the transition
with probability P (END|START) corresponds to the null adjunction (the proba-
bility that no adjunction occurs at a node). The probability of the sequence
c1c2c1c2 being adjoined is now:

P (c1c2c1c2) = P (c1|START)

× P (c2|c1)

× P (c1|c2)

× P (c2|c1)

× P (END|c2)

5.4 Finding the n-best parses

We extend our parser by augmenting entries in the parse table with probabilities.
The algorithm for extracting parses is augmented to choose the best parse (or
n-best parses) in the usual manner. Note that the different models discussed in
this section only affect the manner in which the TAG grammar extracted from
the corpus is converted to an FSM; the parsing algorithm (and code) is always
the same.

6 Extracting a gdg from a Corpus

We first describe the basic approach, we then show how we use the corpus
to estimate probabilities, and finally we discuss the more complex models of
adjunction we introduced in Section 5.

12

6.1 Basic Approach

To extract a gdg (i.e., a lexicalized rtn) from the Penn Treebank (PTB), we
first extract a tag, and then convert it to a gdg. We make the detour via tag
for the following reason: we must extract an intermediate representation first in
any case, as the automata in the gdg may refer in their transitions to any other
automaton in the grammar. Thus, we cannot construct the automata until we
have done a first pass through the corpus. We use tag as the result of the first
pass because this work has already been done, and we can reuse previous work,
specifically the approach of (Chen, 2001) (which is similar to (Xia et al., 2000)
and (Chiang, 2003)).

We first briefly describe the work on tag extraction, but refer the reader to
the just cited literature for details. We use sections 02 to 21 of the Penn Tree-
bank. However, we optimize the head percolation in the grammar extraction
module to create meaningful dependency structures, rather than (for example)
maximally simple elementary tree structures. For example, we include long-
distance dependencies (wh-movement, relativization) in elementary trees, we
distinguish passive transitives without by-phrase from active intransitives, and
we include strongly governed prepositions (as determined in the PTB anno-
tation, including passive by-phrases) in elementary verbal trees as secondary
lexical heads. Generally, function words such as auxiliaries or determiners are
dependents of the lexical head,6 conjunctions (including punctuation function-
ing as conjunction) are dependent on the first conjunct and take the second
conjunct as their argument, and conjunction chains are represented as right-
branching rather than flat.

In the second step, we directly compile this TAG grammar into a set of
FSMs which constitute the gdg and which are used in the parser. To derive a
set of FSMs from a tag, we do a depth-first traversal of each elementary tree
in the grammar to obtain a sequence of nonterminal nodes. We exclude the
root and foot nodes of adjunct auxiliary trees (its “passive valency structure”),
because this structure merely tells us where and from which direction this tree
can be adjoined, and we represent this information differently, namely in the
structures into which this tree can be adjoined. As usual, the elementary trees
are tree schemas, with positions for the lexical heads. Substitution nodes are
represented by obligatory transitions, and in the basic model which assumes
independent attachments, adjunction nodes are represented by optional transi-
tions (self-loops). Adjunction nodes are represented by more complex structures
in the other two models; we return to them below. Each node in the TAG tree
becomes two states of the FSM, one state representing the node on the down-
ward traversal on the left side (the left node state), the other representing the
state on the upward traversal, on the right side (the right node state). For leaf
nodes (and only for leaf nodes), the two states immediately follow one another.
The states are connected with transitions as described in the next paragraph,
with the left node state of the root node the start state, and its right node state

6This is a linguistic choice and not forced by the formalism or the PTB. We prefer this
representation as the resulting dependency tree is closer to predicate-argument structure.

13

the final state (except for predicative auxiliary trees – see below).

t2 t4

S

NP↓ VP

V♦

HEAD

NP↓

NP

N♦

HEAD

t28 t30

VP

VP∗ AdvP

Adv♦

HEAD

VP

VP∗ PP

P♦

HEAD

NP↓

Figure 5: Sample small grammar: trees for a transitive verb, a nominal argu-
ment, and two VP adjuncts from the right

For each pair of adjacent states representing a substitution node, we add
transitions between them labeled with the names of all the trees that can sub-
stitute there. For the lexical head, we add a transition on that head. For
footnodes of predicative auxiliary trees which are left auxiliary trees (in the
sense of Schabes and Waters (1995), i.e., all nonempty frontier nodes are to the
left of the footnode and it therefore adjoins from the left), we take the left node
state as the final state. Finally, in the basic model in which adjunctions are
modeled as independent (we return to the other models below), we proceed as
follows for non-leaf nodes. To each non-leaf state, we add one self loop transition
for each tree in the grammar that can adjoin at that state from the specified
direction (i.e., for a state representing a node on the downward traversal, the
auxiliary tree must be a left auxiliary tree and adjoin from the left), labeled
with the tree name. There are no other types of leaf nodes since we do not
traverse the passive valency structure of adjunct auxiliary tees. The result of
this phase of the conversion is a set of FSMs, one per elementary tree of the
grammar, whose transitions refer to other FSMs. We give a sample grammar in
Figure 5 and the result of converting it to FSMs in Figure 6.

Note that the treatment of footnodes makes it impossible to deal with trees
that have terminal, substitution or active adjunction nodes on both sides of a
footnode. It is this situation (iterated, of course) that makes TAG formally
more powerful than CFG; in linguistic uses, it is very rare, and no such trees
are extracted from the PTB. As a result, the grammar is weakly equivalent to

14

1

1

P (t30|START)

P (t30|t30)

P (t28|t28)

P (END|START)

P (t30|t28)

P (END|t30)

P (END|t28)

〈LEX, HEAD〉〈SUBJ, t4〉
2 3 4

5

6

P (t28|t30) 7
〈DOBJ, t4〉

1
〈SUBJ, t4〉

2 3

1 2
〈LEX, HEAD〉

1 2 3
〈PREP, t4〉〈LEX, HEAD〉

〈LEX, HEAD〉〈SUBJ, t4〉
2 3 4

〈DOBJ, t4〉

P (pos = 1)

P (t28|pos > 2)

P (t30|pos > 2)

P (pos = 0)

P (t28|pos = 1)

P (t30|pos = 1)

P (t28|pos = 2)

P (t30|pos = 2)

P (pos ≥ 2)
5 6 7

〈LEX, HEAD〉
4

〈DOBJ, t4〉

P (t30)

P (t28)

〈CIRC, t30〉

〈CIRC, t28〉

t30t4 = t28

t
M1

2

t
M2

2

t
M3

2

P (t28|START)

Figure 6: FSMs for trees t4 and t30 (top row) from the grammar in Figure 5
(t28 is similar to t4), and three FSMs for tree t2 derived according to the basic
model (second row), the positional model (third row), and the N-gram model
(bottom row)

15

a CFG. In fact, the construction treats a TAG as if it were a Tree Insertion
Grammar (TIG, (Schabes and Waters, 1995)).

6.2 The Basic Probabilistic Model

In the basic model, each event in constructing the derived tree is modeled as in-
dependent. To determine the weights in the FSM, we use a maximum likelihood
estimation on the Penn Treebank with add-X smoothing.7 We make use of a
representation of the PTB which we obtain from the TAG extraction process,
which provides the derivation tree for each sentence, using the extracted TAG.
The derivation tree shows not only which trees are associated with each word in
the sentence, but also into which other tree they are substituted or adjoined, and
at which node (and, in the case of adjunction, from which direction). Given the
construction above, we can always map between tree location and corresponding
substitution and adjunction sites in the FSM that corresponds to the tree. In
the case of adjunction, we distinguish between left and right adjunction, which
correspond to self-loops on the left and right node states, respectively.

Recall that there are three types of nodes in our FSMs, which we group into
sites. In this model, each site consists of two nodes. The sites are connected
by ε-transitions. The lexical sites contain a single obligatory transition on the
lexical head (which is instantiated when an FSM is chosen for a particular word
in the input sentence). This transition is of course given a weight of 1. In the case
of substitution sites, we count all cases of substitution into the corresponding
tree location, and use these counts to estimate the probabilities of the transition
between the left node state and the right node state of the substitution node.
We perform smoothing, in order for formally possible substitutions that have
not been seen in the corpus to have a non-zero probability. Since substitution is
obligatory, there is no special case to consider. Adjunction is optional, so in the
case of adjunction sites, we must also take into account the cases in which no
adjunction occurred at that node. In the following, we assume we are considering
a particular tree, a particular node in that tree, and either adjunction from the
left or from the right to that node. We count the number of times each tree
has been adjoined at that node from the relevant direction, and also how many
times there is a “no adjunction” event. A “no adjunction” event means that
no further adjunction occurs, it marks the end of every sequence of adjunctions
(including the empty sequence of adjunctions). Thus, for every instance in the
corpus of the governing supertag, and for each of its adjunction nodes, there is
exactly one “no adjunction” event for adjunction from the left, and one from
the right, independently of how many adjunctions occurred at that node. We
do not record how many adjunctions take place at a given node and from a
given direction, but rather consider the total number of events — adjunctions
and “no adjunction” events — for the node and direction. We then use counts
of the adjunctions to estimate the probability of the adjunction self-loops on
the first state of the adjunction site, while the probability of the ε-transition to

7After tuning on the development corpus we chose X = 0.00001.

16

Boys/t4 like/t2 cakes/t4
Parents/t4 bake/t2 cakes/t4 daily/t28 in/t30 kitchens/t4 with/t30 gusto/t4
Boys/t4 eat/t2 cakes/t4 beside/t30 dogs/t4 after/t30 snowstorms/t4
Parents/t4 allow/t2 binges/t4 reluctantly/t28

Figure 7: Sample corpus

the second state is estimated based on the number of “no adjunction” events.
We illustrate this estimation with a simple (obviously made-up) example

corpus, shown in Figure 7, in which a supertag is associated to every word.
The elementary trees corresponding to the supertags are represented in Figure
5. We omit the tree addresses at which the operations occur, as the grammar
is so simple. We assume there are no other trees in the grammar. For the
two substitution nodes in t2 and the one in t30, there is only one possible tree
that can substitute, t4, so its probability is 1. The interesting case are the
arcs emerging from the fourth state of tM1

2 , which is the first state of its only
adjunction site. There are six adjunctions at this node in our corpus, two of
t28 and four of t30, as well as four “no-adjunction” events (since there are four
instances of t2). We get probabilities of 0.2 for t28, and of of 0.4 for both t30
and the ε-transition to the next (and final) state without smoothing.

6.3 The Positional and N-Gram Probabilistic Models

In Section 4, we discussed two other models that treat non-leaf of extracted
elementary trees nodes in a more complex manner. For the positional model,
we create a new distribution for each position, i.e., for the first adjunct in that
position, for the second adjunct, and so on. Specifically, we count how often a
particular tree was adjoined in position n, and how often there were exactly n−1
adjunctions (to estimate the probability of no adjunction at position n). The
positional model is parametrized for the number of positions explicitly modeled;
beyond this value of this parameter, we use the basic model. (In fact, the basic
model is the same as the positional model with no positions explicitly modeled.)
We show the probabilities for the middle model in Figure 4 in Figure 8.

In the N-Gram model, we estimate the probabilities of bigrams for those
trees that can be adjoined at the same node. Note that we do not use bigrams
to model the probabilities of all sister nodes in a dependency tree (as do some
models), only those sister nodes that result from adjunctions at the same node
in the governing tree. We estimate the probabilities by counting the number of
bigrams found for a given tree, a given node in that tree, and a given adjunction
direction. If fewer than N cases of the tree were found in the corpus, we use
the category of the node instead. The probabilities are smoothed using linear
interpolation of the unigram and bigram probabilities.

17

P (pos = 0) 0.250,001
P (t28|pos = 1) 0.499,999
P (t30|pos = 1) 0.250,001
P (pos = 1) 0.333,333
P (t28|pos = 2) 0.000,003
P (t30|pos = 2) 0.666,663
P (pos ≥ 2) 0.666,663
P (t28|pos > 2) 0.000,003
P (t30|pos > 2) 0.333,333

Figure 8: Transition probabilities on automaton T M2

2 for the positional model
(see Figure 6), given sample corpus in Figure 7; figures may not add up to 1
due to rounding

7 Results

In this section, we present results using three types of supertagged input: the
gold supertag (i.e., the correct supertag); the output of a trigram HMM su-
pertagger; the (better) output of a maximum entropy supertagger. All results
reported in this section are based on unlabeled evaluation. (In our dependency
representation, the only relevant labels are the arc labels, and we use labels that
identify the deep subject, the deep object, the deep indirect object, and a single
label for all adjuncts.)

7.1 Using the Gold Supertag

In this evaluation, we are interested in exploring how parsing performs in the
presence of the correct supertag. As a result, in the following, we report on data
which has been correctly supertagged. We used Sections 02 to 21 of the Penn
Treebank for training, the first 800 sentences of Section 00 for development,
and Section 23 for testing only. The figures we report are accuracy figures:
we evaluate how many dependency relations have been found. The root node
is considered to depend on itself (a special dependency relation). There is no
need to report recall and precision, as each sentence always has a number of
dependency relations which is equal to the number of words (should a node
remain unattached in a parse, it is given itself as governor). In the evaluation,
we disregard true (non-conjunction) punctuation. The figures for the LDA are
obtained by using the LDA as developed previously by Bangalore Srinivas, but
using the same grammar we used for the full parser. Note that none of the
numbers reported in this section can be directly compared to any numbers
reported elsewhere, as this task differs from the tasks discussed in other research
on parsing.

We use two different baselines. First, we use the performance of the LDA
of (Bangalore and Joshi, 1999). The performance of the LDA on Section 00

18

Method Accuracy Accuracy
on Sec 00 on Sec 23

Baseline: LDA 94.35% 95.14%
Baseline: full parse with random choice 94.73% 94.69%
Model 1 (Independent Adjunction) 95.96%
Model 2 (Positional Model): 1 position 97.54%
Model 2 (Positional Model: 2 position 97.49%
Model 2 (Positional Model: 3 position 97.57%
Model 3 (N-Gram Model), using Supertag 97.73% 97.61%
Model 3 (N-Gram Model), using Category 97.29%

Figure 9: Results (accuracy) for different models using the Gold-Standard su-
pertag on development corpus (Section 00, first 800 sentences) with add-0.001
smoothing, and for the best performing model as well as the baselines on the
test corpus (Section 23)

is about 94.35%, on Section 23 95.14%. Second, we use the full chart parser,
but randomly choose a parse from the parse forest. This baseline measures to
what extent using a probabilistic model in the chart parser actually helps. The
performance of this baseline is 94.73% on Section 00, 94.69% on Section 23.
As we can see, the supertags provide sufficient information to result in high
baselines. The results are summarized in Figure 9.

There are several clear conclusions to be drawn from Figure 9. First, a full
parse has advantages over a heuristic parse, as even a random choice of a tree
from the parse forest in the chart (i.e., without use of a probabilistic model)
performs nearly as well as the heuristic LDA. Second, the use of even a simple
probabilistic model using no lexical probabilities at all, and modeling adjunc-
tions as entirely independent, reduces the error rate over the non-probabilistic
baseline by 22.8%, to 4.04%. Third, the modeling of multiple adjunctions at one
node as independent is not optimal, and two different models can further reduce
the error rate substantially. Specifically, we can increase the error reduction to
53.0% by modeling the first adjunction (from left to right) separately from all
subsequent ones. However, presumably due to sparseness of data, there is no
major advantage to using more than one position (and modeling the first and
second adjunction separately). Furthermore, switching to the n-gram model in
which an adjunction is conditioned on the previously adjoined supertag as well
as the governing supertag, the error reduction is further increased slightly to
56.6%, with an error rate of 2.27%. This is the best result obtained on the
development corpus using gold supertags. On the test corpus, the error rate
increases to 2.39%.

19

Number of paths Stag. Acc. Dep. Acc.
1 81.3% 71.1%
10 85.6% 76.4%
20 88.2% 77.9%
50 89.2% 78.4%
100 89.9% 79.4%
500 90.7% 79.9%
1000 90.8% 79.3%
1500 90.9% 79.5%
2000 90.9% 79.7%

Figure 10: Accuracy of the trigram tagger and the parser on the development
corpus (first 800 sentences from Section 00) as a function of the number of su-
pertagging paths taken into account: accuracy of the supertags of the best path
among the n-best paths (“Stag. Acc.”) and accuracy of the best dependency
parse among the n-best paths (“Dep. Acc.”)

7.2 Using Supertags Predicted by an HMM Tagger

In this section, we present results on an initial subsection of Section 00 of the
PTB (800 sentences), using a standard trigram HMM tagger with backoff, where
the parameters were calculated using the CMU Language Modeling Toolkit. An
HMM tagger used in conjunction with a Viterbi decoder can be used to obtain
n-best paths. Since our parser was extended to take lattices as input, we give
the parser as input a lattice representing the n-best paths.

We show in Figure Figure 10 the results as a function of the number of paths.
As we can see, beyond 100 paths, the results of both the supertagger and the
parser fluctuate a bit, but presumably not at a statistically significant level. We
assume (backed by the analysis of some cases) that this is due to the fact that
the paths start to differ only in choices which do not affect the parse. Note that
the LDA obtains a score of about 75% dependency accuracy on the 1-best path;
to process multiple paths, it must be run multiple times, and there is no way to
choose among multiple results.

7.3 Using Supertags Predicted by a Maximum Entropy
Tagger

In this subsection, we report results using two innovations: we use a better-
performing tagger, and we use a much faster parser. We discuss these in turn.

Given the non-local nature of supertag dependencies, we move from an
trigram-based HMM tagger to a tagger based on a standard maximum entropy
(maxent) model (Bangalore et al., 2005). The features used for the maxent
model include: the lexical and part-of-speech attributes from the left and right
context in a six-word window and the lexical, orthographic (e.g. capitalization,
prefix, is digit) and part-of-speech attributes of the word being supertagged.

20

Category Dependency Accuracy Number
Det 94.9% 3,989
Adj 91.8% 3,190
N 88.6% 15,675

P (no to) 73.6% 3677
Adv 81.5% 1554
V 83.2% 6262

Conj 68.3% 1124

Figure 11: Accuracy of choice of governor for words of different categories in
the best parse on Section 00; the third column shows the number of cases in the
test corpus

Note there is no use of preceding supertags, which permits very fast (parallel)
decoding of a sentence. However, as a result, we do not obtain n-best paths, but
only n-best supertags (for each word). The 1-best accuracy of this supertagger
is 85.7% and 85.5% on Sections 00 and 23, respectively.

The use of a new tagger has an important consequence: since the tagger
no longer emits n-best paths of supertags but n-best supertags per word, the
number of possible paths increases exponentially with the sentence length, re-
sulting in a performance problem for the original implementation of our parser.
We therefore reimplemented the parser using the parsing approach of (Boullier,
2003), in which a context-free grammar is compiled into an Earley-type parser.
In this approach, the plain gdg is transformed into a CFG, from which the Ear-
ley parser is compiled. The parser outputs a shared parse forest from which
the search algorithm extracts the best parse, according to a given probabilistic
model. Of course, we chose our best-performing model (the N-gram model).
The main advantage of this parser is a significant speed-up, which allows us to
take more supertags into account when parsing, and to use a wider beam. All
results that we report in this subsection were obtained using this reimplemen-
tation of the parser. These results represent the best performance of our parser
at the present moment.

The new parser has two parameters: the beam width, and the number of
supertags taken into account in the input. Suppose α is the beam width. Then if
the highest confidence score for all supertags of a given word is s, we eliminate all
supertags with a confidence score less than s/α. Using Section 00, we determine
the optimal values of these parameters to be 9 input supertags per word, and a
beam width of 224. The tagger takes about 8.2 seconds for 1,000 words (when
tagging an entire section of the Penn treebank), while the parser takes about 7
seconds at these parameter settings, for a total of about 15.2 seconds per 1,000
words end-to-end. A smaller beam or a smaller number of input supertags
results in a faster parse, at the expense of accuracy.

Overall we obtain a dependency accuracy score of 84.7% and 84.8% on Sec-
tion 00 and 23, respectively, of the Penn Treebank. This result is worse than that

21

Length ≤ % Corr. Sent. Dep. Accuracy Stag acc. Number
5 8194% 8643% 7868% 72
10 7181% 8949% 8251% 259
15 5728% 8956% 8278% 604
20 4611% 8855% 8235% 989
25 3920% 8756% 8162% 1306
30 3397% 8700% 8112% 1572
35 3069% 8637% 8053% 1756
40 2937% 8611% 8021% 1835
45 2868% 8593% 8008% 1883
50 2839% 8571% 7987% 1902
80 2817% 8545% 7959% 1917
300 2811% 8467% 7884% 1921

Figure 12: Using Maxent supertagger, percentage of completely correct sen-
tences, accuracy of choice of governor, and accuracy of supertag in best parse
for sentences of different maximum length in Section 00: sentences with com-
pletely correct parses (“corr. Sent.”), accuracy of the best dependency parse
among the n-best paths (“Dep. Acc.”), accuracy of the supertags of the best
path among the n-best paths (“Stag. Acc.”), and number of sentences of the
specified length (“Number”)

obtained by Clark and Curran (2004) (92.5% recall, 92.1% precision). However,
their measure does not take into account the direction of the dependency arc,
while our accuracy figure does. Furthermore, the gold dependency structures
are different (ours are oriented towards the predicate-argument structure), so a
direct comparison is difficult. (Clark and Curran (2004) use recall/precision as
some nodes may not be assigned governors. We use accuracy as all nodes are
assigned governors, so for us recall, precision, and accuracy all have the same
value.)

We give some additional data for the results for Section 00. First, we observe
that the root is chosen correctly in 90.0% of cases. 99.5% of sentences have a
complete analysis (i.e., analyses in which all nodes except a single root node are
dependent on another node in the sentence, with no unattached subtrees), and
28.1% have a fully correct analysis. Figure 11 shows the distribution of attach-
ment error rate for different part-of-speech categories. We see that determiners
and adjectives, both nominal dependents with restricted syntax in English (and
a simplified analysis in the PTB) do best, while conjunctions do worst. The
relatively low performance on verbs reflects the difficulty of determining proper
attachment for relative clauses.

Finally, Figure 12 shows the results as a function of maximum sentence
length. We see the expected deterioration with sentence length, except that
very short sentences do not perform as well as slightly longer sentences. We also
note that the supertag accuracy on the best parses is worse than the accuracy

22

Type Corpus Stag accuracy Parsing accuracy
HMM Sec. 00 (800 sentences) 81.3% 79.7%

Maxent Sec. 00 85.7% 84.7%
Maxent Sec. 23 85.5% 84.8%
Gold Sec. 00 (seen stags) 100.0% 97.7%

Figure 13: Summary of results for the 1-best supertagger and the resulting
parser (which, except for the Gold case, is based on n-best supertags or supertag
paths)

of the supertagger.

7.4 Summary of Results

We summarize the results in Figure 13. As we can see, increased performance
in supertagging leads to increased performance in parsing, as we would expect.
Given only three data points, with rather different characteristics, we do not
wish to hazard generalizations, but the data suggests strongly that further re-
search into improving supertagging will also directly improve parsing.

8 Conclusion

We have presented a nonlexical probabilistic chart parser for TIG which works in
conjunction with a supertagger. It is implemented using finite-state automata.
We have shown that this parser improves on the results of the Lightweight De-
pendency Analyzer, while retaining the intuition of localizing all lexical infor-
mation in the supertagging stage. Furthermore, we have shown that the parser
performance is roughly a linear function of the supertagger performance. This
implies that research in further increasing the performance of a supertagger will
also directly benefit parsing.

Acknowledgments

We would like to thank John Chen for letting us use his extracted grammar;
Srinivas Bangalore, Patrick Haffner, and Gaël Emamifor the use of their su-
pertagger; Pierre Boullier for for his patient and efficient assistance during the
development of the new parser; and an anonymous reviewer for helpful com-
ments.

Bibliography

Srinivas Bangalore and Aravind Joshi. 1999. Supertagging: An approach to
almost parsing. Computational Linguistics, 25(2):237–266.

23

Srinivas Bangalore, Patrick Haffner, and Gaël Emami. 2005. Factoring global
inference by enriching local representations. Technical report, AT&T Labs
– Reserach.

Pierre Boullier. 2003. Guided Earley parsing. In Proceedings of the 8th Interna-
tional Workshop on Parsing Technologies (IWPT03), pages 43–54, Nancy,
France, April.

Jean-Cédric Chappelier, Martin Rajman, and Antoine Rozenknop. 1999. Lat-
tice parsing for speech recognition. In Traitement Automatqiues du Langage
Naturel (TALN’99), Cargèse, France.

Eugene Charniak. 2000. A maximum-entropy-inspired parser. In 1st Meet-
ing of the North American Chapter of the Association for Computational
Linguistics (NAACL’00), pages 132–139.

John Chen. 2001. Towards Efficient Statistical Parsing Using Lexicalized Gram-
matical Information. Ph.D. thesis, University of Delaware.

David Chiang. 2003. Statistical parsing with an automatically extracted tree
adjoining grammar. In Rens Bod, Remko Scha, and Khalil Sima’an, editors,
Data-Oriented Parsing. CSLI Publications, Stanford.

Stephen Clark and James R. Curran. 2004. Parsing the WSJ using CCG and
log-linear models. In 42nd Meeting of the Association for Computational
Linguistics (ACL’04), Barcelona, Spain.

Stephen Clark, Julia Hockenmaier, and Mark Steedman. 2002. Building deep
dependency structures with a wide-coverage CCG parser. In 40th Meeting
of the Association for Computational Linguistics (ACL’02), pages 327–334.

Michael Collins. 1997. Three generative, lexicalised models for statistical pars-
ing. In Proceedings of the 35th Annual Meeting of the Association for Com-
putational Linguistics, Madrid, Spain, July.

Daniel Gildea. 2001. Corpus variation and parser performance. In Proceed-
ings of the 2001 Conference on Empirical Methods in Natural Language
Processing (EMNLP01), pages 167–202, Pittsburgh, PA.

Julia Hockenmaier and Mark Steedman. 2002. Generative models for statistical
parsing with combinatory categorial grammar. In acl02, pages 335–342.

Dan Klein and Christopher D. Manning. 2003. Accurate unlexicalized parsing.
In 41st Meeting of the Association for Computational Linguistics (ACL’03).

Alexis Nasr and Owen Rambow. 2004a. A simple string-rewriting formalism
for dependency grammar. In Recent Advances in Dependency Grammar:
Proceedings of the Coling Worshop.

24

Alexis Nasr and Owen Rambow. 2004b. Supertagging and full parsing. In
Proceedings of the Workshop on Tree Adjoining Grammar and Related For-
malisms (TAG+7), Vancouver, BC, Canada.

Alexis Nasr. 2004. Analyse syntaxique probabiliste pour grammaires
de dépendances extraites automatiquement. Habilitation à diriger des
recherches, Université Paris 7, December.

Joakim Nivre. 2006. Inductive Dependency Parsing. Text, Speech, and Lan-
guage Technology. Springer.

Philip Resnik. 1992. Probabilistic tree-adjoining grammar as a framework
for statistical natural language processing. In Proceedings of the Four-
teenth International Conference on Computational Linguistics (COLING
’92), Nantes, France, July.

Anoop Sarkar and Aravind Joshi. 2003. Tree-adjoining grammars and its appli-
cation to statistical parsing. In Rens Bod, Remko Scha, and Khalil Sima’an,
editors, Data-Oriented Parsing. CSLI Publications, Stanford.

Yves Schabes and Richard C. Waters. 1995. Tree Insertion Grammar: A cubic-
time, parsable formalism that lexicalizes Context-Free Grammar without
changing the trees produced. Computational Linguistics, 21(4):479–514.

Yves Schabes. 1992. Stochastic lexicalized tree-adjoining grammars. In Pro-
ceedings of the 15th [sic] International Conference on Computational Lin-
guistics (COLING’92).

William A. Woods. 1970. Transition network grammars for natural language
analysis. Commun. ACM, 3(10):591–606.

Fei Xia, Martha Palmer, and Aravind Joshi. 2000. A uniform method of gram-
mar extraction and its applications. In Proc. of the EMNLP 2000, Hong
Kong.

Hiroyasu Yamada and Yuji Matsumoto. 2003. Statistical dependency analy-
sis with support vector machines. In Proceedings of the 8th International
Workshop of Parsing Technologies (IWPT2003), Nancy, France.

25

