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Abstract - Resumeé

In this paper, we present a formalism for dependency grammar based on some key ideas from
Tree-Adjoining Grammars. We represent a dependency grammar in terms of elementary de-
pendency trees anchored on lexical items. These elementary trees correctly capture the depen-
dencies associated with the lexical anchor. These trees may also include nodes that represent
items on which the lexical anchor depends. These nodes are well motivated. We also describe
operations that combine elementary or derived dependency trees, which are analogous to “sub-
stitution” and adjoining” in TAG. This characterization of a dependency grammar allows one
to transfer all the key insights from TAG to dependency grammars.

Dans cet article, nous présentons un formalisme pour les grammaires de dépendence qui est basé
sur quelques idées-clef des grammaires d’arbres adjoints (TAG). Nous représentons une gram-
maire de dépendence par un ensemble d’arbres élémentaires qui sont anchrés par des lexemes.
Ces arbres élémentaires représentent les dépendences associés avec I’anchre lexical, y inclus
(dans le cas des adjoints) les noeuds dont il dépend. Nous définissons aussi des opérations pour
combiner des arbres (élémentaires ou dérivés) inspirés des opération de TAG: la substitution et
I’adjonction. Cette définition formelle d’une grammaire de dépendence nous permet de dériver
facilement certains ordres de mots non-projectifs.
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1 Introduction

In (Rambow & Joshi, 1997), we compared TAGs and Dependency Grammars from the perspec-
tive of word order variation.! We observed that the derivation trees in TAG resemble depen-
dency structures, but the derived trees are phrase-structure trees. In the present paper our goal is
quite different: we will present a formalism for dependency grammar based on some key ideas
from Tree-Adjoining Grammars, but which does not use phrase structure at all. We represent
a dependency grammar in terms of elementary dependency trees anchored on lexical items.
These elementary trees correctly capture the dependencies associated with the lexical anchor.
These trees will also include nodes that represent items on which the lexical anchor depends.
Thus each tree captures all and only the dependents of the lexical anchor plus ancestor nodes
on which the lexical anchor itself depends. These nodes are well motivated. We also describe
operations that combine elementary or derived dependency trees, which are analogous to “sub-
stitution” and “adjoining” in TAG. This characterization of a dependency grammar allows one
to transfer all the key insights from TAG to dependency grammars. This work has some close
connections to (Nasr, 1995; Nasr, 1996; Candito & Kahane, 1998; Kahane, 2002), which we
will briefly discuss later. However, like our previous paper and unlike other formal models of
MTT (in particular, (Kahane, 2002)), we depart from MTT significantly in that we do not main-
tain a separation between an representation of unordered surface syntax and a representation of
ordered deep morphology; instead, we suggest that in the derivation (i.e., construction) of the
syntactic representation, the word order is determined at the same time, since the structures we
use use for this purpose fix word order, and the operations we use to combine the structures
determine the word order of the combined structure, given the orders of the two structures to
be combined. In this respect, our formalism follows TAG. We believe there are computational
advantages to such a system (both for applications, and for modeling human processing), but
we do not go into details in this paper.

The paper is organized as follows. First we will present a short introduction to TAGs including
a short comparison with Dependency Grammars. Then we will describe our new approach,
mainly by means of examples and then comment on this new formalism from the perspective
of insights from TAGs. As in our previous paper, our focus is on non-projective structures, as
we feel these pose a particular challenge to the formal description of dependency grammar. We
conclude with a comparison to other approaches.

2 Introduction to TAGS

In a Tree Adjoining Grammar (TAG), the elementary structures are phrase-structure trees. A
sample grammar is given in Figure 1. It consists of three trees, one of which is rooted in S, and
two of which are rooted in NP. Note that we have defined TAG in such a way that a tree is now
an elementary object of the grammar.

For a general introduction to TAG, see (Abeill @ & Rambow, 2000); for a summary of mathematical and
computational properties of TAGs and some related phrase-structure formalisms, see (Joshi et al., 1991); for a
discussion of the relation between TAG and categorial systems, see (Joshi & Kulick, 1995).
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S NP NP
/\
NPV VP John Lyn
/\
\Y NPV
|
likes

Figure 1: A sample Tree Adjoining Grammar

We combine elementary structures in a TAG by using two operations, substitution and adjunc-
tion. We can substitute tree [ into tree « if there is a nonterminal symbol on the frontier of «
which has the same label as the root node of 5. We can then simply append (5 to « at that node.
A derivation in our sample TAG is shown in Figure 2. The trees representing the two arguments
of the verb like, John (a) and Lyn («3), are substituted into the tree associated with the verb
(1), yielding the well-formed tree ay, from which the sentence John likes Lyn can be read off.

[of [of

1

4
S s
/\ /\
NPV VP NP VP
Y NPV John Vv NP
| | |
likes /]\ likes Lyn
“2p Y2 P
| |
John Lyn

Figure 2: Substitution of arguments into initial tree of likes

In adjunction, a tree « (called an “initial tree”) contains a non-terminal node labeled A; the root
node of tree 5 (an “auxiliary tree”) is also labeled A, as is exactly one non-terminal node on
its frontier (the “foot node”). All other frontier nodes are terminal nodes or substitution nodes.
We take tree o and remove the subtree rooted at its node A, insert in its stead tree 3, and then
add at the footnode of 3 the subtree of « that we removed earlier. Thus, adjunction can have
the effect of inserting one tree into the center of another. Our linguistic example is continued
in Figure 3. Tree 3, containing the adverb is adjoined at the VP node into tree ay. The result
is tree 5. Note that a5 is composed of trees a4, as, a3 and 3y, each of which correspond to
exactly one lexical item.

TAG elementary structures have an extended “domain of locality”. This increased domain of
locality allows the linguist to associate each tree with one lexical head, and to state linguistic
relationships of the lexical head (such as subcategorization, semantic roles of arguments, case
assignment, agreement, and word order) locally in the elementary tree. We call a formalism
which has one lexical head per tree a “lexicalized grammar”. As an example, take agreement
between subject and verb in English. The linguist working in TAG can simply state (by using
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a, B, ag
S /\VP S
/\ /\
NP VP realy VP NP VP
| T
John Vv NP John readly VP
| |
likes Lyn \% NP

likes Lyn

Figure 3: Adjunction of really into initial tree

some feature-based notation) that the verb and the NP in subject position in tree a;; of Figure 1
agree with respect to number.

3 A Formalism for Dependency Grammars

We now present a formalism which, unlike TAG, directly derives a dependency structure, but
still allows us to handle the same cases of non-projectivity that TAG handles. The idea is to
define a grammar with elementary dependency trees which encode both dependency and word-
order, and that are combined using well-defined operations. This approach, like TAG, means
that all word-order phenomena are expressed locally in the elementary trees; there are no global
word-order rules. We do not define this formalism formally but give some examples. We start
out with English in this section, then turn to German and Dutch in the next section.

In Figure 4 we show how the dependency tree for John eats apples often can be composed out
of four elementary dependency trees, one each for eats, John, apples, and often. The tree for
eats shows a black node associated with eats, the lexical anchor. The white nodes show the
dependents of eats.> The white nodes represent variables in a sense. We also associate labels
with nodes that indicate the lexical class, for example, N, and perhaps other feature content
(such as [wh:+]) as needed. In brackets we add the lexical content — if there is lexical content,
the node is black, white otherwise. Note that the trees (in their graphical representation) fully
specify the ordering of all the nodes in the tree. The elementary trees of John and apples are
atomic as they have no white nodes. The elementary tree for often has no dependents. However,
the white node stands for an ancestor node on which often depends (representing its passive
valency).

We initially use a single combination operation, which we will informally call attachment. An
attachment consists in unifying a non-lexical white node with a lexical black node. Attachment
is thus non-directional. Given the trees in Figure 4 on the left and the double-headed arrows
indicating attachment, it is clear that we can derive the tree on the right.

For adjuncts such as often, the question immediately arises how we can state word order con-
straints. The ordering of the dependent (often in this case) and the governor is fixed in the

2The black node/white node notation is borrowed from (Nasr, 1996).
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tree, as in all our elementary trees. However, the formalism so far does not specify how to fix
the order of often with respect to its sisters after it is combined with the tree for eat.® Several
options are available. We can simply leave the word order of adjuncts with respect to sisters
underspecified, and overgenerate ungrammatical sentences (such as *John eats often apples).
We can let the dependent tree (the adjunct) specify restrictions on its immediate neighbors; for
example, English adverbials could state that they may not immediately follow a verb. Or, finally
(and this is probably the most appealing solution), we can let the governor specify restrictions
on adjuncts, in this case that adverbials may not appear between the head and the direct object.*

V [eats] V [eats]
Adv [often] N [John] N [apples]  Adv [often]
. .

N [John] N [apples]

Figure 4: Some elementary tree (left) with attachments; final derived tree (right). Double-
headed arrows show attachments.

In Figure 5 we show a slightly more complicated example. The elementary tree for eat has
three white nodes. One of these will be replaced with the black node that corresponds to John,
which is one of the dependents of eat. The other dependent of eat is the white node with label
wh+. This dependent should have appeared below the node for eat but we show it in a displaced
location. First, we have another white node above the black node associated with eat. This is
an ancestor node on which the node for eat depends. This is predicted by the lexical anchor eat
because it is in a non-finite form and therefore must in turn depend upon another node, which in
the present case is unified with the black node for does. (Note that we assume that the category
Aux is a subtype of V and therefore Aux and V unify to Aux.) This additional node in the
elementary tree for eat provides a location for attaching the white node (wh+ node) and thus
allows us to model the wh-movement in the elementary tree for eat. We could also add a white
node under the black node for eat and coindex it with the wh+ white node (i.e., a trace). This
additional white node will be an empty node, i.e., it will not be unified with any black node.
This will make it analogous with TAG. However we have not followed this path as we want our
representations close to dependency grammars.

Note that (even if we do not use traces) there are two cases of white nodes. In the first case,
there is no lexical content at all (empty brackets). The white node merely expresses the fact
that a node of a certain type must be present at the end of the derivation (active valency of the
governor). Itis like a substitution node in TAG, and is used for (obligatory) arguments, or, in the

3This is the same problem for many dependency formalisms; for example, (Mel’uk & Pertsov, 1987) provide a
very detailed list of English “syntagms”, i.e. orderings of governor and dependent, but do not discuss the ordering
of sisters.

4This approach may be similar in some respects to the approach of (Gerdes, 2002), though his machinery is
much more powerful.
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case of adjuncts, it is like the footnode in modifier auxiliary trees, indicating where the modifier
can adjoin. In the second case, the white node has no explicit lexical content either but the node
is closely associated with a black node of the same category in the same tree (brackets with an
empty string e). In this case, the white node is predicted from the morphology or semantics
of the black node. Additional words may be added (depending on the exact feature content),
but these words will not be autosemantic. The distinction between the two types of white
nodes reflects the distinction between the dependency between a verb and one of its arguments,
and the dependency between a verb and an auxiliary: clearly, these are very different types of
dependencies (as reflected in the fact that the former, but not the latter, appear in the DSyntR of
MTT).

The elementary tree for eat is of depth greater than one. It is this feature, i.e., the possibility
of having an ‘extended domain of locality’, that allows us to show the two dependents of eat
at different levels and thus account for the correct valency as well as the ‘movement’. This is
exactly what is achieved in a TAG by having elementary trees not just one level phrase structure
trees but possibly larger tree—large enough to encapsulate all the arguments of the lexical anchor
but also capture the relative positions of the anchor and its arguments.

V [e mode: question]

Aux [does]
N [wh:+] i V [eat]
i o N ] N [what] V [ed]
Aux [does]
o i N [John]
N [what]
o
N [Johnl

Figure 5: Trees for eats with wh-movement and other trees (left); derived tree (right).

Finally, we give a yet more complex example, which involves the composition of a complement-
taking predicate and the complement itself. When combined with wh-movement, we get an
example that brings out all the key aspects of TAG. In this example, in Figure 6, the elementary
tree for eat is the same as in Figure 4. One of the dependents is dislocated, as before. The
elementary tree for think has two white nodes, to one which will be unified with the black node
for Mary (its nominal subject) and the other with the black node associated with eat (its clausal
object). In this case, we cannot view the operation of attachment simply as one in which we
equate (unify) a black node and a white node, because there is more structure associated with the
white node (and we cannot have a structure in which a node has two distinct governors). Instead,
we use a more complex notion of attachment: after unifying the black node for eat with the
white node below think, we insert the whole think tree in the middle of the eat tree, in order to
obtain a new tree. Note that, as in simple attachment, we have unified exactly one pair of nodes
(one black, one white). It is clear that complex attachment mirrors adjunction of a predicative
auxiliary tree (a tree representing a matrix verb) in TAG. For our dependency formalism (in
analogy to TAG), we will require that when we adjoin a tree at a node, the adjoined tree must
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have a root node and a leaf node of the same lexical category (V in our case); furthermore, the
leaf node must have no lexical content, not even an empty category. Put differently, it must be
an argument of the head (V[]).

V [e mode: question]
V [think] Aux [does]

V [et]
N [wh:+] i
NIl

V [think]

I [ N[] V] N [what]
Aux [does] i
[ i V [est]
N [what] ()
(] N [Mary] N [John]
N [John]

Figure 6: Tree for eats with long-distance wh-movement (left); derived tree (right).

4 Examples from German and Dutch

Wh-movement in English is one type of non-projectivity; it is characterized by the fact that only
one phrase is “displaced” and causes non-projectivity. In cross-serial dependencies, we have
another example of non-projectivity which involved an unbounded number of phrases, and is
thus more difficult to account for. We start out with German nested dependencies. For simplic-
ity, we present German syntax with English words. In the following, the intended meaning of
the German and Dutch examples is ‘(because) John tried to teach Mary to feed the pigs’.

(1) (because) John Mary pigs to-feed to-teach tried

This kind of sentence is not a non-projective structure, but we present it for completeness. The
trees are really the same as for the simple English case shown in Figure 4, except that they
represent the underlying SOV word order in German (as opposed to SVO for English). The
derivation proceeds by attaching the root node of each embedded tree at the white verbal node
of its governor. This operation is exactly identical to substituting the embedded tree at the the
V[] node of the matrix clause. The result is shown below in Figure 7. As can be seen, we obtain
the desired word order, and this is the dependency tree one would expect.

We now turn to Dutch:
(2) (because) John Mary pigs tried to-teach to-feed

For Dutch, the elementary are as shown in Figure 8, at the top. We can see that they are identical
to German ones — except that, as in the English wh-moved case, we have added an additional
node, above the actual verb. However, compared to the English example of wh-movement, the
non-finite verb and the empty node have switched places and the verb actually dominates an
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M V [to teach] V [to feed] .%0 V [tried]
/ V [to teach]

N[ VI N[l VI NT] N [John]
V [to feed]
¢ ¢ ¢ N [Mary]
o o o N [pigs]
N [John] N [Mary] N [pigs]

Figure 7: Trees for German nested dependencies

empty node! Why is that? Following much of the (transformational) literature on Germanic,
we claim that verbs can “raise” to higher positions in certain languages such as Dutch (or in
fact, must do so). For clarity, we have annotated the empty node with the verb of its elementary
tree. We now attach each clause to its immediately embedded clause at the position “vacated”
by the verb, and we obtain the structure shown in Figure 8 below. We can see that the word
order is as desired. If we consider the empty nodes as well (and pay attention to the verbs in
parentheses), we can also retrieve the original predicate-argument structure from the derived
tree.

V [to teach] V [to feed] V [to feed]
V V [e (teach)] V [e (feed)]] V [to teach]
N[ VI N[l VI N
V [e (teach)]
i I I N [Johr]
o o ) N [Mary]
N [John] N [Mary] N [pigd]

N [pigs]

Figure 8: Trees for Dutch cross-serial dependencies

5 Comparison to Other Approaches

Our work is directly inspired by that of (Nasr, 1996), who used a similar tree formalism for
dependency grammar. He was mainly inspired by the desire to co-locate more than one word
in a structure, in order to represent multi-word lexemes and idioms. However, he did not use an
operation analogous to adjunction.

While our previous paper (Rambow & Joshi, 1997) addressed the issue of non-projectivity, it did
not present a formalism for dependency grammar; rather, it used the derivation tree of TAG as
a dependency tree. We showed that the derivation tree could in fact be non-projective. (Candito
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& Kahane, 1998) addressed certain issues in comparing the derivation tree to the dependency
tree, and suggested ways of mapping directly to a more semantic level of representation.

Several researchers have addressed the issue of defining a formalism for dependency grammar
that can directly derive non-projective structures (Lombardo & Lesmo, 1998; Kahane et al.,
1998; Kahane, 2000; Kahane, 2002). This work differs from ours in an important way: in these
approaches, nodes in a dependency tree are allowed to be reassigned as dependents of an an-
cestor. In this manner, non-projective structures can be derived since nodes get new governors;
however, in those versions that have been shown to have some of TAG’s computationally be-
nign properties (Lombardo & Lesmo, 1998; Kahane et al., 1998), it is still impossible to derive
Dutch cross-serial dependencies.

6 Conclusion

We have sketched a formalism for dependency grammars based on Tree Adjoining Grammar.
Like TAG, this formalism can generate certain long-distance phenomena, which in dependency
grammar lead to non-projective trees, by specifying all relevant word order facts in the local
trees associated with each lexical head. No global word order rules are necessary: the formalism
is simpler, and we obtain appealing computational properties.® Of course, nothing is free is
linguistics, and the tradeoff is that we need to introduce additional nodes associated with the
lexical head. Such empty nodes are not part of the standard dependency representation. They
are related to the notion of “head movement” introduced in Chomskyan theory in the eighties,
according to which lexical heads have several different positions in which they can be realized.
The syntax of the arguments and adjuncts is specified with respect to all of these possible head
positions, not with respect to the actual head position in a given construction. However, we
think that, while the notion of multiple possible head positions may not, at first, be a natural one
for dependency syntacticians, it should be considered more carefully. For example, (Gerdes,
2002) uses the notion of “topological field” to describe German syntax in the context of MTT,®
and the German topological fields of Vor-, Mittel- and Nachfeld are in fact delimited by the
possible positions of the verbal head (in second and final positions).
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