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Abstract

We present an approach to using a mor-
phological analyzer for tokenizing and
morphologically tagging (including part-
of-speech tagging) Arabic words in one
process. We learn classifiers for individual
morphological features, as well as ways
of using these classifiers to choose among
entries from the output of the analyzer. We
obtain accuracy rates on all tasks in the
high nineties.

1 Introduction

Arabic is a morphologically complex language.1

The morphological analysis of a word consists of
determining the values of a large number of (or-
thogonal) features, such as basic part-of-speech (i.e.,
noun, verb, and so on), voice, gender, number, infor-
mation about the clitics, and so on.2 For Arabic, this
gives us about 333,000 theoretically possible com-
pletely specified morphological analyses, i.e., mor-
phological tags, of which about 2,200 are actually
used in the first 280,000 words of the Penn Arabic
Treebank (ATB). In contrast, English morphological
tagsets usually have about 50 tags, which cover all
morphological variation.

As a consequence, morphological disambigua-
tion of a word in context, i.e., choosing a complete

1We would like to thank Mona Diab for helpful discussions.
The work reported in this paper was supported by NSF Award
0329163. The authors are listed in alphabetical order.

2In this paper, we only discuss inflectional morphology.
Thus, the fact that the stem is composed of a root, a pattern,
and an infix vocalism is not relevant except as it affects broken
plurals and verb aspect.

morphological tag, cannot be done successfully us-
ing methods developed for English because of data
sparseness. Hajič (2000) demonstrates convincingly
that morphological disambiguation can be aided by
a morphological analyzer, which, given a word with-
out any context, gives us the set of all possible mor-
phological tags. The only work on Arabic tagging
that uses a corpus for training and evaluation (that
we are aware of), (Diab et al., 2004), does not use
a morphological analyzer. In this paper, we show
that the use of a morphological analyzer outperforms
other tagging methods for Arabic; to our knowledge,
we present the best-performing wide-coverage to-
kenizer on naturally occurring input and the best-
performing morphological tagger for Arabic.

2 General Approach

Arabic words are often ambiguous in their morpho-
logical analysis. This is due to Arabic’s rich system
of affixation and clitics and the omission of disam-
biguating short vowels and other orthographic di-
acritics in standard orthography (“undiacritized or-
thography”). On average, a word form in the ATB
has about 2 morphological analyses. An example of
a word with some of its possible analyses is shown
in Figure 1. Analyses 1 and 4 are both nouns. They
differ in that the first noun has no affixes, while the
second noun has a conjunction prefix (+� +w ‘and’)
and a pronominal possessive suffix ( � + +y ‘my’).

In our approach, tokenizing and morphologically
tagging (including part-of-speech tagging) are the
same operation, which consists of three phases.
First, we obtain from our morphological analyzer a
list of all possible analyses for the words of a given
sentence. We discuss the data and our lexicon in



# lexeme gloss POS Conj Part Pron Det Gen Num Per Voice Asp

1 wAliy ruler N NO NO NO NO masc sg 3 NA NA
2 � ilaY and to me P YES NO YES NA NA NA NA NA NA
3 waliy and I follow V YES NO NO NA neut sg 1 act imp
4

�
l and my clan N YES NO YES NO masc sg 3 NA NA

5
�
liy˜ and automatic AJ YES NO NO NO masc sg 3 NA NA

Figure 1: Possible analyses for the word ����� � wAly

more detail in Section 4.
Second, we apply classifiers for ten morphologi-

cal features to the words of the text. The full list of
features is shown in Figure 2, which also identifies
possible values and which word classes (POS) can
express these features. We discuss the training and
decoding of these classifiers in Section 5.

Third, we choose among the analyses returned by
the morphological analyzer by using the output of
the classifiers. This is a non-trivial task, as the clas-
sifiers may not fully disambiguate the options, or
they may be contradictory, with none of them fully
matching any one choice. We investigate different
ways of making this choice in Section 6.

As a result of this process, we have the origi-
nal text, with each word augmented with values for
all the features in Figure 2. These values repre-
sent a complete morphological disambiguation. Fur-
thermore, these features contain enough informa-
tion about the presence of clitics and affixes to per-
form tokenization, for any reasonable tokenization
scheme. Finally, we can determine the POS tag, for
any morphologically motivated POS tagset. Thus,
we have performed tokenization, traditional POS
tagging, and full morphological disambiguation in
one fell swoop.

3 Related Work

Our work is inspired by Hajič (2000), who con-
vincingly shows that for five Eastern European lan-
guages with complex inflection plus English, using
a morphological analyzer3 improves performance of
a tagger. He concludes that for highly inflectional
languages “the use of an independent morpholog-

3Hajič uses a lookup table, which he calls a “dictionary”.
The distinction between table-lookup and actual processing at
run-time is irrelevant for us.

ical dictionary is the preferred choice [over] more
annotated data”. Hajič (2000) uses a general expo-
nential model to predict each morphological feature
separately (such as the ones we have listed in Fig-
ure 2), but he trains different models for each am-
biguity left unresolved by the morphological ana-
lyzer, rather than training general models. For all
languages, the use of a morphological analyzer re-
sults in tagging error reductions of at least 50%.

We depart from Hajič’s work in several respects.
First, we work on Arabic. Second, we use this ap-
proach to also perform tokenization. Third, we use
the SVM-based Yamcha (which uses Viterbi decod-
ing) rather than an exponential model; however, we
do not consider this difference crucial and do not
contrast our learner with others in this paper. Fourth,
and perhaps most importantly, we do not use the no-
tion of ambiguity class in the feature classifiers; in-
stead we investigate different ways of using the re-
sults of the individual feature classifiers in directly
choosing among the options produced for the word
by the morphological analyzer.

While there have been many publications on com-
putational morphological analysis for Arabic (see
(Al-Sughaiyer and Al-Kharashi, 2004) for an excel-
lent overview), to our knowledge only Diab et al.
(2004) perform a large-scale corpus-based evalua-
tion of their approach. They use the same SVM-
based learner we do, Yamcha, for three different tag-
ging tasks: word tokenization (tagging on letters of
a word), which we contrast with our work in Sec-
tion 7; POS tagging, which we discuss in relation
to our work in Section 8; and base phrase chunking,
which we do not discuss in this paper. We take the
comparison between our results on POS tagging and
those of Diab et al. (2004) to indicate that the use of
a morphological analyzer is beneficial for Arabic as



Feature Description Possible Values POS that Default
Name Carry Feature

POS Basic part-of-speech See Footnote 9 all X
Conj Is there a cliticized conjunction? YES, NO all NO
Part Is there a cliticized particle? YES, NO all NO
Pron Is there a pronominal clitic? YES, NO V, N, PN, AJ, P, Q NO
Det Is there a cliticized definite deter-

miner + � � Al+?
YES, NO N, PN, AJ NO

Gen Gender (intrinsic or by agreement) masc(uline), fem(inine),
neut(er)

V, N, PN, AJ, PRO,
REL, D

masc

Num Number sg (singular), du(al),
pl(ural)

V, N, PN, AJ, PRO,
REL, D

sg

Per Person 1, 2, 3 V, N, PN, PRO 3
Voice Voice act(ive), pass(ive) V act
Asp Aspect imp(erfective),

perf(ective), imperative
V perf

Figure 2: Complete list of morphological features expressed by Arabic morphemes that we tag; the last
column shows on which parts-of-speech this feature can be expressed; the value ‘NA’ is used for each
feature other than POS, Conj, and Part if the word is not of the appropriate POS

well.
Several other publications deal specifically with

segmentation. Lee et al. (2003) use a corpus of man-
ually segmented words, which appears to be a sub-
set of the first release of the ATB (110,000 words),
and thus comparable to our training corpus. They
obtain a list of prefixes and suffixes from this cor-
pus, which is apparently augmented by a manually
derived list of other affixes. Unfortunately, the full
segmentation criteria are not given. Then a trigram
model is learned from the segmented training cor-
pus, and this is used to choose among competing
segmentations for words in running text. In addi-
tion, a huge unannotated corpus (155 million words)
is used to iteratively learn additional stems. Lee
et al. (2003) show that the unsupervised use of the
large corpus for stem identification increases accu-
racy. Overall, their error rates are higher than ours
(2.9% vs. 0.7%), presumably because they do not
use a morphological analyzer.

There has been a fair amount of work on entirely
unsupervised segmentation. Among this literature,
Rogati et al. (2003) investigate unsupervised learn-
ing of stemming (a variant of tokenization in which
only the stem is retained) using Arabic as the exam-
ple language. Unsurprisingly, the results are much

worse than in our resource-rich approach. Dar-
wish (2003) discusses unsupervised identification of
roots; as mentioned above, we leave root identifica-
tion to future work.

4 Preparing the Data

The data we use comes from the Penn Arabic Tree-
bank (Maamouri et al., 2004). Like the English Penn
Treebank, the corpus is a collection of news texts.
Unlike the English Penn Treebank, the ATB is an on-
going effort, which is being released incrementally.
As can be expected in this situation, the annotation
has changed in subtle ways between the incremen-
tal releases. Even within one release (especially the
first) there can be inconsistencies in the annotation.
As our approach builds on linguistic knowledge, we
need to carefully study how linguistic facts are rep-
resented in the ATB. In this section, we briefly sum-
marize how we obtained the data in the representa-
tion we use for our machine learning experiments.4

We use the first two releases of the ATB, ATB1
and ATB2, which are drawn from different news
sources. We divided both ATB1 and ATB2 into de-

4The code used to obtain the representations is available
from the authors upon request.



velopment, training, and test corpora with roughly
12,000 word tokens in each of the development and
test corpora, and 120,000 words in each of the train-
ing corpora. We will refer to the training corpora as
TR1 and TR2, and to the test corpora as, TE1 and
TE2. We report results on both TE1 and TE2 be-
cause of the differences in the two parts of the ATB,
both in terms of origin and in terms of data prepara-
tion.

We use the ALMORGEANA morphological ana-
lyzer (Habash, 2005), a lexeme-based morphologi-
cal generator and analyzer for Arabic.5 A sample
output of the morphological analyzer is shown in
Figure 1. ALMORGEANA uses the databases (i.e.,
lexicon) from the Buckwalter Arabic Morphological
Analyzer, but (in analysis mode) produces an output
in the lexeme-and-feature format (which we need for
our approach) rather than the stem-and-affix format
of the Buckwalter analyzer. We use the data from
first version of the Buckwalter analyzer (Buckwal-
ter, 2002). The first version is fully consistent with
neither ATB1 nor ATB2.

Our training data consists of a set of all possi-
ble morphological analyses for each word, with the
unique correct analysis marked. Since we want to
learn to choose the correct output using the features
generated by ALMORGEANA, the training data must
also be in the ALMORGEANA output format. To
obtain this data, we needed to match data in the
ATB to the lexeme-and-feature representation out-
put by ALMORGEANA. The matching included the
use of some heuristics, since the representations and
choices are not always consistent in the ATB. For
example, ����� nHw ‘towards’ is tagged as AV, N,
or V (in the same syntactic contexts). We verified
whether we introduced new errors while creating
our data representation by manually inspecting 400
words chosen at random from TR1 and TR2. In
eight cases, our POS tag differed from that in the
ATB file; all but one case were plausible changes
among Noun, Adjective, Adverb and Proper Noun
resulting from missing entries in the Buckwalter’s
lexicon. The remaining case was a failure in the
conversion process relating to the handling of bro-
ken plurals at the lexeme level. We conclude that

5The ALMORGEANA engine is available at
http://clipdemos.umiacs.umd.edu/ALMORGEANA/.

our data representation provides an adequate basis
for performing machine learning experiments.

An important issue in using morphological an-
alyzers for morphological disambiguation is what
happens to unanalyzed words, i.e., words that re-
ceive no analysis from the morphological analyzer.
These are frequently proper nouns; a typical ex-
ample is ����� �	� � ��
� brlwskwny ‘Berlusconi’, for
which no entry exists in the Buckwalter lexicon. A
backoff analysis mode in ALMORGEANA uses the
morphological databases of prefixes, suffixes, and
allowable combinations from the Buckwalter ana-
lyzer to hypothesize all possible stems along with
feature sets. Our Berlusconi example yields 41 pos-
sible analyses, including the correct one (as a sin-
gular masculine PN). Thus, with the backoff analy-
sis, unanalyzed words are distinguished for us only
by the larger number of possible analyses (making
it harder to choose the correct analysis). There are
not many unanalyzed words in our corpus. In TR1,
there are only 22 such words, presumably because
the Buckwalter lexicon our morphological analyzer
uses was developed onTR1. In TR2, we have 737
words without analysis (0.61% of the entire corpus,
giving us a coverage of about 99.4% on domain-
similar text for the Buckwalter lexicon).

In ATB1, and to a lesser degree in ATB2, some
words have been given no morphological analysis.
(These cases are not necessarily the same words that
our morphological analyzer cannot analyze.) The
POS tag assigned to these words is then NO FUNC.
In TR1 (138,756 words), we have 3,088 NO FUNC
POS labels (2.2%). In TR2 (168,296 words), the
number of NO FUNC labels has been reduced to
853 (0.5%). Since for these cases, there is no mean-
ingful solution in the data, we have removed them
from the evaluation (but not from training). In con-
trast, Diab et al. (2004) treat NO FUNC like any
other POS tag, but it is unclear whether this is mean-
ingful. Thus, when comparing results from different
approaches which make different choices about the
data (for example, the NO FUNC cases), one should
bear in mind that small differences in performance
are probably not meaningful.



5 Classifiers for Linguistic Features

We now describe how we train classifiers for the
morphological features in Figure 2. We train one
classifier per feature. We use Yamcha (Kudo and
Matsumoto, 2003), an implementation of support
vector machines which includes Viterbi decoding.6

As training features, we use two sets. These sets
are based on the ten morphological features in Fig-
ure 2, plus four other “hidden” morphological fea-
tures, for which we do not train classifiers, but which
are represented in the analyses returned by the mor-
phological analyzer. The reason we do not train clas-
sifiers for the hidden features is that they are only
returned by the morphological analyzer when they
are marked overtly in orthography, but they are not
disambiguated in case they are not overtly marked.
The features are indefiniteness (presence of nuna-
tion), idafa (possessed), case, and mood. First, for
each of the 14 morphological features and for each
possible value (including ‘NA’ if applicable), we de-
fine a binary machine learning feature which states
whether in any morphological analysis for that word,
the feature has that value. This gives us 58 machine
learning features per word. In addition, we define
a second set of features which abstracts over the
first set: for all features, we state whether any mor-
phological analysis for that word has a value other
than ‘NA’. This yields a further 11 machine learn-
ing features (as 3 morphological features never have
the value ‘NA’). In addition, we use the untokenized
word form and a binary feature stating whether there
is an analysis or not. This gives us a total of 71
machine learning features per word. We specify a
window of two words preceding and following the
current word, using all 71 features for each word in
this 5-word window. In addition, two dynamic fea-
tures are used, namely the classification made for
the preceding two words. For each of the ten clas-
sifiers, Yamcha then returns a confidence value for
each possible value of the classifier, and in addition
it marks the value that is chosen during subsequent
Viterbi decoding (which need not be the value with
the highest confidence value because of the inclu-
sion of dynamic features).

We train on TR1 and report the results for the ten

6We use Yamcha’s default settings: standard SVM with 2nd
degree polynomial kernel and 1 slack variable.

Method BL Class BL Class
Test TE1 TE1 TE2 TE2

POS 96.6 97.7 91.1 95.5
Conj 99.9 99.9 99.7 99.9
Part 99.9 99.9 99.5 99.7
Pron 99.5 99.6 98.8 99.0
Det 98.8 99.2 96.8 98.3
Gen 98.6 99.2 95.8 98.2
Num 98.8 99.4 96.8 98.8
Per 97.6 98.7 94.8 98.1
Voice 98.8 99.3 97.5 99.0
Asp 98.8 99.4 97.4 99.1

Figure 3: Accuracy of classifiers (Class) for mor-
phological features trained on TR1, and evaluated
on TE1 and TE2; BL is the unigram baseline trained
on TR1

Yamcha classifiers on TE1 and TE2, using all sim-
ple tokens,7 including punctuation, in Figure 3. The
baseline BL is the most common value associated
in the training corpus TR1 with every feature for a
given word form (unigram). We see that the base-
line for TE1 is quite high, which we assume is due
to the fact that when there is ambiguity, often one in-
terpretation is much more prevelant than the others.
The error rates on the baseline approximately double
on TE2, reflecting the difference between TE2 and
TR1, and the small size of TR1. The performance
of our classifiers is good on TE1 (third column), and
only slightly worse on TE2 (fifth column). We at-
tribute the increase in error reduction over the base-
line for TE2 to successfully learned generalizations.

We investigated the performance of the classifiers
on unanalyzed words. The performance is gener-
ally below the baseline BL. We attribute this to the
almost complete absence of unanalyzed words in
training data TR1. In future work we could at-
tempt to improve performance in these cases; how-
ever, given their small number, this does not seem a
priority.

7We use the term orthographic token to designate tokens
determined only by white space, while simple tokens are or-
thographic tokens from which punctuation has been segmented
(becoming its own token), and from which all tatweels (the
elongation character) have been removed.



6 Choosing an Analysis

Once we have the results from the classifiers for
the ten morphological features, we combine them to
choose an analysis from among those returned by
the morphological analyzer. We investigate several
options for how to do this combination. In the fol-
lowing, we use two numbers for each analysis. First,
the agreement is the number of classifiers agreeing
with the analysis. Second, the weighted agreement
is the sum, over all classifiers, of the classification
confidence measure of that value that agrees with
the analysis. The agreement, but not the weighted
agreement, uses Yamcha’s Viterbi decoding.

� The majority combiner (Maj) chooses the anal-
ysis with the largest agreement.

� The confidence-based combiner (Con) chooses
the analysis with the largest weighted agreement.

� The additive combiner (Add) chooses the anal-
ysis with the largest sum of agreement and weighted
agreement.

� The multiplicative combiner (Mul) chooses the
analysis with the largest product of agreement and
weighted agreement.

� We use Ripper (Cohen, 1996) to learn a rule-
based classifier (Rip) to determine whether an anal-
ysis from the morphological analyzer is a “good” or
a “bad” analysis. We use the following features for
training: for each morphological feature in Figure 2,
we state whether or not the value chosen by its clas-
sifier agrees with the analysis, and with what confi-
dence level. In addition, we use the word form. (The
reason we use Ripper here is because it allows us to
learn lower bounds for the confidence score features,
which are real-valued.) In training, only the correct
analysis is good. If exactly one analysis is classified
as good, we choose that, otherwise we use Maj to
choose.

� The baseline (BL) chooses the analysis most
commonly assigned in TR1 to the word in question.
For unseen words, the choice is made randomly.

In all cases, any remaining ties are resolved ran-
domly.

We present the performance in Figure 4. We see
that the best performing combination algorithm on
TE1 is Maj, and on TE2 it is Rip. Recall that the
Yamcha classifiers are trained on TR1; in addition,
Rip is trained on the output of these Yamcha clas-

Corpus TE1 TE2
Method All Words All Words
BL 92.1 90.2 87.3 85.3
Maj 96.6 95.8 94.1 93.2
Con 89.9 87.6 88.9 87.2
Add 91.6 89.7 90.7 89.2
Mul 96.5 95.6 94.3 93.4
Rip 96.2 95.3 94.8 94.0

Figure 4: Results (percent accuracy) on choosing the
correct analysis, measured per token (including and
excluding punctuation and numbers); BL is the base-
line

sifiers on TR2. The difference in performance be-
tween TE1 and TE2 shows the difference between
the ATB1 and ATB2 (different source of news, and
also small differences in annotation). However, the
results for Rip show that retraining the Rip classifier
on a new corpus can improve the results, without the
need for retraining all ten Yamcha classifiers (which
takes considerable time).

Figure 4 presents the accuracy of tagging using
the whole complex morphological tagset. We can
project this complex tagset to a simpler tagset, for
example, POS. Then the minimum tagging accu-
racy for the simpler tagset must be greater than or
equal to the accuracy of the complex morphological
tagset. Even if a combining algorithm chooses the
wrong analysis (and this is counted as a failure for
the evaluation in this section), the chosen analysis
may agree with some of the correct morphological
features. We discuss our performance on the POS
feature in Section 8.

7 Evaluating Tokenization

The term “tokenization” refers to the segmenting
of a naturally occurring input sequence of ortho-
graphic symbols into elementary symbols (“tokens”)
used in subsequent processing steps (such as pars-
ing) as basic units. In our approach, we determine all
morphological properties of a word at once, so we
can use this information to determine tokenization.
There is not a single possible or obvious tokeniza-
tion scheme: a tokenization scheme is an analytical
tool devised by the researcher. We evaluate in this
section how well our morphological disambiguation



Word Token Token Token Token
Meth. Acc. Acc. Prec. Rec. F-m.
BL 99.1 99.6 98.6 99.1 98.8
Maj 99.3 99.6 98.9 99.3 99.1

Figure 5: Results of tokenization on TE1: word ac-
curacy measures for each input word whether it gets
tokenized correctly, independently of the number of
resulting tokens; the token-based measures refer to
the four token fields into which the ATB splits each
word

determines the ATB tokenization. The ATB starts
with a simple tokenization, and then splits the word
into four fields: conjunctions; particles (prepositions
in the case of nouns); the word stem; and pronouns
(object clitics in the case of verbs, possessive clitics
in the case of nouns). The ATB does not tokenize
the definite article +� � Al+.

We compare our output to the morphologically
analyzed form of the ATB, and determine if our mor-
phological choices lead to the correct identification
of those clitics that need to be stripped off.8 For our
evaluation, we only choose the Maj chooser, as it
performed best on TE1. We evaluate in two ways.
In the first evaluation, we determine for each sim-
ple input word whether the tokenization is correct
(no matter how many ATB tokens result). We re-
port the percentage of words which are correctly to-
kenized in the second column in Figure 5. In the
second evaluation, we report on the number of out-
put tokens. Each word is divided into exactly four
token fields, which can be either filled or empty (in
the case of the three clitic token fields) or correct or
incorrect (in the case of the stem token field). We
report in Figure 5 accuracy over all token fields for
all words in the test corpus, as well as recall, pre-
cision, and f-measure for the non-null token fields.
The baseline BL is the tokenization associated with
the morphological analysis most frequently chosen
for the input word in training.

8The ATB generates normalized forms of certain clitics and
of the word stem, so that the resulting tokens are not simply
the result of splitting the original words. We do not actually
generate the surface token form from our deep representation,
but this can be done in a deterministic, rule-based manner, given
our rich morphological analysis, e.g., by using ALMORGEANA
in generation mode after splitting off all separable tokens.

While the token-based evaluation is identical to
that performed by Diab et al. (2004), the results are
not directly comparable as they did not use actual
input words, but rather recreated input words from
the regenerated tokens in the ATB. Sometimes this
can simplify the analysis: for example, a � p (ta
marbuta) must be word-final in Arabic orthography,
and thus a word-medial � p in a recreated input word
reliably signals a token boundary. The rather high
baseline shows that tokenization is not a hard prob-
lem.

8 Evaluating POS Tagging

The POS tagset Diab et al. (2004) use is a subset
of the tagset for English that was introduced with
the English Penn Treebank. The large set of Arabic
tags has been mapped (by the Linguistic Data Con-
sortium) to this smaller English set, and the mean-
ing of the English tags has changed. We consider
this tagset unmotivated, as it makes morphological
distinctions because they are marked in English, not
Arabic. The morphological distinctions that the En-
glish tagset captures represent the complete mor-
phological variation that can be found in English.
However, in Arabic, much morphological variation
goes untagged. For example, verbal inflections for
subject person, number, and gender are not marked;
dual and plural are not distinguished on nouns; and
gender is not marked on nouns at all. In Arabic
nouns, arguably the gender feature is the more inter-
esting distinction (rather than the number feature) as
verbs in Arabic always agree with their nominal sub-
jects in gender. Agreement in number occurs only
when the nominal subject precedes the verb. We use
the tagset here only to compare to previous work.
Instead, we advocate using a reduced part-of-speech
tag set,9 along with the other orthogonal linguistic
features in Figure 2.

We map our best solutions as chosen by the Maj
model in Section 6 to the English tagset, and we fur-
thermore assume (as do Diab et al. (2004)) the gold
standard tokenization. We then evaluate against the
gold standard POS tagging which we have mapped

9 We use V (Verb), N (Noun), PN (Proper Noun), AJ (Ad-
jective), AV (Adverb), PRO (Nominal Pronoun), P (Preposi-
tion/Particle), D (Determiner), C (Conjunction), NEG (Negative
particle), NUM (Number), AB (Abbreviation), IJ (Interjection),
PX (Punctuation), and X (Unknown).



Corpus TE1 TE2
Method Tags All Words All Words
BL PTB 93.9 93.3 90.9 89.8

Smp 94.9 94.3 92.6 91.4
Maj PTB 97.6 97.5 95.7 95.2

Smp 98.1 97.8 96.5 96.0

Figure 6: Part-of-speech tagging accuracy measured
for all tokens (based on gold-standard tokenization)
and only for word tokens, using the Penn Treebank
(PTB) tagset as well as the smaller tagset (Smp) (see
Footnote 9); BL is the baseline obtained by using the
POS value from the baseline tag used in Section 6

similarly. We obtain a score for TE1 of 97.6% on all
tokens. Diab et al. (2004) report a score of 95.5% for
all tokens on a test corpus drawn from ATB1, thus
their figure is comparable to our score of 97.6%. On
our own reduced POS tagset, evaluating on TE1,
we obtain an accuracy score of 98.1% on all tokens.
The full dataset is shown in Figure 6.

9 Conclusion and Outlook

We have shown how to use a morphological ana-
lyzer for tokenization, part-of-speech tagging, and
morphological disambiguation in Arabic. We have
shown that the use of a morphological analyzer is
beneficial in POS tagging, and we believe our results
are the best published to date for tokenization of nat-
urally occurring input (in undiacritized orthography)
and POS tagging.

We intend to apply our approach to Arabic di-
alects, for which currently no annotated corpora ex-
ist, and for which very few written corpora of any
kind exist (making the dialects bad candidates even
for unsupervised learning). However, there is a fair
amount of descriptive work on dialectal morphol-
ogy, so that dialectal morphological analyzers may
be easier to come by than dialect corpora. We in-
tend to explore to what extent we can transfer mod-
els trained on Standard Arabic to dialectal morpho-
logical disambiguation.
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