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Abstract

The Arabic language is a collection of
spoken dialects with important phonolog-
ical, morphological, lexical, and syntac-
tic differences, along with a standard writ-
ten language, Modern Standard Arabic
(MSA). Since the spoken dialects are not
officially written, it is very costly to obtain
adequate corpora to use for training dialect
NLP tools such as parsers. In this paper,
we address the problem of parsing tran-
scribed spoken Levantine Arabic (LA). We
do not assume the existence of any anno-
tated LA corpus (except for development
and testing), nor of a parallel corpus LA-
MSA. Instead, we use explicit knowledge
about the relation between LA and MSA.

1 Introduction: Arabic Dialects

The Arabic language is a collection of spoken
dialects and a standard written language.1 The
dialects show phonological, morphological, lexi-
cal, and syntactic differences comparable to those
among the Romance languages. The standard
written language is the same throughout the Arab
world: Modern Standard Arabic (MSA). MSA is
also used in some scripted spoken communica-
tion (news casts, parliamentary debates). MSA is
based on Classical Arabic and is not a native lan-
guage of any Arabic speaking people, i.e., children
do not learn it from their parents but in school.

1This paper is based on work done at the 2005 Johns Hop-
kins Summer Workshop, which was partially supported by
the National Science Foundation under Grant No. 0121285.
Diab, Habash, and Rambow were supported for additional
work by DARPA contract HR0011-06-C-0023 under the
GALE program. We wish to thank audiences at JHU for their
useful feedback. The authors are listed in alphabetical order.

Most native speakers of Arabic are unable to pro-
duce sustained spontaneous MSA. Dialects vary
not only along a geographical continuum but also
with other sociolinguistic variables such as the ur-
ban/rural/Bedouin dimension.

The multidialectal situation has important neg-
ative consequences for Arabic natural language
processing (NLP): since the spoken dialects are
not officially written and do not have standard or-
thography, it is very costly to obtain adequate cor-
pora, even unannotated corpora, to use for train-
ing NLP tools such as parsers. Furthermore, there
are almost no parallel corpora involving one di-
alect and MSA.

In this paper, we address the problem of parsing
transcribed spoken Levantine Arabic (LA), which
we use as a representative example of the Arabic
dialects.2 Our work is based on the assumption
that it is easier to manually create new resources
that relate LA to MSA than it is to manually cre-
ate syntactically annotated corpora in LA. Our ap-
proaches do not assume the existence of any anno-
tated LA corpus (except for development and test-
ing), nor of a parallel LA-MSA corpus. Instead,
we assume we have at our disposal a lexicon that
relates LA lexemes to MSA lexemes, and knowl-
edge about the morphological and syntactic differ-
ences between LA and MSA. For a single dialect,
it may be argued that it is easier to create corpora
than to encode all this knowledge explicitly. In
response, we claim that because the dialects show
important similarities, it will be easier to reuse and
modify explicit linguistic resources for a new di-
alect, than to create a new corpus for it. The goal
of this paper is to show that leveraging LA/MSA

2We exclude from this study part-of-speech (POS) tag-
ging and LA/MSA lexicon induction. See (Rambow et al.,
2005) for these issues, as well as for more details on parsing.



resources is feasible; we do not provide a demon-
stration of cost-effectiveness.

The paper is organized as follows. After dis-
cussing related work and available corpora, we
present linguistic issues in LA and MSA (Sec-
tion 4). We then proceed to discuss three ap-
proaches: sentence transduction, in which the LA
sentence to be parsed is turned into an MSA sen-
tence and then parsed with an MSA parser (Sec-
tion 5); treebank transduction, in which the MSA
treebank is turned into an LA treebank (Section 6);
and grammar transduction, in which an MSA
grammar is turned into an LA grammar which is
then used for parsing LA (Section 7). We summa-
rize and discuss the results in Section 8.

2 Related Work

There has been a fair amount of interest in parsing
one language using another language, see for ex-
ample (Smith and Smith, 2004; Hwa et al., 2004)
for recent work. Much of this work uses synchro-
nized formalisms as do we in the grammar trans-
duction approach. However, these approaches rely
on parallel corpora. For MSA and its dialects,
there are no naturally occurring parallel corpora. It
is this fact that has led us to investigate the use of
explicit linguistic knowledge to complement ma-
chine learning. We refer to additional relevant
work in the appropriate sections.

3 Linguistic Resources

We use the MSA treebanks 1, 2 and 3 (ATB) from
the LDC (Maamouri et al., 2004). We split the cor-
pus into 10% development data, 80% training data
and 10% test data all respecting document bound-
aries. The training data (ATB-Train) comprises
17,617 sentences and 588,244 tokens.

The Levantine treebank LATB (Maamouri et
al., 2006) comprises 33,000 words of treebanked
conversational telephone transcripts collected as
part of the LDC CALL HOME project. The tree-
banked section is primarily in the Jordanian sub-
dialect of LA. The data is annotated by the LDC
for speech effects such as disfluencies and repairs.
We removed the speech effects, rendering the data
more text-like. The orthography and syntactic
analysis chosen by the LDC for LA closely fol-
low previous choices for MSA, see Figure 1 for
two examples. The LATB is used exclusively for
development and testing, not for training. We
split the data in half respecting document bound-

aries. The resulting development data comprises
1928 sentences and 11151 tokens (DEV). The
test data comprises 2051 sentences and 10,644 to-
kens (TEST). For all the experiments, we use the
non-vocalized (undiacritized) version of both tree-
banks, as well as the collapsed POS tag set pro-
vided by the LDC for MSA and LA.

Two lexicons were created: a small lexicon
comprising 321 LA/MSA word form pairs cov-
ering LA closed-class words and a few frequent
open-class words; and a big lexicon which con-
tains the small lexicon and an additional 1,560
LA/MSA word form pairs. We assign to the map-
pings in the two lexicons both uniform probabil-
ities and biased probabilities using Expectation
Maximization (EM; see (Rambow et al., 2005)
for details of the use of EM). We thus have four
different lexicons: Small lexicon with uniform
probabilities (SLXUN); Small Lexicon with EM-
based probabilities (SLXEM); Big Lexicon with
uniform probabilities (BLXUN); and Big Lexicon
with EM-based probabilities (BLXEM).

4 Linguistic Facts

We illustrate the differences between LA and
MSA using an example3:

(1) a.
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(LA)

AlrjAl
the-men

byHbw
like

$
not

Al$gl
the-work

hdA
this

the men do not like this work

b.
��� �!
��"� #$�%��� ���
��"&"��'�(

(MSA)

lA
not

yHb
like

AlrjAl
the-men

h*A
this

AlEml
the-work

the men do not like this work

Lexically, we observe that the word for ‘work’
is

���	��
)�
Al$gl in LA but

���*�	
��
AlEml in MSA.

In contrast, the word for ‘men’ is the same in both
LA and MSA:

��� ����
��
AlrjAl. There are typically

also differences in function words, in our example�
$ (LA) and

(
lA (MSA) for ‘not’. Morpholog-

ically, we see that LA
�	�������

byHbw has the same
stem as MA

&+��'
yHb, but with two additional

morphemes: the present aspect marker b- which
does not exist in MSA, and the agreement marker

3Arabic Examples are transliter-
ated using the Buckwalter scheme:
http://www.ldc.upenn.edu/myl/morph/buckwalter.html
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Figure 1: LDC-style left-to-right phrase structure trees for LA (left) and MSA (right) for sentence (1)

-w, which is used in MSA only in subject-initial
sentences, while in LA it is always used.

Syntactically, we observe three differences.
First, the subject precedes the verb in LA (SVO
order), but follows in MSA (VSO order). This is
in fact not a strict requirement, but a strong pref-
erence: both varieties allow both orders. Second,
we see that the demonstrative determiner follows
the noun in LA, but precedes it in MSA. Finally,
we see that the negation marker follows the verb
in LA, while it precedes the verb in MSA.4 The
two phrase structure trees are shown in Figure 1
in the LDC convention. Unlike the phrase struc-
ture trees, the (unordered) dependency trees for
the MSA and LA sentences (not shown here for
space considerations) are isomorphic. They differ
only in the node labels.

5 Sentence Transduction

In this approach, we parse an MSA translation of
the LA sentence and then link the LA sentence to
the MSA parse. Machine translation (MT) is not
easy, especially when there are no MT resources
available such as naturally occurring parallel text
or transfer lexicons. However, for this task we
have three encouraging insights. First, for really
close languages it is possible to obtain better trans-
lation quality by means of simpler methods (Hajic
et al., 2000). Second, suboptimal MSA output can
still be helpful for the parsing task without neces-
sarily being fluent or accurate (since our goal is
parsing LA, not translating it to MSA). And fi-
nally, translation from LA to MSA is easier than
from MSA to LA. This is a result of the availabil-
ity of abundant resources for MSA as compared to
LA: for example, text corpora and tree banks for

4Levantine also has other negation markers that precede
the verb, as well as the circumfix m- -$.

language modeling and a morphological genera-
tion system (Habash, 2004).

One disadvantage of this approach is the lack of
structural information on the LA side for transla-
tion from LA to MSA, which means that we are
limited in the techniques we can use. Another dis-
advantage is that the translation can add more am-
biguity to the parsing problem. Some unambigu-
ous dialect words can become syntactically am-
biguous in MSA. For example, the LA words ���
mn ‘from’ and �

�
� myn ‘who’ both are translated

into an orthographically ambiguous form in MSA
��� mn ‘from’ or ‘who’.

5.1 Implementation

Each word in the LA sentence is translated into
a bag of MSA words, producing a sausage lat-
tice. The lattice is scored and decoded using
the SRILM toolkit with a trigram language model
trained on 54 million MSA words from Arabic Gi-
gaword (Graff, 2003). The text used for language
modeling was tokenized to match the tokenization
of the Arabic used in the ATB and LATB. The
tokenization was done using the ASVM Toolkit
(Diab et al., 2004). The 1-best path in the lattice is
passed on to the Bikel parser (Bikel, 2002), which
was trained on the MSA training ATB. Finally, the
terminal nodes in the resulting parse structure are
replaced with the original LA words.

5.2 Experimental Results

Table 1 describes the results of the sentence trans-
duction path on the development corpus (DEV) in
different settings: using no POS tags in the input
versus using gold POS tags in the input, and using
SLXUN versus BLXUN. The baseline results are
obtained by parsing the LA sentence directly using
the MSA parser (with and without gold POS tags).
The results are reported in terms of PARSEVAL’s



No Tags Gold Tags
Baseline 59.4/51.9/55.4 64.0/58.3/61.0
SLXUN 63.8/58.3/61.0 67.5/63.4/65.3
BLXUN 65.3/61.1/63.1 66.8/63.2/65.0

Table 1: Sentence transduction results on DEV (la-
beled precision/recall/F-measure)

No Tags Gold Tags
Baseline 53.5 60.2
SLXUN 57.7 64.0

Table 2: Sentence transduction results on TEST
(labeled F-measure)

Precision/Recall/F-Measure.

Using SLXUN improves the F1 score for no
tags and for gold tags. A further improvement is
gained when using the BLXUN lexicon with no
POS tags in the input, but this improvement disap-
pears when we use BLXUN with gold POS tags.
We suspect that the added translation ambiguity
from BLXUN is responsible for the drop. We also
experimented with the SLXEM and BLXEM lexi-
cons. There was no consistent improvement.

In Table 2, we report the F-Measure score on the
test set (TEST) for the baseline and for SLXUN
(with and without gold POS tags). We see a gen-
eral drop in performance between DEV and TEST
for all combinations suggesting that TEST is a
harder set to parse than DEV.

5.3 Discussion

The current implementation does not handle cases
where the word order changes between MSA and
LA. Since we start from an LA string, identify-
ing constituents to permute is clearly a hard task.
We experimented with identifying strings with the
postverbal LA negative particle $ and then per-
muting them to obtain the MSA preverbal order.
The original word positions are “bread-crumbed”
through the systems language modeling and pars-
ing steps and then used to construct an unordered
dependency parse tree labeled with the input LA
words. (A constituency representation is meaning-
less since word order changes from LA to MSA.)
The results were not encouraging since the effect
of the positive changes was undermined by newly
introduced errors.

6 Treebank Transduction

In this approach, the idea is to convert the MSA
treebank (ATB-Train) into an LA-like treebank us-
ing linguistic knowledge of the systematic varia-
tions on the syntactic, lexical and morphological
levels across the two varieties of Arabic. We then
train a statistical parser on the newly transduced
treebank and test the parsing performance against
the gold test set of the LA treebank sentences.

6.1 MSA Transformations

We now list the transformations we applied to
ATB-Train:

6.1.1 Structural Transformations

Consistency checks (CON): These are conver-
sions that make the ATB annotation more consis-
tent. For example, there are many cases where
SBAR and S nodes are used interchangeably in the
MSA treebank. Therefore, an S clause headed by
a complementizer is converted to an SBAR.

Sentence Splitting (TOPS): A fair number of
sentences in the ATB has a root node S with sev-
eral embedded direct descendant S nodes, some-
times conjoined using the conjunction w. We split
such sentences into several shorter sentences.

6.1.2 Syntactic Transformations

There are several possible systematic syntactic
transformations. We focus on three major ones
due to their significant distributional variation in
MSA and LA. They are illustrated in Figure 1.

Negation (NEG): In MSA negation is marked
with preverbal negative particles. In LA, a nega-
tive construction is expressed in one of three pos-
sible ways: m$/mA preceding the verb; a particle
$ suffixed onto the verb; or a circumfix of a prefix
mA and suffix it $. We converted all negation in-
stances in the ATB-Train three ways reflecting the
LA constructions for negation.

VSO-SVO Ordering (SVO): Both Verb Subject
Object (VSO) and Subject Verb Object (SVO)
constructions occur in MSA and LA treebanks.
But pure VSO constructions – where there is no
pro-drop – occur in the LA corpus only 10% of
the data, while VSO is the most frequent ordering
in MSA. Hence, the goal is to skew the distribu-
tions of the SVO constructions in the MSA data.
Therefore, VSO constructions are both replicated
and converted to SVO constructions.

Demonstrative Switching (DEM): In LA,
demonstrative pronouns precede or, more com-



monly, follow the nouns they modify, while in
MSA demonstrative pronoun only precede the
noun they modify. Accordingly, we replicate the
LA constructions in ATB-Train and moved the
demonstrative pronouns to follow their modified
nouns while retaining the source MSA ordering si-
multaneously.

6.1.3 Lexical Substitution

We use the four lexicons described in Section 3.
These resources are created with a coverage bias
from LA to MSA. As an approximation, we re-
versed the directionality to yield MSA to LA lex-
icons, retaining the assigned probability scores.
Manipulations involving lexical substitution are
applied only to the lexical items without altering
the POS tag or syntactic structure.

6.1.4 Morphological Transformations

We applied some morphological rules to han-
dle specific constructions in the LA. The POS tier
as well as the lexical items were affected by these
manipulations.

bd Construction (BD): bd is an LA noun that
means ‘want’. It acts like a verb in verbal con-
structions yielding VP constructions headed by
NN. It is typically followed by a possessive pro-
noun. Accordingly, we translated all MSA verbs
meaning want/need into the noun bd and changed
their POS tag to the nominal tag NN. In cases
where the subject of the MSA verb is pro-dropped,
we add a clitic possessive pronoun in the first
or second person singular. This was intended to
bridge the genre and domain disparity between the
MSA and LA data.

Aspectual Marker b (ASP): In dialectal Arabic,
present tense verbs are marked with an initial b.
Therefore we add a b prefix to all verbs of POS
tag type VBP. The aspectual marker is present on
the verb byHbw in the LA example in Figure 1.

lys Construction (LYS): In the MSA data, lys is
interchangeably marked as a verb and as a parti-
cle. However, in the LA data, lys occurs only as a
particle. Therefore, we convert all occurrences of
lys into RP.

6.2 Experimental Results

We transform ATB-Train into an LA-like treebank
using different strategies, and then train the Bikel
parser on the resulting LA-like treebank. We parse
the LA test set with the Bikel parser trained in this
manner. As before, we report results on DEV and

No Tags Gold Tags
Baseline 59.5/52/55.5 64.2/58.4/61.1
MORPH 63.9/58/60.8
SLXEM 64.2/59.3/61.7
NEG 64.5/58.9/61.6
STRUCT 64.6/59.2/61.8
+NEG 64.6/59.5/62
+NEG
+SLXEM 62.1/55.9/58.8 65.5/61.3/63.3

Table 3: Treebank transduction results on
DEV(labeled precision/recall/F-measure)

No Tags Gold Tags
Baseline 53.5 60.2
STRUCT
+NEG+SLXEM 57 62.1

Table 4: Treebank transduction results on TEST
(labeled F-measure)

TEST sets, without POS tags and with gold POS
tags, using the Parseval metrics of labeled preci-
sion, labeled recall and f-measure. Table 3 sum-
marizes the results on the LA development set.

In Table 3, STRUCT refers to the structural
transformations combining TOPS with CON. Of
the Syntactic transformations applied, NEG is
the only transformation that helps performance.
Both SVO and DEM decrease the performance
from the baseline with F-measures of 59.4 and
59.5, respectively. Of the lexical substitutions
(i.e., lexicons), SLXEM helps performance the
best. MORPH refers to a combination of all
the morphological transformations. MORPH
does not help performance, as we see a decrease
from the baseline by 0.3% when applied on its
own. When combining MORPH with other con-
ditions, we see a consistent decrease. For instance,
STRUCT+NEG+SLXEM+MORPH yields an f-
measure of 62.9 compared to 63.3 yielded by
STRUCT+NEG+SLXEM. The best results ob-
tained are those from combining STRUCT with
NEG and SLXEM for both the No Tag and Gold
Tag conditions.

Table 4 shows the results obtained on TEST. As
for the sentence transduction case, we see an over-
all reduction in the performance indicating that the
test data is very different from the training data.



6.3 Discussion

The best performing condition always includes
CON, TOPS and NEG. SLXEM helps as well,
however, due to the inherent directionality of the
resource, its impact is limited. We experimented
with the other lexicons but none of them helped
improve performance. We believe that the EM
probabilities helped in biasing the lexical choices,
playing the role of an LA language model (which
we do not have). We do not observe any significant
improvement from applying MORPH.

7 Grammar Transduction

The grammar-transduction approach uses the ma-
chinery of synchronous grammars to relate MSA
and LA. A synchronous grammar composes paired
elementary trees, or fragments of phrase-structure
trees, to generate pairs of phrase-structure trees.
In the present application, we start with MSA ele-
mentary trees (plus probabilities) induced from the
ATB and transform them using handwritten rules
into dialect elementary trees to yield an MSA-
dialect synchronous grammar. This synchronous
grammar can be used to parse new dialect sen-
tences using statistics gathered from the MSA
data.

Thus this approach can be thought of as a
variant of the treebank-transduction approach in
which the syntactic transformations are localized
to elementary trees. Moreover, because a parsed
MSA translation is produced as a byproduct, we
can also think of this approach as being related to
the sentence-transduction approach.

7.1 Preliminaries

The parsing model used is essentially that of Chi-
ang (Chiang, 2000), which is based on a highly
restricted version of tree-adjoining grammar. In
its present form, the formalism is tree-substitution
grammar (Schabes, 1990) with an additional op-
eration called sister-adjunction (Rambow et al.,
2001). Because of space constraints, we omit dis-
cussion of the sister-adjunction operation in this
paper.

A tree-substitution grammar is a set of elemen-
tary trees. A frontier node labeled with a nonter-
minal label is called a substitution site. If an ele-
mentary tree has exactly one terminal symbol, that
symbol is called its lexical anchor.

A derivation starts with an elementary tree and
proceeds by a series of composition operations.

In the substitution operation, a substitution site is
rewritten with an elementary tree with a matching
root label. The final product is a tree with no more
substitution sites.

A synchronous TSG is a set of pairs of ele-
mentary trees. In each pair, there is a one-to-one
correspondence between the substitution sites of
the two trees, which we represent using boxed in-
dices (Figure 2). The substitution operation then
rewrites a pair of coindexed substitution sites with
an elementary tree pair. A stochastic synchronous
TSG adds probabilities to the substitution opera-
tion: the probability of substituting an elementary
tree pair 〈α, α′〉 at a substitution site pair 〈η, η′〉 is
P (α, α′ | η, η′).

When we parse a monolingual sentence S us-
ing one side of a stochastic synchronous TSG, us-
ing a straightforward generalization of the CKY
and Viterbi algorithms, we obtain the highest-
probability paired derivation which includes a
parse for S on one side, and a parsed translation
of S on the other side. It is also straightforward
to calculate inside and outside probabilities for re-
estimation by Expectation-Maximization (EM).

7.2 An MSA-dialect synchronous grammar

We now describe how we build our MSA-dialect
synchronous grammar. As mentioned above, the
MSA side of the grammar is extracted from the
ATB in a process described by Chiang and others
(Chiang, 2000; Xia et al., 2000; Chen, 2001). This
process also gives us MSA-only substitution prob-
abilities P (α | η).

We then apply various transformation rules (de-
scribed below) to the MSA elementary trees to
produce a dialect grammar, at the same time as-
signing probabilities P (α′ | α). The synchronous-
substitution probabilities can then be estimated as:

P (α, α′ | η, η′) ≈ P (α | η)P (α′ | α)

≈ P (α | η)P (w′, t′ | w, t)

P (ᾱ′ | ᾱ, w′, t′, w, t)

where w and t are the lexical anchor of α and
its POS tag, and ᾱ is the equivalence class of α

modulo lexical anchors and their POS tags.
P (w′, t′ | w, t) is assigned as described in Sec-

tion 3; P (ᾱ′ | ᾱ, w′, t′, w, t) is initially assigned
by hand. Because the full probability table for the
latter would be quite large, we smooth it using a
backoff model so that the number of parameters to
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Figure 2: Example elementary tree pair of a synchronous TSG.

be chosen is manageable. Finally, we reestimate
these parameters using EM.

Because of the underlying syntactic similar-
ity between the two varieties of Arabic, we as-
sume that every tree in the MSA grammar ex-
tracted from the MSA treebank is also an LA tree.
In addition, we perform certain tree transforma-
tions on all elementary trees which match the pat-
tern: NEG and SVO (Section 6.1.2) and BD (Sec-
tion 6.1.4). NEG is modified so that we simply
insert a $ negation marker postverbally, as the pre-
verbal markers are handled by MSA trees.

7.3 Experimental Results

We first use DEV to determine which of the trans-
formations are useful. The results are shown in
Table 5. The baseline is the same as in the previ-
ous two approaches. We see that important im-
provements are obtained using lexicon SLXUN.
Adding the SVO transformation does not improve
the results, but the NEG and BD transformations
help slightly, and their effect is (partly) cumula-
tive. (We did not perform these tuning experi-
ments on input with no POS tags.) We also exper-
imented with the SLXEM and BLXEM lexicons.
There was no consistent improvement.

7.4 Discussion

We observe that the lexicon can be used effectively
in our synchronous grammar framework. In ad-
dition, some syntactic transformations are useful.
The SVO transformation, we assume, turned out
not to be useful because the SVO word order is
also possible in MSA, so that the new trees were
not needed and needlessly introduced new deriva-
tions. The BD transformation shows the impor-
tance not of general syntactic transformations, but
rather of lexically specific syntactic transforma-
tions: varieties within one language family may

No Tags Gold Tags
Baseline 59.4/51.9/55.4 64.0/58.3/61.0
SLXUN 63.0/60.8/61.9 66.9/67.0/66.9
+ SVO 66.9/66.7/66.8
+ NEG 67.0/67.0/67.0
+ BD 67.4/67.0/67.2

+ NEG + BD 67.4/67.1/67.3
BLXUN 64.9/63.7/64.3 67.9/67.4/67.6

Table 5: Grammar transduction results on
development corpus (labeled precision/recall/F-
measure)

No Tags Gold Tags
Baseline 53.5 60.2
SLXUN

+ Neg + bd 60.2 67.1

Table 6: Grammar transduction results on TEST
(labeled F-measure)

differ more in terms of the lexico-syntactic con-
structions used for a specific (semantic or prag-
matic) purpose than in their basic syntactic inven-
tory. Note that our tree-based synchronous formal-
ism is ideally suited for expressing such transfor-
mations since it is lexicalized, and has an extended
domain of locality.

8 Summary of Results and Discussion

We have built three frameworks for leveraging
MSA corpora and explicit knowledge about the
lexical, morphological, and syntactic differences
between MSA and LA for parsing LA. The results
on TEST are summarized in Table 7, where per-
formance is given as absolute and relative reduc-
tion in labeled F-measure error (i.e., 100−F ). We
see that some important improvements in parsing



No Tags Gold Tags
Sentence Transd. 4.2/9.0% 3.8/9.5%
Treebank Transd. 3.5/7.5% 1.9/4.8%
Grammar Transd. 6.7/14.4% 6.9/17.3%

Table 7: Results on test corpus: absolute/percent
error reduction in F-measure over baseline (using
MSA parser on LA test corpus); all numbers are
for best obtained results using that method

quality can be achieved. We also remind the reader
that on the ATB, state-of-the-art performance is
currently about 75% F-measure.

There are several important ways in which
we can expand our work. For the sentence-
transduction approach, we plan to explore the use
of a larger set of permutations; to use improved
language models on MSA (such as language mod-
els built on genres closer to speech); to use lattice
parsing (Sima’an, 2000) directly on the transla-
tion lattice and to integrate this approach with the
treebank transduction approach. For the treebank
and grammar transduction approaches, we would
like to explore more systematic syntactic, morpho-
logical, and lexico-syntactic transformations. We
would also like to explore the feasibility of induc-
ing the syntactic and morphological transforma-
tions automatically. Specifically for the treebank
transduction approach, it would be interesting to
apply an LA language model for the lexical substi-
tution phase as a means of pruning out implausible
word sequences.

For all three approaches, one major impediment
to obtaining better results is the disparity in genre
and domain which affects the overall performance.
This may be bridged by finding MSA data that is
more in the domain of the LA test corpus than the
MSA treebank.
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