A Support Vector Approach to Censored Targets

Pannagadatta K. Shivaswamy

Wei Chu Martin Jansche

Center for Computational Learning Systems
Columbia University
New York, NY, 10115]
pks2103,chuwei,jansche@cs.columbia.edu

ABSTRACT

Censored targets, such as the time to events in survival
analysis, can generally be represented by intervals on the
real line. In this paper, we propose a novel support vector
technique (named SVCR) for regression on censored tar-
gets. Interestingly, this approach provides a general for-
mulation for both standard regression and binary classifi-
cation tasks. SVCR inherits the strengths of support vec-
tor methods, such as a globally optimal solution by convex
programming, fast training speed and strong generalization
capacity. In contrast to ranking approaches to survival anal-
ysis, our approach is able not only to achieve superior order-
ing performance but also to predict the survival time very
well. Controlled experiments show the significant perfor-
mance improvement when majority of the training data is
censored. Experimental results on several survival analy-
sis datasets verify that SVCR is very competitive against
classical survival analysis models.

Keywords
Support Vector Machines, Survival Analysis, Regression,
Censored Data

1. INTRODUCTION

Support Vector Machines (SVM) [17] have achieved enor-
mous success in the last decade. This success is mainly at-
tributed to four factors: 1) Rooted in the statistical learning
theory [18], SVMs possess superior generalization capacity;
2) A globally optimal solution is obtainable by solving a con-
vex optimization problem, while the problems of local min-
ima impede other contemporary approaches, such as neural
networks; 3) Using the so-called kernel trick, it is conve-
nient to solve non-linear problems in arbitrarily high dimen-
sional feature spaces; 4) Lastly and most importantly, only
a part of training samples are involved in solution represen-
tation. This sparseness makes training SVMs relatively fast
via specialized algorithms, such as the sequential minimal
optimization (SMO) algorithms [13, 11]. The speedup fa-

cilitates its applications to large-scale learning tasks. SVMs
were first proposed for binary classification problems [1], and
then successfully extended to other problems like regression
[16], ranking [4] etc. However, in many applications, the
targets associated with samples of interest cannot be sim-
ply indicated by single values, e.g. censored data in survival
analysis.

Survival analysis is a well-established field in classical statis-
tics concerned with data of the time to some event. In the
standard case, the event is death or failure, but the topic
in much broader. It is applied not only in clinical research,
but also in reliability engineering and financial insurance,
etc. Classical examples of survival time measurements may
include the time a kidney graft remains functional, the time
a patient with colorectal cancer survives once the tumor has
been removed by surgery, and so forth. All these times,
named survival time, are triggered by an initial event fol-
lowed by a subsequent event, such as from a kidney graft
to graft failure or from a surgical therapy to death. As an-
other example, an engineering company might be interested
in better understanding the failure time of a working com-
ponent, i.e. the survival time from installation to failure;
given a set of attributes of the component, it is typical to
investigate how the failure time is related to the attributes.
Often, it is of interest to the company to rank all compo-
nents of the same type according to their susceptibility to
failure, so that appropriate precautionary measures can be
taken to reduce losses caused by the oncoming failures.

There is one major difference between survival data and
other types of numerical data: the time to the event oc-
curring is not necessarily observed in all the samples. Such
non-observed events are quite different from missing data
items as well. Suppose that some components are studied
over a fixed period of observation - some of them fail but
most of them do not fail in the observation period. For
those components that fail, their failure times (target val-
ues) are known precisely. For those components that do not
fail, we can only say that their survival times are longer
than the observation period. Such a target value is referred
to as right censored since we only know a lower bound on
the failure time. Similarly there can be situations where a
failure is discovered but it is not precisely known when the
failure occurred. In this case, we only know an upper bound
on the failure time. This category of observations are called
left censored targets. Conventionally survival analysis does
not consider left censored data. More interestingly, if there

are inspections at fixed intervals of time and a failure is dis-
covered on a particular inspection but the component was
known to be in good condition during the previous inspec-
tion, there exist both an upper bound and a lower bound
on the failure times. Summarizing this discussion, there are
four kinds of observations in practice: left censored, right
censored, intervals and fixed values. However, intervals are
the most general type of observations since if we know that
a failure time t satisfies | < t < u then, by setting u = +o00
we obtain a right censored observation, by setting | = —c0
we obtain a left censored observation and by setting [= u,
we obtain a fixed value.

To our best knowledge, SVMs have not been attempted on
general interval targets. In this paper we develop a sup-
port vector regression formulation, which we call SVCR, to
learn from censored targets. SVCR inherits the strengths of
SVM approaches, such as a globally optimal solution by con-
vex quadratic programming, fast training speed and strong
generalization capacity, and also contributes the following
additional merits:

e The proposed method predicts survival time rather
than only the relative order. Censored data can be
translated into ordered pairs and then a ranking func-
tion can be trained to order the samples accordingly.
However, such a ranking approach is unable to predict
the time to the event, it can only order the events.

e The proposed method benefits greatly by learning from
(left or right) censored data, where as ranking ap-
proaches fail to extract ordered pairs from one-side
censored data. It is typical in related applications that
the majority of the targets are right censored, since
failure/death rate is usually very low, say less than
1% in population. Controlled experiments show the
drastic performance difference in presence of plenty of
censored observations.

The paper is organized as follows: In Section 2 we formal-
ize the settings of censored targets and discuss the appro-
priate performance evaluations. In Section 3 we review the
well-known approaches that can be adapted to learning from
censored data. In Section 4 we propose our formulation for
censored data and discuss related issues. We report exper-
imental results with details in Section 5 and conclude in
Section 6.

2. CENSORED DATA

In supervised learning, we are given a set of samples and
their corresponding targets as training data. Usually the
targets can be described by real values, such as the point
targets in standard regression and the binary class labels in
classification, where as the censored data in survival anal-
ysis can be represented by an open-end interval only, i.e.
(li, +00) with I; € R. While the targets of fixed values are
fairly standard and well studied problems in data mining
community, the interval target setting is not a well known
one. In this case the target is within an open-end interval
(li,u;) with I; < u;. We now review the different types of
targets that define different problems:

Figure 1: Solid lines indicate finite intervals, dotted
lines with arrowheads indicate left or right censored
data. Left: Pairs of interval targets that can be
compared Right Pairs of interval targets that can
not be compared.

e Point Targets: This is the case of standard regression
where each sample x; € R™ has a point target y; € R.
Thus the tuples (x;,¥;)i=1 denote a typical regression
dataset.

e Binary Class Labels: The binary class labels are usu-
ally denoted by {#1}. In this case, a dataset is the set
of tuples (x;,¥:)j=; with x; € R™ and y; € {£1}.

o Interval Targets: These are samples for which we have
both an upper and a lower bound on the target. The
tuple (xi,li,ui) with ; < ui,li e R x; € Rm,ui e R
denotes an interval target.

e Survival Times: An uncensored sample in survival
analysis is the same as a point target defined above,
while a right censored sample is written as (x;, l;, +00)
whose survival time is greater than [; € R. Finally, al-
though not typical, for the sake of completeness, left
censored samples are written as (x;, —0o,u;) whose
target is at most u; € R.

The definition of interval targets provides a general descrip-
tion of the above observations. Suppose there is a dataset
(x4, i, us)j=y of n samples with interval targets where I; <
u;. The aim is to learn a function f : R™ — R so that the
function values approximate the target values. In the follow-
ing sections, we discuss performance measures for learning
from such a dataset.

2.1 Average Absolute Error

Ideally, the regression function f: R™ — R should give the
best guess on the target value of a sample x by f(x) after
learning from the training data. To evaluate the perfor-
mance on intervals, following definition of average absolute
error (AAE) can be used:

AAE = % S ma (0.1 = f(x,)) + max (0, £(x:) —) (1)

where max(a,b) returns a if @ > b, returns b otherwise.
This quantity measures the absolute error outside the target
interval. If the predicted target is in the required interval,
we do not count that in the absolute error. However, if
the predicted target falls outside the actual target interval,
we take the absolute value of the difference between the
prediction and the closer end point of the interval. The
average of these values over an entire dataset gives AAE.

2.2 Swapped Pairsand Rank Score

Receiver Operating Characteristic (ROC) [19] is a popu-
lar performance metric to measure the quality of ordering
for classification datasets. The area under the ROC curve
(AUQ) is obtained by noting the area under the curve ob-
tained by plotting the number of true positives against the
number of false positives as the predictions are obtained se-
quentially for the entire dataset. Area under the curve is one
for perfect ordering, 0.5 for random guessing and 0 for re-
verse ordering. One major limitation of this is that it needs
class information to give an area under the curve. In the
situation that we are considering (censored outputs) there
is no class label information. Thus the AUC metric cannot
be applied in this scenario, but the idea can be generalized
to measure the quality of ordering over censored data.

We introduce a performance metric tailor-made for our sce-
nario, which is closely related to the so-called concordance
index [7], a performance measure defined for models of sur-
vival analysis. Given a dataset of n samples, there are
w pairs by taking each combination of two samples
at a time. We denote this number by total pairs. If we
have a perfect ordering function f, then it would predict
f(xi) < f(x;) whenever u; < l;. However, in practice, a
function learned from limited data does make mistakes. If
the actual censored targets satisfy u; < I; but f(x;) < f(xs)
then we call the pair (i,7) a swapped pair.

Clearly, not all the censored targets can be compared. To
illustrate the definition of comparable pairs, let us consider
a pair of samples: (x;,l;,u;) and (x;,1;,u;). The pair can
be compared when u; < I (or u; < I;). To preserve the
order of x; and x;, the optimal function f should satisfy
f(xi) < f(x;) when ever u; < ;. Similarly if u; < I
then the desired function must satisfy f(x;) < f(x;). If
neither of the two conditions (that is, u; <1I; or u; <1;) is
satisfied, there exists an overlapped region between the two
interval targets. Since the targets could be anywhere in the
overlapped region, we cannot identify the order of the two
samples precisely; there does not exist a meaningful order in
this case (Figure 1). We call such sample pairs uncomparable
pairs.

We quantify the quality of an ordering function f by calcu-
lating the fraction of comparable pairs of samples that are
correctly ordered by the function f, thus:

#comparable — #swapped

k -
RankScore #comparable

(2)

where #total = #comparable4+#uncomparable. If the func-
tion f orders every pair of comparable samples in the right
order (according to the actual targets) then there are no
swapped pairs giving RankScore = 1. If it reverses every
pair of samples, then all the samples are swapped thereby
giving RankScore = 0. Finally, if it arbitrarily arranges the
samples, nearly half the comparable samples are arranged
in the right order and the other half are swapped giving
a RankScore= 0.5 corresponding to a random guess. The
RankScore as in (2) is closely related to Gehan’s general-
ization [5] of the Wilcoxon-Mann-Whitney statistic [12] and
thus an AUC-like metric for our scenario of censored data.

3. LITERATURE REVIEW

With the above discussion on censored data, we now discuss
some of the existing methods that could (with some mod-
ifications) be applied to handle censored data. We briefly
describe each method and mention the potential problems
faced at the end of each sub-section.

3.1 Regression

Classical regression framework could be applied to handle
censored targets in a naive way. Given (x;,y;)i=;, the prob-
lem in regression is to find a function f : R™ — R that
closely matches the target y; for the corresponding x;. In
Support Vector Regression (SVR), the so-called e-insensitve
loss, ¢(e) = max(0, |e|—¢), where e = f(x;)—y;, is minimized
along with regularization controlling the capacity [14]. The
e-insensitive loss, see the left graph in Figure 2, is zero as
long as the absolute difference between the actual and the
predicted values is less than e. When this absolute difference
exceeds ¢, there is a cost which grows linearly. When f is
linear, f(x) = w'x -+ b; in its linear form, SVR is given by:

min 2wl +0Y (6 +€) (32)

w,b,£,6* =
s.t.yi—wai—bge—Ffi, &E>0 Vi<i<n; (3b)
W xi+b—y <e+&, >0 VI<i<n. (3¢

Much of the popularity of SVR comes from the fact that it
can be kernelized. By mapping each sample x; to a Hilbert
space H using a mapping ¢ : R™ — H, SVR can regress in
the Hilbert space thus giving a complex function in the input
space. Further more, these mappings are not done explicitly
but implicitly by a kernel function k£ : R™ x R™ — R such
that k(xi,x;) = ¢(x:) T ¢(x;). The kernelized version of the
SVR is given by:

(Il?(’li*% Z (as — ai) (o — af)k(xi,x5) (4a)

(4 — i + > (yi +)i
=1 =1
st Y (i—0f)=0; 0<as,0f <CVI<i<nm (4b)

i=1

Once the above formulation (4) is solved to get the optimal
a and o, the value of the function at x is given by: f(x) =
S (e — af Yk(xi,x) + b.

One naive way to handle censored data with support regres-
sion is to consider only those samples for which the targets
are known exactly. Given a training dataset (x;,l;, ui)i1,
we need to consider the subset of samples from these n sam-
ples for which I; = u;. By using only these samples in (3)
(or in the dual (4)), we can learn a function f that predicts
the target values. We can as well treat the function thus
obtained for ordering the samples.

The main disadvantage of this approach is that, by con-
sidering only those samples with point targets, it is totally
ignoring the order information available in censored sam-
ples. Any pair of samples that are comparable still have
some ordering information in them, but this naive approach
cannot exploit such information.

3.2 Classification

We present another possible approach to handle censored
target in this section making use of classification. Given
a dataset (Xs,¥:)i=; with y; € {£1}, the aim here is to
find a function f : R™ — {£1} so that the signs of the
actual label and the predicted label match. Support vec-
tor machine (SVM) finds a classification rule by maximizing
the so called margin [1]. SVM obtains a classification rule
f(x) = sign(w'x + b) by solving the following quadratic
program (QP):

mln—HwH +C’Z§z (5a)

i=1
stoyi(w xi+b)>1—6&, &>0 Vi<i<n, (5b)

where there is a penalty for samples that are either within
the margin or on the wrong side of the classification bound-
ary. The parameter C trades off between the margin and
the penalty. As in the case of regression, a non-linear deci-
sion boundary is found by solving the dual of the problem
(5) making use of a kernel function. The kernel version of
the SVM formulation is below:

mm Z Z a0y k(xi, X5) Z oy (6a)

i=1 j=1

s.t. i a;y; = 0;
i=1

The resulting non-linear decision boundary in this case is
given by: f(x) = 25:1 a;yik(xi, x)+b where b can be found
as mentioned in [1].

0<a; <C V1<i<n. (6b)

Support Vector Classification problem can be readily modi-
fied for ordering the censored data using the constraint clas-
sification approach [6], named CC-SVM. Suppose that we
have two censored samples (x;,l;,u;) and (x;,1;,u;), if the
two samples are comparable, we can impose constraints in
the SVM formulation to maintain the required order. Sup-
pose that u; <1j, then we know that the target value for x;
is at least as high as that for x;. We can explicitly require
that the this order be maintained by imposing:

w'(xi —x;)+b< —1, w'(x; —xi)+b>1.

Essentially, each pair of comparable samples gives rise to two
classification samples. Thus the pair of censored samples
(x4, li,us) and (x;,1;,u;) gives rise to the pair of classifica-
tion samples (x; — x;, —1) and (x; — x4, +1) when ever the
censored samples are comparable and u; < [;. For a given
censored training dataset, for each pair of samples we can
use this rule to translate them into classification samples.
Thus we now have a classification problem to solve, which
can be done with the SVM. The resultant w (or « in the
kernel version) can be used to order the samples according
to the targets.

One of the main drawbacks of this approach is that there
is a quadratic blow up in the problem size. If there are n
samples in the censored training dataset, there are a total
of @ pairs. This can be computationally prohibitive for
large datasets. Another issue associated with the approach
is that while it can order the samples, it can not give a good
estimate of the actual output. It only considers the ordering
among the samples totally ignoring the actual output values.

3.3 PreferencelLearning

As discussed in Section 2.2, comparable pairs can be identi-
fied from the training data set (x;,l;,u;)j=;. Given a com-
parable pair x; and x; with [; > wu;, we know that the target
value of x; is less than that of x;. In the rank sorted by the
target values in a descending order, x; is definitely ranked
higher than x;. We can also say x; is preferred to x; in the
criterion of the target value, denoted as x; > x;. The tech-
niques proposed for learning pairwise preference relations
can be adapted here to train a ranking function.

An ideal ranking function for x; > x; should be consistent
with their preference relations, i.e. f(x;) > f(x;). An ap-
propriate likelihood function was introduced by Chu and
Ghahramani [3] to capture the preference relation of x; >

x;, which is defined as ® (M) where o > 0 reflects

V2

the noise level in measurement, ®(z f N(v;0,1)dy
and N(+;0,1) denotes a normal dlstrlbutlon Wlth Zero mean
and unit variance. Coupled with a Gaussian process prior,
which is defined as P(f) = N (f;0,K) where f is a column
vector containing function values of the samples in compa-
rable pairs and K is a Gram matrix whose ij-th element is
defined by a kernel function k(x;,x;), the posterior proba-
bility of the function values is then proportional to

N(f;O,K)H@(W)’

where the index ij runs over all comparable pairs. The max-
imum a posteriori (MAP) estimate is equivalent to the min-
imizer of the negative logarithm of the posterior probability,

ie. %fTKlf—%:ln<I><f<xi)\/_§0f(xj))-

This is a convex programming problem that yields a globally
optimal solution. At the MAP estimate denoted as fuap,
the function value at x is given by

x) = Z Bik(xi,x)

lnq)<.f(xz f(x_‘/))‘
Z” Bf(x) V2o F=fmap

index ij runs over all comparable pairs. The function values
can then be used to determine the preference relations.

where 3; = and the

An important advantage of preference learning over the con-
straint classification approach [6] is that the problem size is
same as the number of samples rather than quadratic. In
applications to censored data, a potential drawback lies in
that it is impossible to learn from uncomparable pairs. Any
two left censored (or right censored) samples are uncompa-
rable. However, it is typical in practical applications that
the majority of the samples are left or right censored, as
failure/death rate is usually very low, say less than 1% in
population.

3.4 Classical Survival Analysis

Classical survival analysis aims to determine a parametric
distribution of time to event (failure) 7". This distribution
of survival time is characterized by the survival function

S(t) = P(T > t),

Distribution p(t) S(t)
Weibull AT Texp(=At7) exp(—At")
exponential Aexp(—At) exp(—At)
normal \/% exp(—1(At)?) 1—®(At)
log-normal t\/Aﬁ exp(—1(AInt)?) | 1 — @ (Alnt)
log-logistic % 14+ x7)~t

Table 1: Statistical distributions commonly used in
parametric survival analysis. The Gamma distri-
bution is defined as I'(t) = ;)Jroo 2" lexp(—2)dz and
the cumulative normal distribution is defined as

®(2) = [Z N(7;0,1)dr.

which is the probability that the survival time is greater
than ¢. The probability density function is defined as

_dsw)
Another function of interest is the hazard function, given by
p(t)
h(t) = ==
0 =53,

which represents the instantaneous probability of event oc-
currence at time ¢t. Any parametric distribution over non-
negative values of ¢t may be applied as p(t); see Table 1 for
a list of distributions commonly used.

Classical regression models are used extensively to study the
effect of the attributes on the survival time. These models
assume that the overall survival of a population follows one
of the parametric distributions shown in Table 1. These
unconditional models can be turned into regression models
(conditional models) by replacing one of the free parameters
with a (suitably transformed) linear predictor. The linear
predictor is simply the inner product of a column vector w
of unknown regression coefficients and a vector x of observed
attributes for the item of interest. The linear predictor is
usually transformed to satisfy constraints on the parameter
of the unconditional survival distribution. For example, in
the Weibull regression model the free parameter X is equated
with exp(w'x) to ensure that it is positive. This is a fa-
miliar technique for Generalized Linear Models. The other
distributions in Table 1 can be turned into regression models
along similar lines. Cawley et al [2] use a kernelized version
of these parametric models.

4. A SUPPORT VECTOR FORMULATION

Our aim in this section is to propose an approach to over-
come the potential difficulties of the approaches to learning
tasks with censored targets, that were discussed in Section
3, namely:

e Quadratic blow up in the problem size;

e Not utilizing the entire available information;

e No estimate of the actual target.

Consider a censored dataset (x;,l;,u;)i—; as defined in Sec-
tion 2. In this setting, we need the predicted value for x; to

K c(fOx). u)
| =

yre (x) \ I, ou f(x)

Figure 2: Loss functions: SVR loss (left) and SVCR
loss (right).

be within the interval (I;,u;). The ideas in e-insensitive loss
function can be generalized for this situation. As long as
the output f(z;) is between l; and u;, there is no empirical
error. We penalize if the output is more than u; or if it is
less than [;. Thus, the loss function for this case becomes:

e(f(xi), iy wi) = max(l; — f(xi), f(xi) — wi)- (7)

Figure 2 shows both the e-insensitive loss of SVR and our
modified loss function. The loss we used is exactly the ab-
solute error defined as in (1).

Note that when I; = —o0 or u; = 400, this loss function
becomes one sided. Let us split the index set {1,2,...n}
into three sets as follows:

I, < {i|ll; > —o0,u; < 400},

I {ifu; = +oo},

I < i)l = —oo}.
Note that there is no overlap between I, and I;, since no
sample’s target takes infinity on both sides.

The set I, contains the indices of those samples which have
both a finite lower bound and a finite upper bound, while
I, and I; contain the indices of the samples that are right
censored and left censored respectively. We further define
two index sets

LY, UL and U¥' 1,01, (8)

where L contains the indices of those samples whose targets
have a finite lower bound while U contains the indices of

those having a finite upper bound.

We now propose the following formulation for the censored
dataset:

1 2 -
Jin Sliw] +C<Z€i+2&) (92)

ieU =
st.w xi+b—wu; <& VieU; (9b)
lLi—w'x;—b<§& VielL; (9¢)
&E>0 VieU;, & >0 Viel. (9d)

As can be seen from the formulation (9), it is making use of
all the information available in the dataset. It is also possible
to kernelize the above formulation following steps similar to
that in SVR. By introducing Lagrangian multipliers a; > 0
for the inequalities in (9b) and «a; > 0 for the inequalities in
(9¢), the dual of the above formulation can be shown to be:

n

minl Z (i — ai) (o — af) k(xi,x5) (10a)

a,a* 2 =
1,j=1
B SN SO
i€l €U
s.t. Z @ — Z a; =0; (10b)
i€l i€U
0<aja; <C V1<i<n. (10c)

where a; = 0 Vi € L and of = 0 Vi € U are dummy
variables. At the optimal solution, with the dummy vari-
ables, the function value of x is represented by f(x) =
Yo (o — g)k(x4, x) +b. Note that usually a small fraction
of {ai; — @} } is non-zero.

4.1 Algorithm Complexity

The support vector formulation leads to a standard quadratic
programming problem. The problem size is equal to |U| +
|L|. Fast and scalable algorithms of convex programming,
such as SMO [13, 11], can be easily adapted for the solution.
It is well-known that the complexity of these algorithms is
much lower than O(n®) due to the sparseness in solution
representation, where n denotes the problem size. Empir-
ically we show the algorithm complexity is about O(n*1).
As for linear SVM, the training cost can be further reduced
to be linear with n [10, 9, 15].

4.2 Discussion

We note some interesting properties of the formulation (9)
in this section. As a general support vector formulation, by
setting l; and u; appropriately, it can be shown to be equiv-
alent to both SVM formulation (5) and SVR formulation

(3).

A classification dataset (x;,y;)j—; where y; € {£1} can be
converted to a censored dataset as follows. Following the
large margin ideas, a sample x; with label y; = +1 can be
converted as (X;, +1,+00), where as x; with label y; = —1
is considered as (x;, —00, —1). It can be observed that L =
{ilys = +1} as per the definition in (8). Thus plugging this
sample in the constraint (9c), we get:

wai—&—bZl—{i,

which confirms with (5b) for a positive sample. Similarly,
U = {i|lys = —1} as defined in (8). Plugging this sample in
the constraint (9b), we get: w'x; +b+ 1 < & which can
equivalently be written as,

—1(WTX1' + b) 2 1-— éz

Again it is consistent with (5b) for a negative sample. In
addition, the objective in the SVCR formulation (9) is the
same as that in the SVM formulation (5) thus showing the
equivalence. The equivalence can be easily identified from
the dual formulations (6) and (10) as well.

The connection to the SVR formulation is much easier to
see. Given a regression data set (x;,¥:)j=; where y; € R,
each sample (x;,y;) is converted to (x;, y; — €, ys + €) where
€ > 0 comes from the e-insensitive loss function in SVR. It

dataset No. of size of size of test pairs
features | train set | test set | (in millions)
Abalone 10 1000 2000 1.99
Bank 8 1000 1788 1.59
California 8 1000 5000 12.49
House 8 1000 5000 12.49

Table 2: Test set size for different datasets.

is straightforward to see that plugging these censored sam-
ples in the SVCR constraints (9¢) and (9b) gives the SVR
formulation (3).

5. EXPERIMENTS

In this section we describe the experiments that we per-
formed to demonstrate the superiority of the proposed method
over the existing methods. We carried out controlled exper-
iments in Section 5.1 on large regression datasets to verify
the benefits from censored data. We show that in the pres-
ence of a large number of censored samples, performance of
our method is much superior compared to the other meth-
ods. We also show the superiority of our method over the
classical methods on survival datasets in Section 5.2. Fi-
nally we report some experimental results on runtime and
scalability of our approach in Section 5.3.

5.1 Controlled Experiments

We selected four large regression datasets (x;,¥:)i=; with
yi € R.' One thousand samples were randomly drawn for
training in each dataset and test sets of different sizes as
mentioned in Table 2 were randomly drawn too. The com-
peting methods for this set of experiments were: SVCR,
SVR, CC-SVM and Gaussian process preference learning
(GP-PL). See Section 3 for technical details of these meth-
ods. The reason for choosing one thousand training samples
was to have a manageable dataset with the CC-SVM ap-
proach while still having a reasonably large training dataset.
We present two kinds of experiments with these regression
datasets below.

5.1.1 All left censored

From the one thousand training samples, we randomly se-
lected n fraction of the samples. Different values of 7 that
we used were 0.5,0.75,0.9,0.95,0.99 and 0.995. For these se-
lected samples, we changed the targets so that they became
left censored. That is, each sample (x;,y;) was changed
so that the new sample was (x;, —00,y;). Thus, instead of
having a fixed target, these samples were changed so that
their targets were at most y; instead of being fixed at ;.
This gave two kinds of samples in the training dataset: ones
that had fixed real target and the others that had censored
output. Since it is typical to see failure rates of 5%, 1%
or 0.5% fraction of the components in many domains, using
such high 7 is justified.

For SVR, we simply ignored those training samples that had
censored targets. Clearly, as the value of becomes closer to
one, the number of samples that are given to SVR reduces
accordingly: from 500 samples at n = 0.5 to 5 samples at

1 These regression datasets are available at
http://www.liacc.up.pt/~ltorgo/Regression/DataSets.html.

ABALONE

BANK

CALIFORNIA

HOUSE

RankScore

o TTOTRE

RankScore

RankScore

W e

RankScore

050 (53
percentage

050 055
percentage

050 055
percentage

050 3
percentage

Figure 3: Linear Results: left to right: abalone, bank, California and house datasets. For each percentage
(n) the boxplots from left to right: SVCR, SVR, GP-PL and CC-SVM. The notched-boxes have lines at the
lower quartile, median, and upper quartile values. The whiskers are lines extending from each end of the
box to the most extreme data value within 1.5-IQR(Interquartile Range) of the box. Outliers are data with
values beyond the ends of the whiskers, which are displayed by dots.

ABALONE

CALIFORNIA

HOUSE

b

ol T &o

® o

RankScore

'

il

R

RankScore

o

o o e

RankScore

ﬁﬂﬂ

1

RankScore

R

050 o075 3 3
percentage

0%

0595

7

0% 055
percentage

050 075 3

050 0%
percentage

050 ors 3 3
percentage

Figure 4: Kernel Results: left to right: abalone, bank, California and house datasets. For each percentage
(n) the boxplots from left to right: SVCR, SVR and GP-PL.

n = 0.995. It is reasonable to expect deterioration in the
performance of the SVR as 7 is increased.

For CC-SVM, we compared each comparable pair and then
generated two new samples when ever they were compara-
ble. The generated samples were constrained to preserve the
order between them as described in Section 3.2. For linear
CC-SVM, we used a fast linear SVM implementation [15].
Due to the quadratic blow up problem mentioned in Section
3.2, solving the kernel CC-SVM became prohibitive, thus we
do not have results with kernelized CC-SVM.

Similarly, for GP-PL, we compiled the entire list of com-
parable samples and gave that to the preference learning
algorithm as described in Section 3.3.

For SVCR we used all the one thousand samples with both
the censored (7 fraction of the training) and uncensored (1—
n fraction) samples.

For all the methods, parameters were chosen by doing a two-
fold cross validation on the training data. Parameters that
minimized the average RankScore over the two folds were
chosen. Training was then done on the entire training set
for each method with chosen parameters. The aim was to
see how well the methods could predict on the actual test
set that was held out initially from the regression datasets.
We did not censor the test dataset since our aim was to

see how well the methods could perform with respect to
clean test set. For SVCR and SVR we found out both the
RankScore and the average absolute error on the entire test
data. However, GP-PL and CC-SVM can not produce the
actual target output; they can only give an ordering. Thus
we also compared RankScores of the different methods. The
RankScore was calculated as in (2). Since there were no
censored samples in the test set, there were a large number of
comparable pairs as described in Table 2. Entire experiment
was repeated ten times.

Figure 3 has the results for the linear case. Figure 4 shows
the results for the polynomial kernel with degree two, i.e.
(1 4+ %/ x;)?. For each dataset, on the x-axis we show the
fraction n of the training samples censored. On the y-axis
we show the RankScore distribution. The four boxplots
indicate the results on SVCR,SVR, GP-PL and CC-SVM
respectively. For an exact description of the boxplots, re-
fer to Figure 3. As the fraction n was increased there was
a drop in RankScore for all the methods. However, the
drop in RankScore for SVCR is much less compared to the
other methods. The boxplots for SVR look much shorter for
n = 0.995 than n = 0.95 in some of the plots. This is be-
cause, at n = 0.995, there is very little information available
for the SVR. The RankScore with this n corresponds almost
to random guessing (RankScore = 0.5). Thus the result-
ing variance in RankScore for very high 7 is much smaller.
It can be noticed that the gains of SVCR over the other

ABALONE

BANK

CALIFORNIA

HOUSE

AAE

I

RankScore

;|

AAE

e)
AAE

Figure 5: Linear Results: AAE with SVCR and SVR respectively as a function of n with half left censored
data. For each percentage () the boxplots from left to right: SVCR and SVR.

ABALONE

% &
percentage

ey -
090

055
percentage

BANK

0% 3
percentage

CALIFORNIA

050 o5
percentage

HOUSE

009)

AAE

RankScore

8

AAE

L

i

-,
AAE

3
£ i

g

050 05
percentage

0% 3
percentage

0% 3
percentage

050 3
percentage

Figure 6: Kernel Results: AAE with SVCR and SVR respectively as a function of n with half left censored
data. For each percentage () the boxplots from left to right: SVCR and SVR.

methods is more prominent in the kernel version results.

We note that it is unreasonable to expect SVCR to do very
well in terms of average absolute error (AAE) in this case.
This is because, for all the censored samples, the output
of SVCR is required to be at most y; that biases the pre-
diction greatly. Thus the predictions given by the SVCR
tend to be much less than the actual value for fixed point
outputs. However, if we either cross validate on AAE or if
there are plenty of both left and right censored examples,
we can expect to have a low AAE score as we show in the
next section.

5.1.2 Half left censored

The experiment setup in this case was very similar to that
in Section 5.1.1 but instead of censoring all the 7 fraction
of samples to the left, half of the samples were censored to
the left and the other half were censored to the right. Thus
half of the samples (x;,y:) from 7 fraction were converted
to (Xi,yi, +00) and the other half of the samples were con-
verted to (x;,—00,y;). Other settings in this experiment
were the same as in Section 5.1.1. However, the number of
comparable pairs in this setup became more. This is be-
cause a left censored and a right censored example might
be comparable, but two left censored examples can never be
compared. Higher number of comparable pairs meant a bet-
ter performance by CC-SVM and GP-PL compared to that
in Section 5.1.1. Also, in this case, unlike in Section 5.1.1,
predictions are not biased towards one side. Figure 5 and
Figure 6 show the results. As the n value is increased the
AAE of SVR is significantly higher than the AAE of SVCR,
as we expect. Tables 3 and 4 give the RankScores in this
setup. As can be seen, in the linear case there is no clear

dataset | # samples | # censored | # features
Lung 228 63 7
Heart 172 97 4
veteran 137 9 10
botdata 309 125 6
nwtco 4028 3457 8

Table 5: Survival Datasets.

winner. In the kernelized version, our method seems to have
slight advantage over the other methods. We conclude this
section noting that SVCR has higher performance potential
(over other methods) when there are significantly many one
sided censored examples.

5.2 SVCR VersusClassical Models

In this section we study how the SVCR method compares
with the classical parametric models (CPM). While the ex-
periments in Section 5.1 were controlled, in this section
we performed the experiments on survival datasets. These
datasets are typical datasets that are used in survival anal-
ysis literature. We compared our method with several para-
metric survival distributions (Weibull, exponential, normal,
logistic, log-normal and log-logistic) that were introduced in
Section 3.4

The five datasets that we used were Lung, Heart, Nwtco,
Veteran? and botdata [2]. In each of these datasets, miss-
ing values, if any, were replaced by the mean of the feature.
Table 5 shows the number of features, samples and the num-

2These four datasets can be found in the R-package -
?Survival”.

Abalone Bank California House
n 0.99 0.995 0.99 0.995 0.99 0.995 0.99 0.995
SVCR 81.4+0.5 | 81.7+0.2 93.14+0.1 93.0+0.1 81.5+0.1 82.24+0.2 76.0+0.6 | 76.5+0.4
SVR 76.3+85 | 784+£34 | 79.8£20.6 | 79.6+£20.6 || 73.1 124 | 7T4.6 £11.6 || 67.3£11.2 | 68.4+14.1
GP-PL 81.3+0.3 | 81.3+0.3 93.2+0.1 | 93.24+0.1 || 81.7+0.1 | 82.3+0.3 74.2+04 74.2+£0.9
CC-SVM || 81.7+0.2 | 81.6+0.2 93.2+0.1 | 93.2+0.1 || 81.7+0.1 | 82.3+0.3 75.44+0.3 75.2+£0.7
Table 3: RankScores with linear kernel with half left censored data. RankScores have been multiplied by one
hundred.
Abalone Bank California House
n 0.99 0.995 0.99 0.995 0.99 0.995 0.99 0.995
SVCR 82.0+0.5 | 82.0+0.5 93.24+0.1 | 93.2+0.1 83.0+0.2 | 82.94+0.1 | 785+0.3 | 78.0+0.3
SVR 788 +3.6 | 7T3.7+13.1 || 79.7+18.3 | 79.3 £ 18.7 || T4.7+11.2 | 75.3£11.6 || 67.7+12.2 | 7T1.3+£6.1
GP-PL || 81.9+04 | 821+04 93.24+0.2 | 93.3£0.1 82.7+0.3 | 82.5£0.27 || 78.0£0.3 77.7+0.2

Table 4: RankScores with polynomial kernel with half left censored data. RankScores have been multiplied

by one hundred.

ber of censored samples in each of these datasets. Each of
these datasets was divided into two folds of equal size. Two
training runs were then performed. The first run used the
first fold as training data and the second fold as unseen test
data. Training consisted of model selection and parameter
estimation. Model selection was performed by exhaustively
trying out all CPM models for different parametric survival
distributions (one of Weibull, exponential, normal, logistic,
log-normal, or log-logistic). The model with the lowest AAE
was selected, as determined by five-fold cross-validation on
the training data. The winning model was then retrained on
the entire training data, and the fitted model was used to
predict survival times for the unseen test data. The whole
process was repeated a second time with the role of training
and test data reversed. Similarly SVCR was trained using
one fold and was tested on the other fold. The parameter
C of SVCR was chosen by doing a five fold cross validation.
The C that gave in lowest AAE over cross validation was
then chosen. SVCR was then trained on the entire fold and
was tested on the unseen test data.

Results are shown in Table 6. It can be seen that SVCR wins
almost in every case in terms of AAE. In terms of RankScore,
the results are not in favor of any one method. We attribute
this to the fact that cross validation was done on AAE in
the first place for both the methods. We believe that better
RankScores can be achieved if the cross validation is done
using RankScore as the criterion.

5.3 Runtimeand Scalability

The purpose of this experiment is to show that SVCR has
favourable runtime compared to CC-SVM and GP-PL. Sam-
ples were chosen randomly from the California housing re-
gression dataset. They were used for SVCR without any
modification. Appropriate datasets were generated by com-
paring the target values for GP-PL and CC-SVM. For each
sample size, the algorithms were run on five different ran-
domly chosen training sets of that size. The user times were
noted for each run and the numbers were averaged to get a
final run time for each sample size. Polynomial kernel with
degree two was used in each case. SVMLight [8] was used
for training the CC-SVM.

Figure 7 shows the run times plotted on a log-log plot. The
three lines shown in the plot were obtained by linear re-
gression on the points plotted for the respective methods.
It is quite evident that SVCR has an advantage over other
methods. The number of samples shown on the x-axis are
the number of samples before modifying them for CC-SVM.
Thus the higher slope of the CC-SVM curve is attributed
to the blow up in the problem size as described in Section
3.2. We do not show the runtime of SVR as it is the same
as that of SVCR. The slopes of these lines indicate the em-
pirical run time complexity of the three algorithms. SVCR
run time O(n?') compared favourably to that of preference
learning O(n??) and CC-SVM O(n*?') .

SVCR could be trained on a 20000 example subset from the
California housing in around 170 minutes on average on a
Dual Opteron 270 system with 16 GB RAM. GP-PL needed
approximately the same time for around 10000 samples. In
contrast CC-SVM with pairs formed using 320 samples took
around 790 minutes. Thus our method is scalable to large
datasets. In addition, specialized algorithms for linear re-
gression can be easily adapted to SVCR making the linear
version much faster.

6. CONCLUSION

We studied different approaches that can be applied to an
important real world problem. We proposed a new for-
mulation to handle censored data overcoming the problems
with the previous approaches. While the generalization is
straightforward, SVCR is shown to have interesting connec-
tions with SVR and SVM. SVCR is the most general super-
vised learning problem in that regression and binary classifi-
cation are special cases of this problem. Experiments showed
significant performance gains in the presence of higher levels
of censoring. SVCR can compete with the parametric mod-
els. SVCR was shown to be scalable and has favourable run
time compared to other methods. It is hoped that SVCR
will be widely used in survival analysis problems.

Acknowledgements
The authors were partly supported by a research contract
from Consolidated Edison. The authors would like to thank

lung heart veteran botdata nwtco

CPM | SVCR CPM | SVCR CPM | SVCR || CPM | SVCR || CPM | SVCR

Foldl | 154.4 155.5 128.2 135.8 74.9 69.8 22.0 13.3 709.5 | 441.4

AAE Fold2 148.3 | 142.2 277.6 174.4 92.4 92.9 23.3 20.5 831.9 510.1
Avg 151.3 | 148.8 202.9 155.1 83.6 81.3 22.6 16.9 770.7 | 475.8

Foldl || 0.633 | 0.595 0.652 0.623 || 0.673 0.668 0.790 | 0.888 || 0.717 0.671

RankScore | Fold2 0.615 0.635 0.540 0.576 || 0.705 0.704 || 0.769 | 0.766 || 0.680 0.598
Avg 0.624 0.615 0.598 | 0.599 0.689 0.686 0.780 | 0.827 || 0.698 0.635

Table 6: AAE and RankScore on survival datasets for classical methods and SVCR. RankScores have been

multiplied by one hundred.

mn

S 32t

c

o

o

& 1.000r

N—r

Q

g 0.031f

|_
A svcr

0.001f H GP-PL

@ cc-swm

Run Time
32768 T T

1024 -

.
2 16 64 256 1024 4096 16384 65536

Number of Samples

Figure 7: Run times for different approaches. Both
x-axis and y-axis are on a log scale. The slopes for
SVCR, GP-PL and CC-SVM are 2.0894, 2.3358 and
4.1131 respectively on the shown plot .

David Waltz, Albert Boulanger and Roger Anderson for use-
ful discussions and support.

7.
1]

2]

(6]

(7]

REFERENCES

C. Burges. A tutorial on support vector machines for
pattern recognition. Data Mining and Knowledge
Discovery, 2(2):121-167, 1998.

G. C. Cawley, N. L. C. Talbot, G. J. Janacek, and
M. W. Peck. Sparse Bayesian kernel survival analysis
for modeling the growth domain of microbial
pathogens. IEEE Transactions of Neural Networks,
17(2):471-481, 2006.

W. Chu and Z. Ghahramani. Preference learning with
gaussian processes. In ICML ’05: Proceedings of the
22nd international conference on Machine learning,
pages 137-144, 2005.

W. Chu and S. S. Keerthi. Support vector ordinal
regression. Neural Computation, 19:792-815, 2007.
A. E. Gehan. A generalized Wilcoxon test for
comparing arbitrarily singly-censored samples.
Biometrika, 52:203-223, 1965.

S. Har-Peled, D. Roth, and D. Zimak. Constraint
classification for multiclass classification and ranking.
In NIPS, pages 785-792. MIT Press, 2003.

F. E. Harrell Jr. Regression Modeling Strategies: With
Applications to Linear Models, Logistic Regression,

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]
(18]

(19]

and Survival Analysis. Springer Series in Statistics.
Springer, 2001.

T. Joachims. Making large-scale SVM learning
practical. In B. Scholkopf, C. Burges, and A. Smola,
editors, Advances in Kernel Methods — Support Vector
Learning, pages 169—-185. MIT Press, 1998.

T. Joachims. Training linear svms in linear time. In
KDD ’06: Proceedings of the 12th ACM SIGKDD
international conference on Knowledge discovery and
data mining, pages 217-226, 2006.

S. S. Keerthi and D. DeCoste. A modified finite
newton method for fast solution of large scale linear
svms. Journal of Machine Learning Research,
6:341-361, Mar 2005.

S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and
K. R. K. Murthy. Improvements to SMO algorithm for
SVM regression. IEEE Transactions on Neural
Networks, 11(5):1188-1193, 2000.

H. B. Mann and D. R. Whitney. On a test of whether
one of 2 random variables is stochastically larger than
the other. Annals of Mathematical Statistics, 18:50-60,
1947.

J. Platt. Fast training of support vector machines
using sequential minimal optimization. In B. Schlkopf,
C. Burges, and A. Smola, editors, Advances in Kernel
Methods - Support Vector Learning, pages 185-208.
MIT Press, Cambridge, MA, USA, 1999.

B. Scholkopf and A. J. Smola. Learning with Kernels.
MIT Press, Cambridge, Mass., 2002.

V. Sindhwani and S. S. Keerthi. Large scale
semi-supervised linear SVMs. In SIGIR ’06:
Proceedings of the 29th annual international ACM
SIGIR conference on Research and development in
information retrieval, pages 477-484, 2006.

A. Smola and B. Scholkopf. A tutorial on support
vector regression. Statistics and Computing,
14:199-222, 2004.

V. Vapnik. The Nature of Statistical Learning Theory.
Springer, New York, 1995.

V. Vapnik. Statistical Learning Theory. Wiley, New
York, 1998.

M. H. Zweig and G. Campbell. Receiver-operating
characteristic (roc) plots: a fundamental evaluation
tool in clinical medicine. Clinical chemistry,
39(4):561-577, 1993.

