
YESSIR: A Simple Reservation Mechanism for the
Internet

Ping Pan and Henning Schulzrinne

Abstract—
RSVP has been designed to support resource reservation in the Inter-

net. However, it has two major problems: complexity and scalability. The
former results in large message processing overhead at end systems and
routers, and inefficient firewall processing at the edge of the network. The
latter implies that in a backbone environment, the amount of bandwidth
consumed by refresh messages and the storage space that is needed to sup-
port a large number of flows at a router are too large. We have developed
a new reservation mechanism that simplifies the process of establishing re-
served flows while preserving many unique features introduced by RSVP.
Simplicity is measured in terms of control message processing, data packet
processing, and user-level flexibility. Features such as robustness, adver-
tising network service availability and resource sharing among multiple
senders are also supported in the proposal.

The proposed mechanism, YESSIR (YEt another Sender Session Inter-
net Reservations) generates reservation requests by senders to reduce the
processing overhead, builds on top of RTCP, usessoft state to maintain
reservation states, supports shared reservation and associated flow merg-
ing and is compatible with the IETF Integrated Services models.

YESSIR extends the all-or-nothing reservation model to support partial
reservations that improve over the duration of the session.

To address the scalability issue, we investigate the possibility of using
YESSIR for per-stream reservation and RSVP for aggregate reservation.

I. INTRODUCTION

A. Background

Continuous media applications such as Internet telephony,
teleconferencing, interactive multimedia games and media-on-
demand have become increasingly popular in the Internet. There
are several driving forces behind the growth of continuous me-
dia applications: The deployment of IP multicast in the Inter-
net via the MBONE overlay network has provided an important
platform for testing and deploying various audio and video ap-
plications. Also, the Real-Time Transport Protocol (RTP) [1]
facilitated the development of interoperable applications, which
have become available across a wide range of platforms. Finally,
end systems have become capable of generating and rendering
highly-compressed multimedia content.

However, as the usage of the Internet has grown, packet loss,
delay variations and lack of bandwidth [2] have made the cur-
rent Internet unsuitable for widespread delivery of predictably
high-quality continuous media services. While only sufficient
network capacity can correct these problems, it is often desir-
able to give improved service to certain classes of applications1.

We can distinguish per-packet and per-flow approaches to
providing differentiated QOS:

P. Pan is with the IBM Thomas J. Watson Research Center, Yorktown Heights,
NY 10598. pan@watson.ibm.com.

H. Schulzrinne is with the Department of Computer Science and the Depart-
ment of Electrical Engineering, Columbia University, New York, NY 10027.
schulzrinne@cs.columbia.edu.
1Particularly, if the users of these applications may be willing to pay for im-

proved predictability in quality-of-service. Note that even with network band-
width that is statistically sufficient, many continuous-media applications de-
mand consistent service throughout the lifetime, for example, of a phone call
or video-on-demand session, unaffected by traffic bursts of other applications.

Per-packet: Information necessary to obtain differentiated ser-
vice is carried inside each data packet. In IPv4, for example, the
type-of-service (TOS) byte may be used or priority may be ac-
corded to certain port numbers. Routers do not need to maintain
state beyond a rough classifier list that can be considered static;
there is no control protocol overhead.
This approach cannot guarantee a certain QOS, since the amount
of traffic injected with a particular TOS value, for example, can-
not be bounded. Thus, the per-packet approach is subject to
intentional and unintentional denial-of-service attacks.
Per-flow: Resources for a set of packets distinguished by source
or destination addresses and port numbers (“flows”) are reserved
ahead of time, with reservations established and torn down dy-
namically.

Both approaches can be combined; for example, a resource
reservation protocol can limit the amount of traffic with a par-
ticular TOS value.

We will focus primarily on per-flow resource reservation.
Currently, RSVP [3], [4] is the reservation protocol of record
in the Internet. Unfortunately, its generality implies a cost in
complexity, as discussed in Section I-C. We set out to address
some of these issues.

B. Overview

This paper describes and evaluates YESSIR (YEt another
Sender Session Internet Reservation2), an in-band, sender-based
resource-reservation protocol based on RTP that offers signifi-
cantly lower code and run-time complexity than RSVP.

YESSIR is motivated by the observation that a large fraction
of the applications that require guaranteed quality-of-service are
continuous media applications and that a substantial fraction of
these either use or will use the Real-Time Transport protocol
(RTP) to deliver their data. YESSIR and RSVP can operate side-
by-side in the same network, without affecting the certainty of
guarantees offered to applications.

In this section, we will briefly explain some of the design de-
cisions that introduce complexity into RSVP and describe fea-
tures of RTP relevant to YESSIR. The rest of paper is organized
as follows: In Section II, we will outline the design goals of
YESSIR. The YESSIR reservation mechanism will be detailed
in Section III. Section IV reports on our experimental imple-
mentation and its performance. Several open issues (including
a possible solution to the scaling problem) are discussed in Sec-
tion V. We summarize in Section VII.

C. RSVP Complexity Issues

Initially, RSVP was perceived as a light-weight reservation
protocol, in comparison, for example, with ATM signaling pro-

2The name reflects the proper attitude of a resource reservation protocol in a
well-designed network.

tocols such as Q.2931. However, as implementations are weigh-
ing in at between 10,000 and 30,000 lines of code, it seems ap-
propriate to review some of the design features that contribute
to the complexity:
Receiver orientation: In RSVP, receivers make reservations,
based on information provided by senders. This allows indi-
vidual receivers within a single multicast group to request dif-
ferent levels of service guarantees, including none. It seems
likely, however, that receivers will simply request whatever traf-
fic bandwidth the sender has indicated, either through RSVP
PATH messages or some other session initiation protocol [5].
The separation of reservation and path-finding messages for
receiver-oriented reservation mechanisms imposes additional
processing and protocol complexity.
Receiver diversity: At least for bandwidth diversity, reserva-
tions are an inappropriate means to distinguish classes of re-
ceivers. Bandwidth diversity could only be accomplished by
“thinning” flows, i.e., dropping packets, as flows reach parts of
the network endowed with less bandwidth. However, random
packet dropping will quickly degrade most audio and video en-
codings due to their use of prediction across packet boundaries.
Other mechanisms, such as layered multicast [6], were found to
be superior to support diverse receiver populations.
RSVP receivers can request different values of queuing delay
as part of their resource reservation. However, in high-speed
wide-area networks, queuing delay is dominated by propagation
delays; also, in popular scheduling disciplines such as weighted
fair queuing, queuing delay for an individual flow can only be
improved by allocating more than its “true” bandwidth, thus
incurring allocation inefficiency, particularly if reserved flows
constitute a large fraction of the total link capacity.
Receiver diversity and receiver orientation require that nodes
merge incoming reservations into a single reservation setting
aside the least upper bound of the requests of all downstream re-
ceivers. Flow merging also introduces the need for “blockade”
state to prevent so-called killer reservation (see Section III-E).
Flow management: Because reservation requests are generated
from downstream, keeping track of next-hops can become dif-
ficult and CPU intensive, particularly in multicast-capable non-
broadcast multiple access (NBMA) networks such as ATM sub-
nets.
Application modification: Since RSVP is an out-of-band proto-
col, applications need to be modified, either to take advantage
of kernel-level support for RSVP or to convey their resource re-
quirements to some external agent that makes reservations on
their behalf. Both solutions incur complexity.
Firewall complexity: Firewalls are also complicated by RSVP’s
out-of-band nature. First, they need to parse and pass RSVP
requests; they also need to correlate between the flows (session-
sender pairs) described in RSVP messages and the actual data
streams (Fig. 1).

The reservation mechanism introduced here avoids these
problems.

D. RTP Features Useful for Resource Reservation

RTP [1] has been designed to provide end-to-end delivery ser-
vices for data with real-time characteristics. Although protocol-
independent, applications normally run RTP on top of UDP to

Private Network The Internet

RSVP Messages

Data Flow 1

Data Flow 2

Firewall External router

Fig. 1. RSVP overhead at a firewall

make the use of its multiplexing and checksum services. It has
been widely implemented on multimedia systems across all op-
erating systems and is part of the ITU H.323 recommendation
for conferencing and Internet telephony. Examples include vic
[7], vat [8], rat [9] and NeVoT [10] for teleconferencing over the
MBONE, NetMeeting from Microsoft and conferencing tools
from Netscape.

Although RTP was not intended as a resource reservation pro-
tocol, resource reservation can benefit from the following RTP
features:

In-band signaling: RTP defines two types of packets: RTP for
data transport and RTCP for control. Each RTP session consists
of one RTP data stream and one corresponding RTCP stream,
originated by one or more participants. When carried over UDP,
data and control packets use adjacent port numbers, so that a
router or firewall can easily map from a control stream to the
corresponding data stream.
Periodic sender/receiver notification: Senders and receivers pe-
riodically send RTCP packets containing reports to the multicast
group. Data senders distribute sender reports (SRs) that indicate,
inter alia, the number of bytes and packets transmitted since the
last report and information allowing the estimation of round-trip
times. Data receivers include receiver reports (RRs) that indicate
packet loss and delay statistics, among others.
By evaluating these reports, all participating members have
knowledge of traffic characteristics, network congestion and
session membership. Routers can deduce the resource require-
ments of a session from these reports, as will be discussed be-
low.
The period between reports has a minimum of 5 seconds and
scales with the number of participants, keeping the RTCP ses-
sion control overhead limited to no more than 5% of the data
bandwidth. Senders are allocated at least 25% of the session
control bandwidth.
Embedded in applications: RTP is typically implemented as
part of the application. As will be shown in Section III-B, even
an RTP application that runs the current version of RTCP can
be used to initiate resource requests. No kernel modifications,

beyond the support of IP router alert options (Section I-E), are
needed.

E. IP Router Alert Option

The IP router alert option [11], [12] alerts transit routers to
more closely examine the contents of an IP packet. In other
words, routers can intercept packets not addressed to them di-
rectly, with little performance impact. For example, RSVP
PATH messages are carried in IP packets that include the router
alert option. Thus, even though RSVP PATH messages are ad-
dressed to end systems, PATH messages are intercepted and pro-
cessed by all transit routers. We make use of router alert options
to mark RTCP sender report for YESSIR processing.

II. DESIGN OBJECTIVES

YESSIR offers an alternative, light-weight approach to re-
source reservation in the Internet, using RTCP sender reports
to reserve resources in the network.

It has the following properties:
Sender-initiated reservation: As motivated earlier, we antici-
pate that many applications cannot make full use of the bene-
fits of receiver-initiated reservations. Sender-initiated reserva-
tion may also fit better with policy and billing, as the number of
senders making reservations is likely to be much smaller than
the number of receivers. In many existing systems, such as
cable television, the cost of “resource reservation” is bundled
with the cost of content, simplifying billing. (Also, a provider
of pay-per-view services would likely want to avoid the case
where subscribers pay, fail to reserve resources and then ask for
their money back since the quality was unacceptable.) In the
absence of an Internet-wide authentication and cross-provider
billing service, it is far easier for the relatively small number
of large-scale content providers, residing at known network ad-
dresses, to arrange for payment with major backbone providers
than individual subscribers.
Note that RSVP could also be modified to have PATH messages
initiate reservations, so that the benefits of sender orientation for
some applications do not depend on the use of YESSIR.
Robustness and soft-state: Similar to RSVP and PIM [13],
routers maintain reservation states as soft state, i.e., reserva-
tions disappear by themselves if not refreshed periodically. In
YESSIR, this avoids orphan reservations and adapts quickly to
routing changes. As in RSVP, an explicit teardown mechanism
using RTCP BYE packet avoids holding reservations for a num-
ber of soft-state refresh intervals after the requesting application
has terminated.
Allow partial reservations: The function of resource reserva-
tions is to protect existing streams against disruption by other
streams that arrive later.
In “classical” reservation systems, reservations are either made
or denied end-to-end. Depending on the system, the requestor
can always either ask again, at some cost to the network if done
too often (“redialing”). Some systems, including RSVP, also al-
low to specify a range of resource requests to increase the likeli-
hood of success, however, this can cause low-bandwidth regions
to experience high packet losses despite reservations.
We propose an additional reservation model, that of a partial

reservation, where some fraction of the links have resource pro-
tection for a particular flow, others may not. On links with-
out reservation, traffic is carried on a best-effort basis and the
resource reservation request continues downstream towards the
receivers. Since YESSIR is a soft-state protocol that resends
reservation requests periodically, a flow can acquire a reserva-
tion on a link when another flow terminates, without having
to retry at the application layer. The user can decide whether
to put up with a partially successful reservation and hope that
more links will be added as the session continues or cancel the
session. For a live presentation, where inserting an end-to-end
reservation means missing the event, a user may well decide
that the prospect of improving reservation fortunes may be better
than not listening at all or foregoing all resource reservations3.
YESSIR supports both end-to-end and partial reservations.
Provide different reservation styles: YESSIR supports individ-
ual and shared reservation styles. Individual reservations are
made separately for each sender, whereas shared reservations
allocate resources that can be used by all senders in an RTP ses-
sion.
Individual reservations are called for when all senders are ac-
tive simultaneously, e.g., for distribution of participant video in
a conference, while shared reservations are appropriate where
several senders alternate, e.g., for audio in a conference. (Shared
reservations also avoid the problem that a new speaker may not
be able to acquire a reservation; they can re-use the existing
reservation of the previous speaker.)
These styles are simplified versions of the fixed filter and wild-
card filter reservations in RSVP. Note that the shared reservation
styles, one of the distinguishing features of RSVP, does not de-
pend on receiver orientation. YESSIR handles the shared reser-
vation style from the sender’s direction, while RSVP supports
shared reservation (shared-explicit and wildcard-filter styles)
from the receiver’s direction.
Low protocol and processing overhead: Rather than defining
another signaling protocol, YESSIR messages are transported
by RTCP. Given that RTP is in-band signaling and its data and
control packets are tightly coupled, updating packet classifiers
and firewalls can be simplified. YESSIR uses one message to
set up a reservation. Its processing algorithm is very simple, as
we will illustrate in Section III-B.
Interoperable with RTP and the IntServ models: YESSIR mes-
sages are piggybacked in RTCP. The operation of existing RTP
functions at end systems is not affected at all. YESSIR can de-
scribe the traffic flows in terms of the service models [14], [15]
that have been specified in the IETF IntServ working group.
Provide link resource advertising function: The purpose of mak-
ing link-level resource reservation is to meet end-to-end appli-
cation requirements. To that end, YESSIR is able to query and
carry collected network resource information to the end systems.

3Partial reservations can lead to fragmentation, where a large number of flows
all have partial reservations, with unacceptable quality. This aspect is the subject
of current work. The soft-state mechanisms also gives a slight advantage to
high-bandwidth flows or flows with few senders, as they may get to send RTCP
requests more frequently.

 IP Module
(with router-alert option support)

UDP

RTCP

YESSIR
 RSVP
(raw mode)

RSVP

Network Interface

Integrated Service Models

Fig. 2. Protocol relationships

YESSIR message:
 - reservation command: active/passive
 - reservation style, refresh interval
 - reservation flow specification
 - link resource collection
 - reservation failure report

IP Header with Router-Alert Option

UDP Header

RTCP message:

Sender Report:
 - sender information
 - detailed report for each source

Profile-specific extensions

Fig. 3. YESSIR message format

III. YESSIR OPERATION

A. Protocol Overview

YESSIR reservation messages consist of RTCP sender-report
messages, possibly enhanced by additional YESSIR-specific
data, carried in IP packets with router-alert options. The place-
ment and relationships to other protocols are shown in Figure
2.

Reservation requests generated by senders are intercepted and
processed by those routers that support the router-alert IP option.
Routers that do not support the option or YESSIR forward the
RTCP message unaltered to the next hop. End systems ignore
the router alert option. Thus, YESSIR can be deployed incre-
mentally and without affecting the behavior of end systems.

An optional reservation extension for RTCP is defined. It

is piggybacked at the end of an RTCP report (SR or RR), as
shown in Figure 3. The YESSIR extension consists of a generic
fragment, a flowspec fragment, an optional network monitor-
ing fragment and an optional reservation error fragment. The
generic fragment instructs the router as to the desired reserva-
tion style (individual or shared), the soft-state refresh interval
and whether to make partial reservations. The flowspec frag-
ment provides the router with the necessary information as to
whether to admit the flow and what resources to set aside. The
flow specification can be in several formats. The optional net-
work monitoring fragment stores link resource information. If
it is present in a request, every router along the path updates
the link information in the fragment. Currently, we use the AD-
SPEC format [16] defined by the IETF IntServ working group.
Routers where reservation requests fail indicate the reason for
failure in the optional reservation error fragment. The fragment
is used to collect error information that will allow end systems
and network administrators to diagnose reservation failure in-
side the network.

B. Outline of Operation

Senders periodically multicast RTCP sender reports (SRs) to
all members of the multicast group (or the other party, if uni-
cast). Sender reports contain transmission and reception statis-
tics. Routers may either use the transmission statistics or addi-
tional YESSIR flowspecs and other elements.

As shown in Figure 3, YESSIR may insert reservation in-
formation into SR, however, YESSIR can also operate without
any additional information beyond what is already contained in
RTCP sender reports. When an RTCP SR is received by a router,
the router will attempt to make a resource reservation according
to the information specified in the message.

If a reservation request cannot be granted at a router, the SR
packet will continue to be forwarded to the next hop(s). The
router has the option of inserting reservation failure information
into the SR. As a part of RTCP receiver reports (RR), the re-
ceivers will provide failure information to the senders. Based
on RRs received, senders can either drop the session, or lower
the reservation request and transmitted bandwidth.

If a reservation request is accepted by a router, the corre-
sponding RTP data stream information is added into the packet
classifier, and the router’s scheduler is updated to support the
new stream.

Instead of basing reservations on flowspecs, YESSIR can also
operate in a measurement mode. Measurement mode makes use
of the fact that RTCP SRs contain a byte count and a times-
tamp. If the first RTCP packet for a session does not contain
a flowspec, the router simply records the timestamp and byte
count, but does not make a reservation. If a second packet for
the same session comes along, the router computes the differ-
ence in time stamps and byte counts and thus computes an esti-
mated rate. It then establishes reservations for this measured
bandwidth, updated as new RTCP packets arrive. Compared
to other measurement-based admission controls [17], this frees
the router from the burden to count packets and estimate rates.
Another measurement method, which we have not explored in
detail, simply has the end system mark an RTP data packet ev-

S1

S2

R1

R2

R3

Rt1 Rt2

Rt3

S1

S2

R1

R2

R3

Rt1 Rt2

Rt3

(a) Distinct Reservation style:
Reservations for S1are shown as
in solid line; S2, in dotted line.

(b) Shared Reservation style:
At Rt1, after flow merging
between reservation for S1
(solid line) and S2 (dotted line),
a single reservation (thicker line)
is made to Rt2 and Rt3.

Fig. 4. Different reservation styles (S1 and S2 are senders, R1, R2 and R3 are receivers in a single multicast RTP session; Rt1, Rt2 and Rt3 are routers)

ery so often with an IP router alert option. Each RTP packet
contains a payload type indication, which indicates the media
encoding (e.g., G.711-encoded voice). For many low bit rate
codecs, the payload type is associated with a fixed rate (e.g., 64
kb/s for G.711), so that the router can make reservations based
on that information alone. This mode, while less general and
flexible than the current YESSIR mode, has the advantage of
trivial header parsing and fixed refresh intervals. (It also incurs
the danger of increased packet delay variation and packet re-
ordering since some RTP packets would traverse a routers “slow
path”, while most would not.)

Reservation states in each router are maintained as soft-state.
The reservation is automatically removed if no RTCP SR is re-
ceived within several consecutive refresh intervals. To reduce
the processing burden at routers, instead of having routers to ini-
tiate refresh messages, RTP senders periodically generate RTCP
SR’s with IP router-alert option to refresh reservations. Com-
pare with hop-by-hop refresh mechanism that has been used in
RSVP, the end-to-end refresh mechanism in YESSIR reduces
both routers’ processing cost (as shown in Section IV-B) and
protocol overhead. For example, for a single-sender session, the
sender uses merely 1.25% of the session bandwidth for send-
ing SR’s. Assuming that a typical SR is about 100 bytes long,
any sender with a session bandwidth above 2100 b/s will send a
report at least every 30 seconds.

In addition, an RTCP BYE message, sent when a group mem-
ber leaves, releases the YESSIR state record and any resource
reservations.

C. Reservation Styles

YESSIR defines two reservation styles, individual and shared.
In individual reservations, every sender in a RTP session has a
resource reservation of its own. As shown in Figure 4 (a),router
Rt1 receives reservation requests from both senders S1 and S2.
After making a reservation, there are two separate reservations
on links between Rt1 to Rt2 and Rt3. Depending on the amount

of requested resource, RTP data streams from S1 and S2 may
have different levels of reservation.

In a shared reservation, all senders of an RTP session share
a single resource reservation in the network. As illustrated in
Figure 4 (b), the links Rt1-Rt2 and Rt1-Rt3 have a single shared
reservation. The amount of resources reserved on the link is the
least upper bound (LUB) of the individual flow requests from
S1 and S2. For example, if S1 and S2 request 10 kb/s and 15
kb/s of bandwidth, respectively, the shared bandwidth for link
Rt1-Rt2 will be 15 kb/s. If there is a reservation failure, the
reservation rejection information and the merged flow specifica-
tion will be piggybacked in the RTCP sender report. Receivers
will feed back the failure information and rejected reservation
request to all participating members, including the senders. The
senders can use these reports from receivers to adjust their re-
quests. Flow merging issues will be addressed further in section
III-E.

D. Flow Specification

A sender can specify the resource it is requesting (the
flowspec) in different formats. We have considered three types
for YESSIR: IntServ, RTP PT (payload-type), and TOS (type-
of-service).

For applications that support the IntServ traffic models,
namely the controlled-load [14] and guaranteed service [15], the
flowspec format will be the one that has already been designed
by the IETF IntServ working group [16]. In the flowspec, the
requested bandwidth, the burst size and a service class need to
be specified explicitly.

For some well-known and well-understood traffic types such
as voice, the flowspec contained in the RTCP SR can simply
list the current RTP payload type [18]. Separate ranges of the
payload type values have been set aside for audio and video, so
that a router can assign RTP flows at different granularity: by
session, by payload type value or by media class. To reduce the
number of queues, a router may simply assign all voice traffic to

S1

S2

Rt1

R1

Rt2

Q2

Q2

Q1
Q1

Off-line
queries

R2Q2

Q1

RR to S1

RR to S2

Fig. 5. Problems due to resource contention

a single high-priority queue, for example and just track the mul-
ticast destination and accumulated bandwidth for each session.

Similar to the RTP PT format, the TOS format allows routers
to use the IP type of service information in RTP data packets
to map them the appropriate scheduler queue. The YESSIR
flowspec contains the TOS value and the allocated bandwidth.
This allows the router to keep track of the bandwidth allocated
for each TOS value, preventing over-commitment, yet avoids
having to look up per-flow state for each packet. To prevent
abuse by end applications, gateways rather than end systems
would be expected to set the TOS value.

E. Killer Reservations

In a heterogeneous network, a reservation request may fail for
any number of reasons at a router. Unfortunately, such failures
may also affect requests from other senders. Figure 5 demon-
strates the killer reservation effect. Two requests Q1 and Q2

(where Q1 < Q2) arrive at router Rt1. If Q2 arrives first and
is accepted at Rt1, but rejected at Rt2, it could cause a smaller
reservation Q1 to be rejected at Rt1 since the resource has been
taken by Q2. As a result, neither request will enjoy and end-to-
end QoS guarantee.

RSVP and ATM each solve this problem differently. RSVP
generates RESVERR messages and creates a blockade state to
allow smaller reservation requests going through while blocking
large requests. Unfortunately, blockade states are difficult to
manage and incur high implementation complexity. If an ATM
reservation cannot be accepted by switch, that switch sends back
a resource release message towards the sender to tear down the
reserved resource at upstream nodes.

In YESSIR, partial reservations for both Q1 and Q2 will be
made. However, senders receive an indication that the reserva-
tion was only partially successful and can then change or drop
the reservation, clearing the way for other reservations to suc-
ceed.

S1

S2

Rt1 Rt3Rt2 R

S3
RR to S3

Q1

Q2

Q’ Q’ Q’

Q3

Q’ = LUB(Q1, Q2)

Q’’ = LUB(Q’, Q3)

Q’’ Q’’

Fig. 6. Flow merging for shared reservation

F. Flow Merging

In YESSIR, flow merging only takes place for shared reser-
vations. As discussed earlier, the merged flowspec is the least
upper bound (LUB) value of the flowspecs from all participating
senders. Here, we propose a best-effort approach to flow merg-
ing: when there is already a reservation in place, this reservation
remains if a larger reservation request from another sender can-
not be granted. As a result, all senders will have some fraction of
their bandwidth reserved, though they may have different reser-
vation requirements.

Figure 6 shows an example. S1 and S2 are the initial senders
of a shared-reservation RTP session. The merged flowspec Q0 is
reserved inside the network, where Q0 = LUB(Q1; Q2). Later,
a new sender S3 joins the RTP session and requests Q3 worth
of resources. Router Rt2 tries to reserve the merged flowspec
Q00 = LUB(Q0; Q3). Assume the reservation is successful and
the new request Q00 is relayed to router Rt3. If Rt3 cannot re-
serve Q00, it should continue to use the previous reservation Q0.
Sender S3 will be informed about the last workable reservation
Q0 from receiver R via RTCP and will ultimately decide if it
wishes to continue to participate in the session or whether it can
lower its sending rate.

G. Error Handling at Routers

In YESSIR, a router does not generate error messages to the
senders, nor does it try to automatically correct problems such
as killer reservation that are introduced due to reservation fail-
ures at neighboring routers. Instead, it inserts error informa-
tion into the SR message. It is up to the receivers to inform
the senders about reservation failures via RTCP receiver reports.
Also, RTCP sender reports containing YESSIR reservation re-
quests are always forwarded, even if unsuccessful.

We chose this approach for several reasons:
1. This behavior is simple to implement. As shown in several
RSVP implementations [19], the support for error message han-
dling and associated blockade states are costly in terms of pro-
tocol processing, timer management and extra state storage.

2. For links where resources are relatively plenty, such as a gi-
gabit Ethernet, there is no reason to reserve resources for small
data streams. In this case, a router should ignore YESSIR mes-
sages, and forward the requests downstream.
3. Managing resource over shared-media network such as Eth-
ernet and token-ring networks is difficult. In this case, a router
can insert a “reservation-undoable” flag in the error fragment of
the RTCP SR message and forward it downstream.
4. More importantly, as described earlier, reservations are soft
state. If a resource is not available at the first reservation time,
there is always a possibility that reservation can be made during
refresh times.

H. Dynamic Reservation Feature

An RTP session may not require a reservation for its whole
duration. If reservations cost money, an application may well
decide to only reserve network resources if best effort ser-
vice proves unsatisfactory4. RTP-based applications support-
ing YESSIR can easily operate in this “reserve-when-needed”
mode, as YESSIR reservation requests are coupled with RTCP
messages. RTCP receiver reports have been designed to mon-
itor traffic statistics. Senders can monitor receiver reports and
only include a reservation request if a sufficiently large fraction
of receivers indicate reception problems.

I. Network Resource Advertising

In order to satisfy end-to-end service requirements, we
adapted the OPWA (One-Pass With Advertising) scheme pro-
posed by Shenker and Breslau [20] and described by Wro-
clawski [16] for YESSIR. Here is how it works in the context
of YESSIR: each reservation request message carries a network
monitoring fragment that consists of fields for hop counts, prop-
agation delay, aggregated bandwidth and delay bounds. As SR
messages traverse routers, this fragment will be updated at ev-
ery hop. The receivers, upon reception of the SRs, will send
the collected path resource information back to the senders in
RTCP receiver reports. The senders can refer the path resource
information to adjust their reservation levels by sending new re-
quests.

J. Updating the Packet Classifier

As shown in Figure 7, when a YESSIR message is received,
the reservation setup agent will query the local traffic control
database for resource availability. If the resource is sufficient at
the egress interface(s), the agent updates the database and the
scheduler.

According to the RTP profile, RTP data uses an even port
number and the corresponding RTCP stream uses the next
higher (odd) port number. Thus, during the parsing of RTCP
messages, RTP data packet information including the IP source
and destination addresses, port numbers and protocol type can
be learned automatically.

After the router successfully sets up the scheduler, it inserts
RTCP’s IP source and destination address, protocol type (pre-
sumably, UDP), and the corresponding RTP data port numbers

4It obviously runs the risk that reservations will fail when the network is suf-
ficiently busy to drop best-effort traffic.

Classifier Scheduler

Flow Table

Reservation
Setup Agent

Traffic
Control
Database

IP Forwarder Transmitter at Egress

RTP Data

Reservation
Control Engine

Fig. 7. A router model for reservation support

into the flow table. When RTP data packets are received, the
packet classifier filters on the IP and UDP headers and forward
the packets to the scheduler.

K. Security Considerations

RTCP and RTP data are tightly coupled. Thus, at a firewall,
when a rule for a particular RTP data stream is defined, it will
be automatically applied to the corresponding RTCP messages.
Similarly, if a rule has been define to accept certain RTCP mes-
sages, the associated RTP data will be accepted as well. Sup-
porting reservations across firewalls is therefore greatly simpli-
fied.

Currently, YESSIR relies on security mechanisms at the IP
layer to provide authentication. If necessary, it would be easy
to add an authentication facility to either RTCP or the YESSIR
elements.

IV. IMPLEMENTATION AND MEASUREMENTS

A. YESSIR Processing Algorithm

The processing of YESSIR messages in a router is very simi-
lar to that of RSVP PATH messages, except that the router needs
to call the local resource managers to make appropriate reserva-
tion in the case of YESSIR. Briefly, the following algorithm can
be used to make reservation on arrival of a YESSIR message.
The router will only “see” RTCP messages where the IP packet
header has the router alert option set.
1. Perform a quick sanity checks on the UDP and RTCP head-
ers;
2. locate the flow’s reservation state in the router based on the
IP source and destination addresses and UDP port numbers; 5

3. if we cannot locate one, create a new reservation state;
4. query the routing tables to find egress interface(s);
5. make a reservation based the flowspec fragment in YESSIR
message or the bandwidth measurement in the router state

5Alternatively, we could also hash on the 4-byte RTP synchronization source
identifier (SSRC) instead of 12 bytes of source/destination information. Even
though the SSRC is only unique within each RTP session, the probability of
collision is low.

Code Section Time (�sec) % of Total

PATH Processing:
PATH entry creation 410.51� 7.51 37.12%
Route query 40.61� 1.84 3.67%
Send PATH downstream 283.16� 3.85 25.61%

RESV Processing:
RESV entry look-up 11.03� 0.43 1.00%
Update reservation info 126.35� 1.10 11.43%
Flow merging and forward RESV 234.14� 3.27 21.17%

Single RSVP flow setup overhead 1,105.80� 9.47 100%

TABLE I

PROCESSING OVERHEAD FOR RSVP TRIGGER MESSAGE

Code Section Time (�sec) % of Total

YESSIR entry creation 41.40 � 1.24 11.61%
Route query 38.43 � 2.00 10.77%
Update reservation info 23.33 � 0.38 6.54%
Send YESSIR msg downstream 253.53 � 0.74 71.08%

Single YESSIR flow setup overhead 356.68 � 2.84 100%

TABLE II

PROCESSING OVERHEAD FOR YESSIR TRIGGER MESSAGE

record;
6. store reserved resource information in the reservation state;
7. relay the message to each egress interface.

B. A Direct Measure of Protocol Overhead

We have implemented both RSVP and YESSIR on the IBM
Common Router Architecture software platform. Both imple-
mentations have the similar data structures and coding style, and
share the same set of data processing routines. We measured the
various costs associated with RSVP and YESSIR on a router.
The measured router was the IBM 2210 Nways Multiprotocol
Router, which is based on a Motorola 68040 processor with bus
speed of 32MHz. Processing times were measured by reading
clock ticks from the timer register of the processor that has a
timing resolution of 31.25 ns per tick. We divided the times
into categories so that we can have somewhat loose subjective
comparison between RSVP and YESSIR.

The underlying routing protocol used in our experiment is
OSPF, and it updates the routing table in case of route changes.
A route query operation is a straight forward route-table look-
up. All RSVP flows are set up as controlled-load, fixed-
filter style, and encapsulated in IP with the router-alert option.
YESSIR messages use the RTP PT (Payload-Type) format, the
individual reservation style, and are encapsulated in RTCP, UDP

and IP with the router-alert option. Since the packet classi-
fier and scheduler are implemented differently depending on
the physical network interface, but are the same for RSVP and
YESSIR, we chose to bypass them in our tests. Data collected
here only reflects the RSVP and YESSIR control path behavior.

Tables I and II present the protocol processing overheads of
setting a new RSVP or YESSIR flow. Table III and IV show the
processing overhead of refreshing a flow.

C. The Processing Overhead Analysis

From the measurement shown in Tables I and II, we observe
that a router can set up a new reservation flow with YESSIR
three faster than if it uses RSVP. On soft-state refresh, the
YESSIR processing overhead is nearly 50% less than that of
RSVP.

Comparing all these times, we see that the overhead of con-
structing and sending a message is about 250 �sec. This in-
cludes getting a new buffer 6, copying data and scheduling for
transmission. RSVP requires to send two messages to setup a
flow, while YESSIR takes only one message.

6Alternatively, we can simply modify the received packet instead of getting
a new buffer. However, RSVP and YESSIR are designed to support multicast
flows, where multiple buffers may be required to forward a single packet at a
router.

Code Section Time (�sec)

On receive:
PATH entry look-up 30.39 � 0.76
Route query 37.94 � 1.99
RESV entry look-up 11.01 � 0.35
Update reservation info 44.05 � 1.39

Timer routine:
Send PATH Refresh 262.02� 10.20
Send RESV Refresh 239.06� 3.44

Single RSVP flow refresh overhead 624.46� 12.26

TABLE III

PROCESSING OVERHEAD FOR RSVP REFRESH MESSAGE

Code Section Time (�sec)

On Receive:
YESSIR entry look-up 19.31 � 0.69
Route query 39.93 � 0.38
Update reservation info 24.49 � 0.31
Forward YESSIR downstream 252.56 � 2.00

Timer routine:
YESSIR flow checking 8.03 � 0.73

Single YESSIR flow refresh overhead 344.32 � 1.88

TABLE IV

PROCESSING OVERHEAD FOR YESSIR REFRESH MESSAGE

The packet transmitting overheads become more critical dur-
ing soft-state refresh process. YESSIR relies on end-to-end soft-
state refresh, that is, end users periodically transmit RTCP SR’s
with IP-alert option to maintain the flows inside the network.
As a result, a YESSIR refresh message takes about 344 �s to
process. RSVP uses hop-by-hop soft-state refresh mechanism.
A RSVP router in the network is required to send refresh mes-
sages both upstream and downstream. As shown in Table III,
refreshing a RSVP flow takes about 624 �s. Even worse, trans-
mitting RSVP refresh messages takes place at timer interrupt
level, which locks up the memory bus during the processing,
thus stalling the packet forwarding loop. If a router maintains
a large number of RSVP flows, its packet forward performance
can be serious degraded due to long timer interrupts. YESSIR,
on the other hand, uses the timer to check the flow lifetime only,
and therefore takes far less time in each timer interrupt (approx-
imately 8 �s).

The times reported above suggest accessing packet memory
at router can be expensive. Creating new flow entry and updat-
ing reservation information require extensive message parsing

and copying. Given YESSIR’s PT flowspec is far more smaller
(one word in the message) than RSVP’s IntServ-format Sender-
Tspec and Flowspec objects, we observed that the cost for cre-
ating a new YESSIR entry is nearly ten times less than that for
RSVP, and the cost for updating reservation data in YESSIR is
five times less than that for RSVP.

D. State Maintenance Overehad Comparison

YESSIR reduces the message overhead in the network. Fig-
ure 8 shows the message overhead for RSVP and YESSIR for
various numbers of receivers over a link. The protocol overhead
for one RSVP flow is the summation of a PATH and a RESV
message. We illustrate the overhead of YESSIR messages with
IntServ flowspec format, and RTP payload-type (PT) flowspec.

RSVP has the ability to pack multiple flows inside a single
RESV message. The figure shows that, for a MTU of 1500
bytes, the total protocol overhead with the “compressed” RESV
format is still higher than what is for YESSIR.

V. OPEN ISSUES AND FUTURE WORK

A. A Possible Solution for Scalability

RSVP has scaling problem due to its inability to aggregate
small flows. If every voice flow over an IP backbone has an
RSVP connection, a router may have to manage thousands of
flows at each link. For example, an OC-3 (155 Mb/s) link can
support 2400 64 kb/s voice flows, taking approximately 1.2 MB
of storage7. At a refresh interval of 30 seconds, this requires
about 230 kb/s of bandwidth, based on a size of a PATH mes-
sage including ADSPEC of 208 bytes and a RESV message for
guaranteed service and fixed filter of 148 bytes. The router has
to process about 80 refresh messages a second.

In comparison, in a typical router deployed in the backbone,
it takes about 0.4 MB to store 50,000 routes8. The bandwidth
for route updates in a stable network is negligible.

One solution to support a large number of real-time flows is
to make reservations in a hierarchical fashion, by using RSVP
inside the backbone and establishing a small number of large-
bandwidth “virtual paths”, while reserving individual flows us-
ing YESSIR in local and regional networks.

As illustrated in Figure 9, inside the backbone, routers B1
and B3 operate as RSVP proxy servers, and have established a
reserved flow, B1–B2–B3. Senders S1 and S2 use YESSIR to
set up reservations to receiver R over the Internet backbone. In a
YESSIR message, there is a bit to indicate whether the request is
active (that is, every router needs to try to make the reservation)
or passive (routers must ignore the request).

When reservation requests from S1 and S2 are received, B1
will first turn the reservation bit to passive mode in the request-
ing messages, preventing reservations from taking place inside
the backbone. At B1, the packet classifier is updated to re-direct
RTP data traffic from S1 and S2 to the pre-established RSVP
connection. At B3, when requests from S1 and S2 are received,

7ISI and IBM have reported that a RSVP flow requires up to 500 bytes for
storage in their implementations.
8In IBM’s NSFnet routers, it takes a total of 8 bytes to store a route, including

the support for CIDR.

0

100000

200000

300000

400000

500000

600000

700000

800000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Number of Flows

P
ro

to
co

l O
ve

rh
ea

d
 (

B
yt

es
)

RSVP: Path + Resv

RSVP: Path + Compressed Resv

YESSIR: PT flowspec format

YESSIR: IntServ flowspec format

Fig. 8. Protocol overhead comparison between RSVP and YESSIR

B1

B5B4

B3

L6

L4

L5

S1

S2

R

L1

L2

L3

B2

Internet BackboneRegional
Network

Regional
Network

RSVP connection

Active YESSIR request

Passive YESSIR request

Fig. 9. An example of solving the scaling problem with two levels of reservation

the router will turn the reservation mode back to active. Re-
quests will be routed toward the receiver R and make appropri-
ated reservation along the way. An end-to-end reserved connec-
tion is therefore established.

Some of the unsolved issues are:

Selecting RSVP proxy servers: In the example, the RSVP flow
is originated from B1 and terminated at B3. The mechanism
and criteria to select a proxy server can be tricky: a BGP ex-
ternal speaker [21], a PIM rendezvous point [13], and a router
managed by some policy agents are some of the candidates for

RSVP proxy servers.
RSVP tunnel identification: The combination of source and
destination address and port number should not be used to clas-
sify packets inside the backbone due to large storage overhead.
How to classify packets in backbone RSVP routers needs to be
studied. Possible solutions could be encapsulating data packets
at the edge of the backbone, or making the use of CIDR [22], or
managing IPv6 flow-ids properly.
Join YESSIR/RSVP gateway: In the example above, senders
S1 and S2 have to somehow join themselves to the nearest

YESSIR/RSVP gateway, B1, prior to the reservation requesting
time. The joining mechanism needs to be designed.
Reduce soft state overhead: Frequent refresh among routers
can be costly if the number of flows to be managed is fairly large.
On the other hand, infrequent refresh may reduce the system’s
ability to correct failure in timely fashion. A more efficient soft
state management mechanism needs to be in place for YESSIR
and RSVP. We will base our design on [23] and [24].

VI. RELATED WORK

A number of protocols have explored sender-based reserva-
tions, including ST-II+ [25] and its predecessors, RTIP and
RCAP [26] and CBSRP [27]. ST-II+ replaced IP with a
new, connection-oriented Internet protocol and integrated re-
source reservation with establishing connectivity, thus making
the smooth transition between reserved and best effort flows
more difficult. RTIP and RCAP took a similar approach. All
these protocols were out-of-band to the data protocol and used
a “hard state” approach to state management, i.e., requiring ex-
plicit set-up and tear down of connections.

VII. SUMMARY

Resource reservation is useful for supporting continuous-
media services over the Internet. The question at this stage is: at
what price? YESSIR provides a way to simplify the reservation
processing and therefore reduce associated overhead at routers.

The YESSIR approach (1) is sender-initiated to support of
“push” applications and simplify processing; (2) allows par-
tial reservations; (3) supports multiple reservation styles; (4)
uses soft state mechanisms to reliably and responsively maintain
reservation states; and (5) takes advantage of the close relation-
ship between RTP and RTCP packets for easy packet classifica-
tion and firewall support.

We are in the process of implementing YESSIR on hosts
and routers. The host implementation is based on NeVoT, vic
and vat. The router implementation will be further developed
and evaluated on experimental router prototypes from IBM Re-
search.

We plan to interface YESSIR and RSVP to develop a hierar-
chical reservation system to solve the scaling problem.

REFERENCES

[1] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: a trans-
port protocol for real-time applications,” RFC 1889, Internet Engineering
Task Force, Jan. 1996.

[2] V. Paxson, Measurements and Analysis of End-to-End Internet Dynam-
ics. PhD thesis, University of California at Berkeley, Berkeley, California,
May 1997.

[3] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala, “RSVP:
a new resource ReSerVation protocol,” IEEE Network, vol. 7, pp. 8–18,
Sept. 1993.

[4] B. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin, “Resource
ReSerVation protocol (RSVP) – version 1 functional specification,” RFC
2205, Internet Engineering Task Force, Oct. 1997.

[5] M. Handley, H. Schulzrinne, and E. Schooler, “SIP: Session initiation pro-
tocol,” Internet Draft, Internet Engineering Task Force, Mar. 1998. Work
in progress.

[6] S. McCanne, V. Jacobson, and M. Vetterli, “Receiver-driven layered mul-
ticast,” in SIGCOMM Symposium on Communications Architectures and
Protocols, (Palo Alto, California), pp. 117–130, Aug. 1996.

[7] S. McCanne and V. Jacobson, “vic: A flexible framework for packet
video,” in Proc. of ACM Multimedia ’95, Nov. 1995.

[8] V. Jacobson, “Multimedia conferencing on the Internet,” in SIGCOMM
Symposium on Communications Architectures and Protocols, (London,
England), Aug. 1994. Tutorial slides.

[9] I. Kouvelas, V. Hardman, and A. Watson, “Lip synchronisation for use
over the internet: Analysis and implementation,” in Proceedings of the
IEEE Conference on Global Communications (GLOBECOM), (London,
England), Nov. 1996.

[10] H. Schulzrinne, “Voice communication across the Internet: A network
voice terminal,” Technical Report TR 92-50, Dept. of Computer Science,
University of Massachusetts, Amherst, Massachusetts, July 1992.

[11] D. Katz, “IP router alert option,” RFC 2113, Internet Engineering Task
Force, Feb. 1997.

[12] D. Katz, R. Atkinson, C. Partridge, and A. Jackson, “IPv6 router alert
option,” Internet Draft, Internet Engineering Task Force, June 1997. Work
in progress.

[13] S. Deering, D. Estrin, D. Farinacci, V. Jacobson, C.-G. Liu, and L. Wei,
“An architecture for wide-area multicast routing,” in SIGCOMM Sym-
posium on Communications Architectures and Protocols, (London, UK),
pp. 126–135, Sept. 1994.

[14] J. Wroclawski, “Specification of the controlled-load network element ser-
vice,” RFC 2211, Internet Engineering Task Force, Oct. 1997.

[15] R. Guerin, C. Partridge, and S. Shenker, “Specification of guaranteedqual-
ity of service,” RFC 2212, Internet Engineering Task Force, Oct. 1997.

[16] J. Wroclawski, “The use of RSVP with IETF integrated services,” RFC
2210, Internet Engineering Task Force, Oct. 1997.

[17] S. Jamin, A measurement-based admission control algorithm for inte-
grated services packet networks. PhD thesis, Dept. of Computer Science,
University of Southern California, Los Angeles, California, Aug. 1996.

[18] H. Schulzrinne, “RTP profile for audio and video conferences with mini-
mal control,” RFC 1890, Internet Engineering Task Force, Jan. 1996.

[19] G. Gaines and L. Salgarelli, “RSVP implementation survey,” tech. rep.,
Institute for Information Technology of the National Research Council of
Canada, July 1997.

[20] S. Shenker and L. Breslau, “Two issues in reservation establishment,” in
SIGCOMM Symposium on Communications Architectures and Protocols,
(Cambridge, Massachusetts), Sept. 1995.

[21] Y. Rekhter and T. Li, “A border gateway protocol 4 (BGP-4),” RFC 1771,
Internet Engineering Task Force, Mar. 1995.

[22] V. Fuller, T. Li, J. Yu, and K. Varadhan, “Classless inter-domain routing
(CIDR): an address assignment and aggregation strategy,” RFC 1519, In-
ternet Engineering Task Force, Sept. 1993.

[23] Jacobson, “Scalable timers for soft state protocols,” in Proceedings of
the Conference on Computer Communications (IEEE Infocom), (Kobe,
Japan), Apr. 1997.

[24] P. Pan and H. Schulzrinne, “Staged refresh timers for RSVP,” in Proceed-
ings of Global Internet, (Phoenix, Arizona), Nov. 1997. also IBM Re-
search Technical Report TC20966.

[25] L. Delgrossi and L. Berger, “Internet stream protocol version 2 (ST2) pro-
tocol specification - version ST2+,” RFC 1819, Internet Engineering Task
Force, Aug. 1995.

[26] A. Banerjea and B. A. Mah, “The real-time channel administration proto-
col.,” technical report, UC Berkeley, 1991.

[27] S. T.-C. Chou and H. Tokuda, “System support for dynamic QOS control
of continuous media communication,” in Third International Workshop on
network and operating system support for digital audio and video, (San
Diego, California), pp. 322–327, IEEE Computer and Communications
Societies, Nov. 1992.

