
1

Processing Overhead Studies in Resource Reservation Protocols

Ping Panaand Henning Schulzrinneb

aJuniper Networks, 1194 N. Mathilda Avenue, Sunnyvale, CA 94089, U.S.A.

pingpan@juniper.net

bComputer Science Department, Columbia University, New York, NY 10027, U.S.A.

schulzrinne@cs.columbia.edu

We study the signaling cost factors from two aspects: reservation retry process (or how

to recover from reservation blocking), and one-pass signaling. Through simulation, we

discover that the reservation retry mechanism used in RSVP is not only process intensive,

but also the reservations are slow to converge. We thus explore several design options

that can speed up reservation setup and quickly recover from partial reservations. To

gain a better understanding of reservation overhead, we have implemented a lightweight

one-pass reservation protocol, YESSIR. We show that with careful implementation and

by using some of basic hashing techniques to manage
ow states, we can achieve good

performance with low processing cost. Our YESSIR implementation can support up to

10,000
ow setups per second (or about 300,000 active
ows) on a commodity 700MHz

Pentium PC.

1. Introduction

The RSVP-IntServ model [1,2] provides quality of service to individual
ows. To enable

such a service, network routers need to implement per-
ow queuing and scheduling in

the data plane, and per-
ow reservation state management in the control plane. In a

network where there are many
ows, the processing overhead associated with real-time

scheduling and queuing becomes non-negligible [3]. Furthermore, based on evaluations of

several RSVP implementations [4], it was found that in some implementation, the per-
ow

processing overhead increases linearly with the number of
ows. Therefore, the scalability

of the RSVP-IntServ model has been questioned.

It is important to realize that two scalability concerns arise, namely packet forwarding

and signaling. Packet forwarding overhead is caused by maintaining queues for each

\micro" (per-user)
ow and assigning packets to each such queue. To reduce per-
ow

queuing overhead, several alternative architecture have been proposed, including the IETF

Di�Serv model [5], where routers can simply implement a set of bu�er management and

priority-like queuing disciplines for each of a very small number of traÆc classes, providing

them with coarse-grain rate guarantees [6].

However, even with Di�Serv's superior data plane scalability, the network still needs

to control admission. The �rst approach is based on a core stateless network, where no

2

per-
ow QoS state is maintained at network routers. The end host actively probes the

network by sending probing packets at the data rate it would like to reserve, and admits

user's
ows based on the resulting packet loss, for instance. A key assumption in this

approach is that processing reservation messages at routers is too expensive, therefore,

admission control has to be delegated to end users.

In the second approach, admission control and QoS provisioning are supported inside

the network. The second approach has two
avors: a distributed and a centralized model.

Several proposals [7,8] have suggested a control message reduction approach of using

reservation aggregation. In these designs, routers \sum" up the individual reservations

at the network edge so that the total number of reservations at core routers is small. In

an e�ort to reduce or eliminate the involvement of routers during admission control, a

centralized model based on bandwidth brokers [5] has been proposed, where bandwidth

brokers are servers within the network that are responsible for admission control and

resource management. The routers send
ow information and resource usage data to the

brokers, and the brokers send admission decisions back to the routers.

Here, we notice that the common thread in all these proposals is that they are aimed to

move away from the original RSVP framework and concentrate on avoiding or reducing

signaling overhead at routers. So what is the signaling overhead at routers? In this paper,

we investigate some of the design issues that e�ects reservation signaling performance.

To overcome these de�ciencies, we introduce the design and the implementation of a

lightweight reservation protocol, YESSIR, that can process a large number of reservations

at run-time.

2. Reservation Signaling Issues

2.1. RSVP

RSVP (ReSerVation Protocol) was the �rst widely developed [9] resource reservation

protocol in the Internet. It was originally designed as the signaling protocol to support

Integrated Services (IntServ), where end users can trigger RSVP to establish simplex

reservation \
ows" in the network. Each
ow is de�ned as a source-destination pair, and

each destination can be either a unicast user, or a multicast group.

RSVP is a two-pass signaling protocol, that it takes two messages, PATH and RESV,

to complete a reservation. To setup a reservation between source S and destination D, S

�rst adds a reservation description or
owspec in a PATH message. The PATH messages

are periodically sent toward D. Each router along the way records the
owspec from

S. Upon reception of a PATH, D adjusts the
owspec to its needs, and puts a modi�ed

owspec, in a RESV message. RESV messages are periodically sent toward S along the

path traveled by the PATH messages. At each router, a local reconciliation must be

performed on the
owspec's from S and D. If the router can accommodate the resulting

owspec, a reservation is made and the RESV is passed on. Here, we notice that RSVP's

two-pass reservation technique can be processing intensive if there are many
ows in the

networks.

During RESV message processing, if a router cannot meet the required reservation, it

returns an explicit error message, back to D. At the same time, the router has to keep a

copy of the failed
owspec fromD, and retry for reservations during the next refresh cycle.

3

This latter process is referred as killer reservation prevention since the failed reservation

request must never deny service to new requests. The failed
owspecs that routers keep

for reservation retries are called blockade states.

2.2. YESSIR

In a previous work [10], we proposed a lightweight reservation protocol called YESSIR.

The new protocol has two key features that could simplify reservation processing on

routers, namely one-pass reservation and allowing partial reservations.

YESSIR establishes a reservation as the following: sender S initiates a reservation by

sending a
owspec to all receivers D. The message that carries the
owspec propagates

through the network toward the receivers. Each router along the way attempts to perform

a resource reservation upon the reception of the
owspec. If there is an admission error,

the router caches the
owspecs for future reservation retries, tags a noti�cation to the

owspec message and passes the
owspec to the next router.

Since the one-pass reservation model in the YESSIR proposal requires only one message

to setup a reservation, it simpli�es the processing sequence at routers, and can ultimately

improve router's signaling performance. We will detail YESSIR's message handling in Sec-

tion 4. In the remaining section, we will concentrate on the other performance bottleneck,

that is, the handling of reservation rejection (or blocking) at routers.

2.3. Partial Reservation

We de�ne the partial reservation as the following: for a reserving
ow, fa!b, let L =

fL1; L2; : : : ; Lng as the set of network links at the
ow traverses, andR = fR1; R2; : : : ; Rmg,

m � n as the set of the network links that have made reservation for the
ow.

if R = L

fa!b is fully reserved.

else

fa!b is partially reserved.

Note that partial reservations are only likely to occur in resource-constraint networks

or under overload conditions. However, this is exactly when reservation is needed at all {

best e�ort service works �ne in an under-utilized network.

Both RSVP and YESSIR can result in partial reservations due to admission failures,

although the mechanism that causes this is di�erent. The distribution of partial reserva-

tion state also di�ers. In RSVP, a reservation request that fails admission control creates

blockade state and proceeds no further. The corresponding reservation is left in place in

nodes downstream (towards the receivers) of the failure point. In YESSIR, if a reservation

request is denied, the reservation request still advances to the next hop. Thus, for the

same network, YESSIR will create more reserved links than RSVP does.

Generally, the main reason for a reservation failure is the lack of suÆcient resources, i.e.,

bandwidth or bu�er space, to accommodate the reservation at the time of the request.

In a network with a large number of
ows, reservations start and terminate at a high

rate, causing the resource shortage likely to be temporary one. This suggests keeping the

partial reservations instead of retrying the reservation from scratch at a later time.

4

The same rationale argues against the way that RSVP is handling partial reservations

via blockade states. Just because a reservation has failed on one link along a reservation

path does not mean the rest of the links will fail, too. In RSVP's killer reservation

prevention mechanisms, the reservation process stops at the failure node. On the other

hand, in YESSIR, each request tries to make reservations on as many links on its path

as possible. This approach helps obtaining more resources for the requesting
ow and

potentially speeds convergence to a fully-reserved path. Section 3.1 will illustrate this

point with simulation.

2.4. Reservation Retry

Partial reservations do not provide the service quality that end users have originally

requested. Hence, it is desirable for routers to \�ll in" the missing reservations as soon as

possible, since the tolerance for session set up delay is limited to a few seconds. We call

the process of attempting to complete the reservations along the path as retry.

A simple mechanism combines retry and soft-state refresh. Since the routers period-

ically send
ow states to the neighbors, the routers can retry the reservations at each

refresh cycle. However, a refresh cycle can be quite lengthy. For example, the default

refresh timer is 30 seconds for RSVP. Hence, retrying failed reservations only at soft-state

refresh intervals may not be good enough.

A more aggressive method is to have routers to retry failed reservations as soon as

extra resource becomes available. However, as we will identify in Section 3.2, if every

router aggressively seeking resources, it will only create more partial reserved
ows in the

network.

Partial reservation can lead to a situation, where a large number of
ows all have partial

QoS, but all with unacceptable quality. An analogy to this is the deadlock problem in

operating systems, where multiple processes try to access the same set of resources, and

are all waiting for others to release them �rst. Since no process is willing to release the

resource, a deadlock occurs.

In case of partial reservation, if all partially reserved
ows refuse the give up their

network resource, then no
ow will get adequate resource1. Generally, common solutions

to resolve deadlock include:

Preemption: A
ow with high priority can take resources away from lower-priority
ows

holding these resources.

Rollback: All
ows withdraw their partial reservations, and re-request at some random

time later.

Suspend misbehaving
ows: Flows that have failed their end-to-end reservation at-

tempt too many times are simply ignored by routers, leaving resources for other

ows.

1Note, however, that the analogy is not complete. An operating system task can make no progress as

long as it is missing one resource, while a
ow may decide to \risk" the QoS degradation at a small

number of routers, in the hope that the admission control mechanism is conservative and that there is

enough best-e�ort bandwidth available there.

5

The �rst two solutions require cooperation from end users, and thus more messaging

between routers and end users. Plus, they do not prevent \impolite" users from persis-

tently asking for reservations and obtaining as many network resources as they can. We

plan to compare end-user reservation preemption and rollback in the future. Here, we

present a very simple algorithm that allow routers to limit the number of retries.

Assume that a
ow fi needs to reserve bi resources, while the reservable link resource is

B. We de�ne a threshold, T , as the maximum number of retries that a
ow can exercise

during its entire duration at a single router. Each
ow fi needs also to maintain a retry

count ci. At reservation setup time,

if bi < B

� update the reservation

B B - bi
Reserve(bi)

else

� queue the request and increment retry count

Enqueue(Q, bi)

ci ci + 1

return

After a
ow fj with resource bj has been deleted, the router does the following:

B B + bj
� search through the queue

bx head[Q]

while bx 6= NIL and bx � B and cx � T

do

B B - bx
Reserve(bx)

bx next[Q]

return

By adjusting the value of T on routers, the partial reservation e�ect can be reduced.

Here, we allow
ows to continue to retry failed reservations at every refresh cycle.

3. Simulation Veri�cation

We used the ns simulator and its RSVP module, and extended it to support partial

reservation functionality required for our experiments.

Figure 1 shows a 15-node simulation network topology. Nodes 1, 2, 3, 4 and 5 are

backbone nodes, and the remainder are end systems. All backbone links have 10 Mb/s

bandwidth and 20ms propagation delay; all access network links have 100Mb/s band-

width and a propagation delay of 10ms. Network links are reliable. We assume that each

link has a high-priority queue reserved for reservation messages so that they are never

lost. Up to 50% of the link bandwidth is reservable.

6

In the simulations that follow, network nodes 7, 8, 9 and 10 generates best-e�ort data

ows as well as reserved data
ows to nodes 11, 12, 13 and 14, respectively. All data

packets are 125 bytes long. The best-e�ort data
ows are modeled as exponential on/o�

traÆc source, with on-time 1 s, o�-time 0.5 s, a burst rate of 500 kb/s and an exponentially

distributed
ow duration with a mean of 150 s. The reservation
ows are all CBR traÆc

with rate r of 100 kb/s and a token bucket size B of 5,000 bytes. We can create various

network congestion conditions by adjusting the number of best-e�ort and reservation

ows.

We assess the e�ectiveness of di�erent reservation algorithms by monitoring a CBR
ow

from node 0 to node 6 traversing several congested links. In each simulation experiment,

node 0 starts transmitting a 100 kb/s
ow at time 0 to node 6. 250 s later, node 0 then

tries to reserve resources for the
ow. The reservation session lasts 300 s. We monitor this

test
ow at node 6 by capturing the data rate received. When the end-to-end reservation

has been completed, we see a �xed rate of 100 kb/s (that is, a
at line on the traÆc trace

diagrams).

Data for the �rst 50 seconds in each simulation are discarded to obtain steady-state

result. Each simulation has been run several times with di�erent random seeds.

100M

100M 100M 100M

100M 100M 100M

10M10M 10M 10M
0 1 2 3 4 6

7 8 9

11 12 13

10

5
100M

14

100M

100M

Figure 1. The network topology used in the

simulation.

0

20

40

60

80

100

120

0 100 200 300 400 500 600

R
at

e
(k

bp
s)

Time (sec)

rsvp

Figure 2. RSVP reservation completed af-

ter 150 s and 5 tries.

3.1. Partial Reservation: RSVP vs. YESSIR

In a �rst experiment, labeled \regular load" in the �gures, we created a mildly congested

network with 27 best-e�ort
ows and 85 reservation sessions in the background. Since

the total number of reservation sessions exceeds what the backbone routers can handle,

we expect to see many reservation rejections, where rejected
ows wait and retry.

All reservation protocols tested are soft-state based with a 30-second average refresh

interval. To avoid synchronization, refresh intervals are randomly varied between 21 and

39 s.

7

Figure 2 shows the packet rate received at node 6 in a 600 s simulation. All nodes in

the network use RSVP for reservation. A rejected
ow can only retry for the reservation

at the next refresh cycle. The test
ow takes about 150 seconds and 5 tries to complete

the reservation.

0

20

40

60

80

100

120

0 100 200 300 400 500 600

R
at

e
(k

bp
s)

Time (sec)

Partial Resv (fixed refresh)

Figure 3. YESSIR (retry only at every re-

fresh cycle): reservation completed after 77 s

and 3 tries.

0

20

40

60

80

100

120

0 100 200 300 400 500 600

R
at

e
(k

bp
s)

Time (sec)

Partial Resv (with resource grabbing)

Figure 4. YESSIR (retry whenever re-

source becomes available): reservation

completed after 12 s and 19 tries.

We then ran the same identical testing scenario with YESSIR that uses soft-state refresh

to retry the failed reservations. As shown in Figure 3, the reservation completes after 77

seconds and 3 tries. Figure 4 shows a scenario with YESSIR, where all the nodes, in

particular, use the reservation recover mechanism that we have described in Section 2.4

with a very large threshold T . The testing
ow reservation takes only 12 seconds to

complete, but retries 19 times.

We then collected reservation failure and success data from all the nodes. Figure 3.1

shows how the
ow had completed the reservation in three testing scenarios above. Using

RSVP, the
ow received reservations from node 5 and 6 during its �rst reservation attempt,

but was rejected at node 4. At the next refresh cycle, the
ow made the reservation on

node 4, but was rejected from its immediate upstream node, node 3. It took two refresh

cycles for the
ow to eventually get a reservation from node 3. During the �fth refresh

cycle, the
ow made reservation from node 2 and 1, and thus completed the reservation.

Though, due to blockade states, the
ow does not have to start reservations from scratch

after each reject, it takes a long time for the
ow to make its way toward the sender almost

one hop at a time. In comparison, the one-pass reservation scheme can perform much

better. At the reservation initiation time, the request message passes through all the

nodes on the reservation path, and tries to make reservation on each node. As shown in

the �gure, the
ow made the reservations on nodes 2, 4, 5 and 6 during its �rst reservation

attempt. It took two more refresh cycles to complete the reservation.

Given that the background
ows come and leave frequently, the reservation scheme

armed with more aggressive retry mechanism performed the best. It completed the reser-

vation in 12 seconds, and retried reservations 19 times in total on all 6 nodes during this

8

0

1

2

3

4

5

6

7

200 250 300 350 400 450

N
od

e
N

um
be

r

Time (sec)

RSVP

Partial Resv (fixed refresh)

Partial Resv (fast grabbing)

Figure 5. Reservation sequence for RSVP, YESSIR (retry with only refresh), and YESSIR

(retry whenever resource becomes available). The ordinate shows the node number in the

simulation network of Figure 1.

period.

3.2. Reservation Retry Performance

To evaluate the reservation retry performance, we increased the number of background

reservation
ows to 120, that is to request 240% more resource than what the network can

provide. We experiment with both RSVP and YESSIR in this highly congested network.

We also apply the threshold algorithm de�ned in Section 2.4 on all network nodes during

YESSIR experiments.

Table 1

Number of retries in the network, measured for a 550 s simulation duration.

Description # of retries Test
ow

on all nodes between Node-0 and Node-6

YESSIR, T =1 28,314 no reservation made in 184 tries

YESSIR, T = 10 8,534 no reservation made in 46 tries

YESSIR,, T = 8 7,137 reservation completed after 232 s and 32 tries.

YESSIR, T = 3 4,382 reservation completed after 172 s and 14 tries

YESSIR, T = 1 2,685 reservation completed after 19 s and 1 retry

YESSIR, T = 0 2,588 reservation completed after 43 s and 3 tries

RSVP, �xed refresh 3,4092 no reservation made in 10 tries

Table 1 collects the total number of reservation retries from all network nodes, and the

statistics on setting up an end-to-end reservation from node 1 to 6. We observed that

2We have also monitored the total number of new RESV messages being received at the end nodes, which

is 739. This is the same as the total number of successful RSVP reservations.

9

RSVP could not make the end-to-end reservation. This is probably due to its ine�ec-

tiveness during reservation retry. On the other hand, YESSIR with very aggressive retry

process (high T) failed to make end-to-end reservation as well. An explanation is that,

with an aggressive retry algorithm, all reservation
ows in the network try to take as

much resource as possible. As a result, few
ows get the full reservations.

With a proper threshold value, the user
ow can successfully make the reservation in

a highly congested network. In the simulation, the best scenario is the one with T =

1. We suspect that with lower threshold number, the
ows are less aggressive to retry

for the link resource, and therefore allow other
ows to complete their reservations. This

conclusion seems to be supported by tests using di�erent T . We also conclude that in

using YESSIR with reservation retry, there is a trade-o� between the ability to obtain

resource quickly, and the likelihood of causing reservation deadlocks.

RSVP is also less aggressive in grabbing resource with its blockade state algorithm,

then why does it perform so poorly? From our collected data, out of 3,409 reservation

retries, there were only 739 successful
ows in the 550-second simulation interval. Since

the blockade states make partial reservations only on the nodes that are downstream

from the failure node, RSVP
ows thus receive less resources from the network, and thus

perform poorly.

4. Protocol Implementation and Performance

In the previous section, we have shown that YESSIR has the properties to establish

reservations faster, and recover from partial reservations quicker, comparing with RSVP.

In this section, we formally introduce YESSIR protocol operation and evaluate its signal-

ing processing overhead with an implementation on a common computer platform.

YESSIR is designed to be a very simple signaling protocol. It provides resource reser-

vation to real-time
ows that use RTP [11]. Figure 6 shows the reservation processing

sequence at routers. It has two operating modes: explicit, and measurement-based. In the

explicit reservation mode, YESSIR piggybacks traÆc
owspecs in RTCP messages. Upon

reception, routers make the reservation according to the
owspecs. In the measurement-

based mode, the routers simply intercept the RTCP Sender Report messages, and make

reservations based on the traÆc statistics and timing information provided in the mes-

sages. Since RTP is an end-to-end protocol, to allow the routers to intercept and process

reservation requests, YESSIR uses the router alert option [12] in the IP header. If there

is an admission control failure, we queue the request for future retries. Except in case of

routing failure, we always forward the reservation message.

We selected FreeBSD as the experimenting platform for YESSIR. Since FreeBSD does

not have a clean mechanism to intercept IP option packets, including router alerts, through

the socket interface, we have designed and developed a new socket family, PF IPOPTION,

on FreeBSD. More information on its implementation can be found in [13].

4.1. State Management

One of our objectives is to be able to support thousands of reservation
ows eÆciently,

while keep the design simple. To meet this objective, we used hash tables to manage the

reservation states in the implementation. The motivation behind using hashing comes

from the observation that any RTP session in the network can be uniquely identi�ed by

10

Is the message correct?

Flow lookup

Route lookup

Admission Control

Make reservation

Forward message

Tag the message

Create new state

Queue the request

Drop the message

N

N

N

N

Y

Y

Y

Y

Input

Output

Figure 6. Reservation processing
owchart.

1
2

i

k

M

j

Hash Index Table

Free Entry Bucket

Background Refill

Collision

Flows i, j

Flow Entries

Figure 7. An example of reservation state

management in our implementation

its IP source and destination addresses, SA, DA, and its UDP source and destination port

numbers, SP, DP. In our implementation, the hash key for an RTP
ow fi is ki = SAi

+ DAi + SPi + DPi. Our goal was to support up to 1,000
ows eÆciently, so we had

selected the hash table size, M , to be 1,537 to reduce the chance of hash collisions [14].

To solve the potential hash collision problem, we put all the
ow entries that hash to the

same slot in a linked list. Our hash function is simply: h(ki) ki mod M .

Figure 7 illustrates the reservation state handling in our implementation. There are

three tables: hash index table, free entry bucket and
ow entries. When a reservation

request for
ow fi is received, we perform the hash function to �nd a hash slot, k, in

the hash index table. After getting a
ow entry from the free entry bucket, we copy the

reservation data into the entry, and insert it into the linked list that is hanging o� the

hash slot, k.

A collision occurs if a new
ow fj arrives and hashes to the same slot as fi. We simply

insert the new entry into k's list behind the
ow entry for fi. Obviously, too many

collisions will cause poor performance. (More sophisticate dynamic hashing schemes can

limit the depth of the linked list.) The hash table and memory management take about

1,400 lines of C code to implement.

4.2. Experimental Results

We have implemented YESSIR on FreeBSD3. The latest version of the YESSIR imple-

mentation requires about 6,000 lines of C. We tested and measured the implementation on

a 700 MHz Pentium PC with several Ethernet interfaces. We have modi�ed the author's

rtptools package to generate RTCP messages with IP Router Alert option from end users.

We �rst examined the eÆciency of the QoS state management with hashing. Provided

that the hash table size is 1,537, we expect that the
ow entry searching and creating

3The source and object code for the PF IPOPTION kernel extension and YESSIR are available at

http://www.cs.columbia.edu/~pingpan/software.

11

Table 2

Hash table performance with collision reso-

lution.
Number of
ows
ow build time

in the router (�s)

50 6.4 � 1.35

100 6.3 � 1.25

200 6.3 � 0.95

500 6.2 � 1.32

800 6.4 � 0.97

1,000 6.1 � 0.99

2,000 7.3 � 1.25

5,000 7.1 � 1.20

8,000 8.1 � 0.99

10,000 8.0 � 1.56

Table 3

Processing time for YESSIR

.

Description Processing time

(in �s)

Message integrity checks 6.6 � 0.52

Flow lookup/creation 6.5 � 0.53

Route lookup 27.1 � 1.29

Admission control 6.1 � 0.57

(call for reservation)

Kernel I/O 97.8 � 8.24

time would be more or less the same when there are less than 1,000
ows in the system.

As the number of the
ows increases, more hash collisions will occur.

To verify this, we had generated 10,675 new reservation
ows from multiple sources.

On the router, we had recorded the
ow entry creation time on each
ow. To ensure

measurement accuracy, we shut o� the refresh timers during the test. The results are

shown in Table 2. As expected, the processing time is constant if the number of
ows is

below 1,000 and gradually rises above that threshold.

We measured the time for processing a one-pass reservation request message. The

measurement was taken both at user space and in the kernel. During the measurement,

we generated YESSIR messages used for measurement-based reservation. As shown in

Table 3, the overall processing time in the user space is about 46�s. However, the time

between when the packet is received from the device driver until it is sent to the device

driver in the kernel is 98�s, i.e., approximately half the processing time is spent in the

kernel.

5. Conclusion

We have investigated two important design issues in a reservation signaling protocol

design: reservation retry and one-pass reservation.

Through simulation, we have compared the reservation performance achieved from

RSVP and YESSIR. RSVP uses a more conservative hop-by-hop reservation retry mech-

anism, thus it may take a long time to achieve reservation convergence in resource-

constraint networks. On the other hand, a better alternative, such as the one employed

in YESSIR, is to retry reservations on multiple links in parallel. We also discovered

that routers need to control the reservation retry process of the failed
ows. One such

mechanism is to limit the number of reservation retries on failed
ows.

To gain a better understanding of reservation costs, we have implemented YESSIR

on the FreeBSD platform. Since YESSIR is a lightweight one-pass signaling protocol,

we are able to accomplish good reservation performance at very low processing cost on

12

routers. With careful implementation and reasonable state management techniques, we

can support up to 10,000 reservation
ow setups per second on a commodity 700 MHz

Pentium PC.

Thus, we believe that with proper protocol design and implementation, routers can

support a large number of user
ows, while providing admission control. Further, we

believe that, the control-plane scalability problem is not an issue of the number of the

ows that routers can process, but rather the number of the
ows that the network

providers can manage for authorization, accounting and billing. We think that much

future research is needed on understanding network resource manageability.

REFERENCES

1. R. Braden, Ed., L. Zhang, S. Berson, S. Herzog, and S. Jamin, \Resource ReSerVation

protocol (RSVP) { version 1 functional speci�cation," Request for Comments 2205, Internet

Engineering Task Force, Sept. 1997.

2. R. Braden, D. Clark, and S. Shenker, \Integrated services in the internet architecture: an

overview," Request for Comments 1633, Internet Engineering Task Force, June 1994.

3. T. cker Chiueh, A. Neogi, and P. Stirpe, \Performance analysis of an RSVP-capable router,"

in Proc. of 4th Real-Time Technology and Applications Symposium, (Denver, Colorado), June

1998.

4. M. Karsten, \Design and implementation of RSVP based on object-relationships," in Pro-

ceedings of Networking 2000, (Paris, France), May 2000.

5. K. Nichols, V. Jacobson, and L. Zhang, \A two-bit di�erentiated services architecture for

the internet," Request for Comments 2638, Internet Engineering Task Force, July 1999.

6. R. Guerin, L. Li, S. Nadas, P. Pan, and V. Peris, \The cost of QoS support in edge devices:

An experimental study," in Proceedings of the Conference on Computer Communications

(IEEE Infocom), (New York), Mar. 1999.

7. P. Pan, E. Hahne, and H. Schulzrinne, \The border gateway reservation protocol (BGRP)

for tree-based aggregation of inter-domain reservations," Journal of Communications and

Networks, June 2000.

8. R. Guerin, S. Herzog, and S. Blake, \Aggregating RSVP-based QoS requests," Internet

Draft, Internet Engineering Task Force, Nov. 1997. Work in progress.

9. G. Gaines and L. Salgarelli, \RSVP implementation survey," tech. rep., Institute for Infor-

mation Technology of the National Research Council of Canada, July 1997.

10. P. P. Pan and H. Schulzrinne, \YESSIR: A simple reservation mechanism for the Internet," in

Proc. International Workshop on Network and Operating System Support for Digital Audio

and Video (NOSSDAV), (Cambridge, England), pp. 141{151, July 1998.

11. H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, \RTP: a transport protocol for

real-time applications," Request for Comments 1889, Internet Engineering Task Force, Jan.

1996.

12. D. Katz, \IP router alert option," Request for Comments 2113, Internet Engineering Task

Force, Feb. 1997.

13. P. Pan and H. Schulzrinne, \PF IPOPTION: A kernel extension for IP option packet pro-

cessing," Technical Memorandum 10009669-02TM, Bell Labs, Lucent Technologies, Murray

Hill, NJ, June 2000.

14. T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms. New York:

McGraw-Hill, 1990.

