Staged Refresh Timers for RSVP

Ping Pan Henning Schulzrinne Roch Guerin

Background

- RSVP uses soft state:
 - reservations will disappear by themselves if not being refreshed;
 - advantage 1: avoid orphan reservations
 - advantage 2: quick adaptation to route changes
 - explicit tear-down messages to speed up the removal of reservations

... Background

- Unreliable RSVP control message delivery:
 - periodic refresh between hops;
 - cleanup timer: a state is deleted if no refresh messages arrive before the expiration of a cleanup timer interval.

Motivation

- Packet loss problem in the Mbone:
 - 1-2% on average;
 - 20% or more occasionally.
- If the *first* RSVP message is lost due to congestion:
 - no PATH or RESV re-transmitting until the next refresh cycle (30 seconds by default).
 - no retransmission for tear-down messages;
 the default timeout is 90 seconds.

... Motivation

- Why not increase the refresh rate?
- A problem with hop-by-hop refresh:
 - do not propagate unchanged refresh messages.
 - for example ...

... Motivation

- Why do we need reliable and fast RSVP message delivery?
 - End system multimedia application requirement: the first few seconds may be critical.
 - Service policy requirement: The delay of RSVP delivery may cause billing and accounting problems.

Terminology

- Sending and Receiving nodes
- Trigger and Refresh Messages:
 - trigger messages: generated due to state changes. Need to be delivered immediately after state changes are detected.
 - refresh messages: replicated messages to maintain states. Could be sent very infrequently.

Operation Overview

- Send trigger messages with echorequest.
- Retransmit the message until the echoreply is received.
- The retransmission interval is governed by a *staged refresh timer*.
- Scale back the refresh rate if the echoreply is received.

Staged Refresh Timer

- Each sending node has the following tunable parameters:
 - R_f: the initial fast refresh interval. Default value is 3 seconds.
 - R_s: the slow refresh interval (after echoreply). Default is 15 minutes.
 - R: fixed refresh interval. 30 sec by default.
 - $-\Delta$: an incremental value. 0.3 by default.

Staged Refresh Timer (2)

- After sending a trigger message:
 - unless the echo-reply is received, schedule retransmission after R_f, (1+ Δ) R_f, (1+ Δ)² R_f,
 - if the echo-reply is received, switch the refresh rate to R_s.
 - When (1+∆)^I R_f reaches to R, refresh
 PATH/RESV with R, and stop sending teardown messages.

Staged Refresh Timer (3)

A new RSVP timer algorithm:

```
 \begin{array}{l} \mbox{If } (R_k < R) & R_k \rightarrow R_k \ (1 + \Delta) & \mbox{send out a refresh message} & \mbox{wake up in state k after } R_k \ seconds; & \mbox{exit} \\ \mbox{else} & & \\ R_k \rightarrow R & \mbox{if (the state k is a tear-down message)} & \mbox{clean up state k;} & \mbox{exit;} \\ \mbox{else} & & \\ & \mbox{send out state k after } R_k \ seconds; & \mbox{exit} \\ \end{array}
```

Basic Properties

- hop-by-hop;
- minor addition to the RSVP protocol;
- backward compatible;
 - does not require the proposed scheme to be implemented on the receiving nodes.
- small operating overhead.

Special Considerations (1): tear-down messages

- Release the resource, and mark the state as *closing*.
- Use the state info for retransmission;
- Remove the state only after
 - the echo-reply is received,
 - or the refresh interval has changed to the fixed interval R.

Special Considerations (2): operation in NBMA

- Problem: for a multicast session, a sending node *does not* know the total number of receiving nodes for PATH or PATHTEAR at an egress interface.
- Therefore, cannot switch to a longer refresh timer Rs based on having received echo-replies.

Operation in NBMA: PATH message

Operation in NBMA: PATH

- Solution 1: Query ARP or MARS server to find out the exact number of receiving nodes. Switch to Rs after receiving replies from all receiving nodes.
- Solution 2: PATH is used for traffic advertisement. So don't apply staged refresh timer for PATH messages.

Operation in NBMA: PATHTEAR

Operation in NBMA: PATHTEAR

- A sending node knows all the receiving nodes that have made reservations.
- Generate PATHTEAR with staged refresh timer until replies are received from all known nhop nodes.

Evaluation Reduced Message Loss Probability

- Assume the message loss probability for a single message is 20%. The accumulative probability that no reservation is established after half minute is reduced to 3⊠10⁻⁴ compared with 4⊠10⁻² with the current fixed timer.
- For loss rate of 2%, the failure probabilities become $3 \boxtimes 10^{-9}$ and $4 \boxtimes 10^{-4}$, respectively.

time (sec)

Evaluation Reduced Protocol Overhead (150 bytes per message)

	60 s	60 min
Fixed Refresh	300	18,000
Slewed Refresh (slew.rate = 0.3)	300	1,950
Staged Refresh (no reply)	900	18,600
Staged Refresh (with reply)	300	900

Conclusion

- Simple
- Backward Compatible