
Transparent Checkpoint-Restart of Multiple Processes
on Commodity Operating Systems

Oren Laadan
Department of Computer Science

Columbia University

Jason Nieh
Department of Computer Science

Columbia University

Abstract
The ability to checkpoint a running application and restart
it later can provide many useful benefits including fault
recovery, advanced resources sharing, dynamic load bal-
ancing and improved service availability. However, appli-
cations often involve multiple processes which have de-
pendencies through the operating system. We present a
transparent mechanism for commodity operating systems
that can checkpoint multiple processes in a consistent state
so that they can be restarted correctly at a later time. We
introduce an efficient algorithm for recording process re-
lationships and correctly saving and restoring shared state
in a manner that leverages existing operating system ker-
nel functionality. We have implemented our system as a
loadable kernel module and user-space utilities in Linux.
We demonstrate its ability on real-world applications to
provide transparent checkpoint-restart functionality with-
out modifying, recompiling, or relinking applications, li-
braries, or the operating system kernel. Our results show
checkpoint and restart times 3 to 55 times faster than
OpenVZ and 5 to 1100 times faster than Xen.

1 Introduction

Application checkpoint-restart is the ability to save the
state of a running application to secondary storage so that
it can later resume its execution from the time at which it
was checkpointed. Checkpoint-restart can provide many
potential benefits, including fault recovery by rolling back
an application to a previous checkpoint, better application
response time by restarting applications from checkpoints
instead of from scratch, and improved system utilization
by stopping long running computationally intensive jobs
during execution and restarting them when load decreases.
An application can be migrated by checkpointing it on one
machine and restarting it on another providing further ben-
efits, including fault resilience by migrating applications
off of faulty hosts, dynamic load balancing by migrating
applications to less loaded hosts, and improved service
availability and administration by migrating applications
before host maintenance so that applications can continue
to run with minimal downtime.

Many important applications consist of multiple cooper-

ating processes. To checkpoint-restart these applications,
not only must application state associated with each pro-
cess be saved and restored, but the state saved and restored
must be globally consistent and preserve process depen-
dencies. Operating system process state including shared
resources and various identifiers that define process rela-
tionships such as group and session identifiers must be
saved and restored correctly. Furthermore, for checkpoint-
restart to be useful in practice, it is crucial that it transpar-
ently support the large existing installed base of applica-
tions running on commodity operating systems.

Zap [16] is a system that provides transparent
checkpoint-restart of unmodified applications that may be
composed of multiple processes on commodity operating
systems. The key idea is to introduce a thin virtualization
layer on top of the operating system that encapsulates a
group of processes in a virtualized execution environment
and decouples them from the operating system. This layer
presents a host-independent virtualized view of the system
so that applications can make full use of operating system
services and still be checkpointed then restarted at a later
time on the same machine or a different one. While pre-
vious work [16] presents key aspects of Zap’s design, it
did not describe a number of important engineering issues
in building a robust checkpoint-restart system. In particu-
lar, a key issue that was not discussed is how to transpar-
ently checkpoint multiple processes such that they can be
restarted in a globally consistent state.

Building on Zap, we address this consistency issue and
discuss in detail for the first time key design issues in
building a transparent checkpoint-restart mechanism for
multiple processes on commodity operating systems. We
combine a kernel-level checkpoint mechanism with a hy-
brid user-level and kernel-level restart mechanism to lever-
age existing operating system interfaces and functional-
ity as much as possible for checkpoint-restart. We intro-
duce a novel algorithm for accounting for process rela-
tionships that correctly saves and restores all process state
in a globally consistent manner. This algorithm is crucial
for enabling transparent checkpoint-restart of interactive
graphical applications and correct job control. We intro-
duce an efficient algorithm for identifying and account-
ing for shared resources and correctly saving and restor-
ing such shared state across cooperating processes. To

2007 USENIX Annual Technical ConferenceUSENIX Association 323



reduce application downtime during checkpoints, we also
provide a copy-on-write mechanism that captures a con-
sistent checkpoint state and correctly handles shared re-
sources across multiple processes.

We have implemented a checkpoint-restart prototype as
a set of user-space utilities and a loadable kernel mod-
ule in Linux that operates without modifying, recompil-
ing, or relinking applications, libraries, or the operating
system kernel. Our measurements on a wide range of real-
world server and desktop Linux applications demonstrate
that our prototype can provide fast checkpoint and restart
times with application downtimes of less than a few tens
of milliseconds. Comparing against commercial products,
we show up to 12 times faster checkpoint times and 55
times faster restart times than OpenVZ [15], another oper-
ating system virtualization approach. We also show up to
550 times faster checkpoint times and 1100 faster restart
times than Xen [5], a hardware virtualization approach.

This paper is organized as follows. Section 2 dis-
cusses related work. Section 3 provides background on
the Zap virtualization architecture. Section 4 provides an
overview of our checkpoint-restart architecture. Section 5
discusses how processes are quiesced to provide a glob-
ally consistent checkpoint across multiple processes. Sec-
tion 6 presents the algorithm for saving and restoring the
set of process relationships associated with a checkpoint.
Section 7 describes how shared state among processes is
accounted for during checkpoint and restart. Section 8
presents experimental results on server and desktop appli-
cations. Finally, we present some concluding remarks.

2 Related Work

Many application checkpoint-restart mechanisms have
been proposed [17, 22, 23]. Application-level mechanisms
are directly incorporated into the applications, often with
the help of languages, libraries, and preprocessors [2, 7].
These approaches are generally the most efficient, but they
are non-transparent, place a major burden on the applica-
tion developer, may require the use of nonstandard pro-
gramming languages [8], and cannot be used for unmodi-
fied or binary-only applications.

Library checkpoint-restart mechanisms [18, 28] reduce
the burden on the application developer by only requiring
that applications be compiled or relinked against special
libraries. However, such approaches do not capture impor-
tant parts of the system state, such as interprocess commu-
nication and process dependencies through the operating
system. As a result, these approaches are limited to be-
ing used with applications that severely restrict their use
of operating system services.

Operating system checkpoint-restart mechanisms utilize
kernel-level support to provide greater application trans-
parency. They do not require changes to the application

source code nor relinking of the application object code,
but they do typically require new operating systems [9, 10]
or invasive kernel modifications [15, 21, 24, 26] in com-
modity operating systems. None of these approaches
checkpoints multiple processes consistently on unmodi-
fied commodity operating systems. Our work builds on
Zap [16] to provide transparent checkpoint-restart func-
tionality by leveraging loadable kernel module technol-
ogy and operating system virtualization. The operating
system virtualization approach introduced in Zap is also
becoming popular for providing isolation containers for
groups of processes while allowing scalable use of system
resources [15, 20, 12].

Hardware virtualization approaches such as Xen [5] and
VMware [29] use virtual machine monitors (VMMs) [19]
that can enable an entire operating system environment,
both operating system and applications, to be check-
pointed and restarted. VMMs can support transparent
checkpoint-restart of both Linux and Windows operat-
ing systems. However, because they operate on entire
operating system instances, they cannot provide finer-
granularity checkpoint-restart of individual applications
decoupled from operating system instances, resulting in
higher checkpoint-restart overheads and differences in
how these mechanisms can be applied.

3 Virtualization Architecture

To enable checkpoint-restart, we leverage Zap’s operating
system virtualization. Zap introduces a thin virtualization
layer between applications and the operating system to de-
couple applications from the underlying host. The virtu-
alization layer provides a pod (PrOcess Domain) virtual
machine abstraction which encapsulates a set of processes
in a self-contained unit that can be isolated from the sys-
tem, checkpointed to secondary storage, and transparently
restarted later. This is made possible because each pod
has its own virtual private namespace, which provides the
only means for processes to access the underlying operat-
ing system. To guarantee correct operation of unmodified
applications, the pod namespace provides a traditional en-
vironment with unchanged application interfaces and ac-
cess to operating system services and resources.

Operating system resource identifiers, such as process
IDs, must remain constant throughout the life of a pro-
cess to ensure its correct operation. However, when a
process is checkpointed and later restarted, possibly on
a different operating system instance, there is no guar-
antee that the system will provide the same identifiers to
the restarted process; those identifiers may in fact be in
use by other processes in the system. The pod namespace
addresses these issues by providing consistent, virtual re-
source names. Names within a pod are trivially assigned
in a unique manner in the same way that traditional oper-

2007 USENIX Annual Technical Conference USENIX Association324



ating systems assign names, but such names are localized
to the pod. These virtual private names are not changed
when a pod is restarted to ensure correct operation. In-
stead, pod virtual resources are transparently remapped to
real operating system resources.

In addition to providing a private virtual namespace for
processes in a pod, our virtualization approach provides
three key properties so that it can be used as a platform
for checkpoint-restart. First, it provides mechanisms to
synchronize the virtualization of state across multiple pro-
cesses consistently with the occurrence of a checkpoint,
and upon restart. Second, it allows the system to select
predetermined virtual identifiers upon the allocation of re-
sources when restarting a set of processes so that those
processes can reclaim the same set of virtual resources
they had used prior to the checkpoint. Third, it provides
virtualization interfaces that can be used by checkpoint
and restart mechanisms to translate between virtual identi-
fiers and real operating system resource identifiers. During
normal process execution, translating between virtual and
real identifiers is private to the virtualization layer. How-
ever, during checkpoint-restart, the checkpoint and restart
functions may also need to request such translations to
match virtual and real namespaces.

4 Checkpoint-Restart Architecture

We combine pod virtualization with a mechanism for
checkpointing and restarting multiple cooperating pro-
cesses in a pod. For simplicity, we describe the
checkpoint-restart mechanism assuming a shared storage
infrastructure across participating machines. In this case,
filesystem state is not generally saved and restored as part
of the pod checkpoint image to reduce checkpoint image
size. Available filesystem snapshot functionality [14, 6]
can be used to also provide a checkpointed filesystem im-
age. We focus only on checkpointing process state; details
on how to checkpoint filesystem, network, and device state
are beyond the scope of this paper.

Checkpoint: A checkpoint is performed in the follow-
ing steps:

1. Quiesce pod: To ensure that a globally consistent
checkpoint [3] is taken of all the processes in the pod,
the processes are quiesced. This forces the processes to
transfer from their current state to a controlled standby
state to freeze them for the duration of the checkpoint.

2. Record pod properties: Record pod configuration infor-
mation, in particular filesystem configuration informa-
tion indicating where directories private to the pod are
stored on the underlying shared storage infrastructure.

3. Dump process forest: Record process inheritance rela-
tionships, including parent-child, sibling, and process
session relationships.

4. Record globally shared resources: Record state associ-
ated with shared resources not tied to any specific pro-
cess, such as System V IPC state, pod’s network ad-
dress, hostname, system time and so forth.

5. Record process associated state: Record state asso-
ciated with individual processes and shared state at-
tached to processes, including process run state, pro-
gram name, scheduling parameters, credentials, block-
ing and pending signals, CPU registers, FPU state,
ptrace state, filesystem namespace, open files, sig-
nal handling information, and virtual memory.

6. Continue pod: Resume the processes in the pod once
the checkpoint state has been recorded to allow the pro-
cesses to continue executing, or terminate the processes
and the pod if the checkpoint is being used to migrate
the pod to another machine. (If a filesystem snapshot is
desired, it is taken prior to this step.)

7. Commit data: Write out buffered recorded data (if any)
to storage (or to the network) and optionally force flush
of the data to disk.

To reduce application downtime due to the pod being
quiesced, we employ a lazy approach in which the check-
point data is first recorded and buffered in memory. We
defer writing it out to storage (or to the network) until af-
ter the pod is allowed to continue, thereby avoiding the
cost of expensive I/O operations while the pod is quiesced.
Since allocation of large memory chunks dynamically can
become expensive too, buffers are preallocated before the
pod is quiesced, based on an estimate for the required
space. The data accumulated in the buffer is eventually
committed in step 7 after the pod has been resumed.

We use a standard copy-on-write (COW) mechanism to
keep a reference to memory pages instead of recording an
explicit copy of each page. This helps to reduce memory
pressure and avoids degrading cache performance. It re-
duces downtime further by deferring the actual memory to
memory copy until when the page is either modified by
the application or finally committed to storage, whichever
occurs first. Using COW ensures that a valid copy of a
page at time of checkpoint remains available if the appli-
cation modifies the page after the pod has resumed oper-
ation but before the data has been committed. Pages that
belong to shared memory regions cannot be made copy-
on-write, and are handled by recording an explicit copy in
the checkpoint buffer. Note that we do not use the fork
system call for creating a COW clone [10, 18, 26] because
its semantics require a process to execute the call itself.
This cannot be done while the process is in a controlled
standby state, making it difficult to ensure global consis-
tency when checkpointing multiple processes.

The contents of files are not normally saved as part
of the checkpoint image since they are available on the
filesystem. An exception to this rule are open files that

2007 USENIX Annual Technical ConferenceUSENIX Association 325



have been unlinked. They need to be saved during check-
point since they will no longer be accessible on the filesys-
tem. If large unlinked files are involved, saving and restor-
ing them as part of the checkpoint image incurs high over-
head since the data needs to be both read then written dur-
ing both checkpoint and restart. To avoid these data trans-
fer costs, we instead relink the respective inode back to the
filesystem. To maintain the illusion that the file is still un-
linked, it is placed in a protected area that is unaccessible
to processes in the pod. If relinking is not feasible, such as
if a FAT filesystem implementation is used that does not
support hard links, we cannot relink but instead store the
unlinked file contents in a separate file in a protected area.
This is still more efficient than including the data as part
of the checkpoint image.

Restart: Complementary to the checkpoint, a restart is
performed in the following steps:

1. Restore pod properties: Create a new pod, read pod
properties from the checkpoint image and configure the
pod, including restoring its filesystem configuration.

2. Restore process forest: Read process forest informa-
tion, create processes at the roots of the forest, then
have root processes recursively create their children.

3. Restore globally shared resources: Create globally
shared resources, including creating the necessary vir-
tual identifiers for those resources.

4. Restore process associated state: Each created process
in the forest restores its own state then quiesces itself
until all other processes have been restored.

5. Continue: Once all processes in the pod are restored,
resume them so they can continue execution.

Before describing the checkpoint-restart steps in further
detail, we first discuss three key aspects of their overall
structure: first, whether the mechanism is implemented
at kernel-level or user-level; second, whether it is per-
formed within the context of each process or by an auxil-
iary process; and finally the ordering of operations to allow
streaming of the checkpoint data.

Kernel-level vs user-level: Checkpoint-restart is per-
formed primarily at kernel-level, not at user-level. This
provides application transparency and allows applications
to make use of the full range of operating system services.
The kernel-level functionality is explicitly designed so that
it can be implemented as a loadable module without mod-
ifying, recompiling, or relinking the operating system ker-
nel. To simplify process creation, we leverage existing op-
erating system services to perform the first phase of the
restart algorithm at user-level. The standard process cre-
ation system call fork is used to reconstruct the process
forest.

In context vs auxiliary: Processes are checkpointed
from outside of their context and from outside of the
pod using a separate auxiliary process, but processes are

restarted from inside the pod within the respective context
of each process. We use an auxiliary process that runs out-
side of the pod for two reasons. First, since all processes
within the pod are checkpointed, this simplifies the imple-
mentation by avoiding the need to special case the auxil-
iary process from being checkpointed. Second, the auxil-
iary process needs to make use of unvirtualized operating
system functions to perform parts of its operation. Since
processes in a pod are isolated from processes outside of
the pod when using the standard system call interface [16],
the auxiliary process uses a special interface for accessing
the processes inside of the pod to perform the checkpoint.

Furthermore, checkpoint is done not within the context
of each process for four reasons. First, using an auxiliary
process makes it easier to provide a globally consistent
checkpoint across multiple processes by simply quiescing
all processes then taking the checkpoint; there is no need
to run each process to checkpoint itself and attempt to syn-
chronize their checkpoint execution. Second, a set of pro-
cesses is allowed to be checkpointed at any time and not
all of the processes may be runnable. If a process cannot
run, for example if it is stopped at a breakpoint as a result
of being traced by another process, it cannot perform its
own checkpoint. Third, to have checkpoint code run in the
process context, the process must invoke this code involun-
tarily since we do not require process collaboration. While
this can be addressed by introducing a new specific signal
to the kernel [11] that is served within the kernel, it re-
quires kernel modifications and cannot be implemented by
a kernel module. Fourth, it allows for using multiple auxil-
iary processes concurrently (with simple synchronization)
to accelerate the checkpoint operation.

Unlike checkpoint, restart is done within the context of
the process that is restarted for two reasons. First, oper-
ating within process context allows us to leverage the vast
majority of available kernel functionality that can only be
invoked from within that context, including almost all sys-
tem calls. Although checkpoint only requires saving pro-
cess state, restart is more complicated as it must create
the necessary resources and reinstate their desired state.
Being able to run in process context and leverage avail-
able kernel functionality to perform these operations dur-
ing restart significantly simplifies the restart mechanism.
Second, because the restart mechanism creates a new set
of processes that it completely controls on restart, it is sim-
ple to cause those processes to run, invoke the restart code,
and synchronize their operations as necessary. As a result,
the complications with running in process context during
checkpoint do not arise during restart.

More specifically, restart is done by starting a super-
visor process which creates and configures the pod, then
injects itself into the pod. Once it is in the pod, the su-
pervisor forks the processes that constitute the roots of the
process forest. The root processes then create their chil-

2007 USENIX Annual Technical Conference USENIX Association326



dren, which recursively create their descendants. Once the
process forest has been constructed, all processes switch
to operating at kernel-level to complete the restart. The
supervisor process first restores globally shared resources,
then each process executes concurrently to restore its own
process context from the checkpoint. When all processes
have been restored, the restart completes and the processes
are allowed to resume normal execution.

Data streaming: The steps in the checkpoint-restart al-
gorithm are ordered and designed for streaming to support
their execution using a sequential access device. Process
state is saved during checkpoint in the order in which it
needs to be used during restart. For example, the check-
point can be directly streamed from one machine to an-
other across the network and then restarted. Using a
streaming model provides the ability to pass checkpoint
data through filters, resulting in extremely flexible and
extensible architecture. Example filters include encryp-
tion, signature/validation, compression, and conversion
between operating system versions.

5 Quiescing Processes

Quiescing a pod is the first step of the checkpoint, and
is also the last step of the restart as a means to synchro-
nize all the restarting processes and ensure they are all
completely restored before they resume execution. Qui-
escing processes at checkpoint time prevents them from
modifying system state, and thus prevents inconsistencies
from occurring during the checkpoint. Quiescing also puts
processes in a known state from which they can easily be
restarted. Without quiescing, checkpoints would have to
capture potentially arbitrary restart points deep in the ker-
nel, wherever a process might block.

Processes are quiesced by sending them a SIGSTOP
signal to force them into the stopped state. A process is
normally either running in user-space or executing a sys-
tem call in the kernel, in which case it may be blocked.
Unless we allow intrusive changes to the kernel code, sig-
naling a process is the only method to force a process from
user-space into the kernel or to interrupt a blocking sys-
tem call. The SIGSTOP signal is guaranteed to be de-
livered and not ignored or blocked by the process. Using
signals simplifies quiescing as signal delivery already han-
dles potential race conditions, particularly in the presence
of threads.

Using SIGSTOP to force processes into the stopped
state has additional benefits for processes that are running
or blocked in the kernel, which will handle the SIGSTOP
immediately prior to returning to user mode. If a process is
in a non-interruptible system call or handling an interrupt
or trap, it will be quiesced after the kernel processing of
the respective event. The processing time for these events
is generally small. If a process is in an interruptible system

call, it will immediately return and handle the signal. The
effect of the signal is transparent as the system call will in
most cases be automatically restarted, or in some cases re-
turn a suitable error code that the caller should be prepared
to handle. The scheme is elegant in that it builds nicely on
the existing semantics of Unix/Linux, and ideal in that it
forces processes to a state with only a trivial kernel stack
to save and restore on checkpoint-restart.

In quiescing a pod, we must be careful to also handle
potential side effects [27] that can occur when a signal is
sent to a process. For example, the parent of a process
is always notified by a signal when either SIGSTOP or
SIGCONT signals are handled by the process, and a pro-
cess that is traced always notifies the tracer process about
every signal received. While these signals can normally
occur on a Unix system, they may have undesirable side
effects in the context of checkpoint-restart. We address
this issue by ensuring that the virtualization layer masks
out signals that are generated as a side effect of the qui-
esce and restore operations.

The use of SIGSTOP to quiesce processes is sufficiently
generic to handle every execution scenario with the excep-
tion of three cases in which a process may already be in
a state similar to the stopped state. First, a process that is
already stopped does not need to be quiesced, but instead
needs to be marked so that the restart correctly leaves it
in the stopped state instead of sending it a SIGCONT to
resume execution.

Second, a process executing the sigsuspend system
call is put in a deliberate suspended state until it receives a
signal from a given set of signals. If a process is blocked
in that system call and then checkpointed, it must be ac-
counted for on restart by having the restarting process call
sigsuspend as the last step of the restart, instead of
stopping itself. Otherwise, it will resume to user mode
without really having received a valid signal.

Third, a process that is traced via the ptrace mecha-
nism [13] will be stopped for tracing at any location where
a trace event may be generated, such as entry and exit of
system calls, receipt of signals, events like fork, vfork,
exec, and so forth. Each such trace point generates a no-
tification to the controlling process. The ptrace mecha-
nism raises two issues. First, a SIGSTOP that is sent to
quiesce a pod will itself produce a trace event for traced
processes, which—while possible in Unix—is undesirable
from a look-and-feel point of view (imagine your debugger
reporting spurious signals received by the program). This
is solved by making traced process exempt from quiesce
(as they already are stopped) and from continue (as they
should remain stopped). Second, like sigsuspend, the
system must record at which point the process was traced,
and use this data upon restart. The action to be taken at
restart varies with the specific trace event. For instance,
for system call entry, the restart code will not stop the pro-

2007 USENIX Annual Technical ConferenceUSENIX Association 327



cess but instead cause it to enter a ptrace-like state in which
it will block until told to continue. Only then will it invoke
the system call directly, thus avoiding an improper trigger
of the system call entry event.

6 Process Forest

To checkpoint multiple cooperating processes, it is cru-
cial to capture a globally consistent state across all pro-
cesses, and preserve process dependencies. Process de-
pendencies include process hierarchy such as parent-child
relationships, identifiers that define process relationships
such as group and session identifiers (PGIDs and SIDs re-
spectively), and shared resources such as common file de-
scriptors. The first two are particularly important for in-
teractive applications and other activities that involve job
control. All of these dependencies must be checkpointed
and restarted correctly. The term process forest encapsu-
lates these three components: hierarchy, relationships and
resources sharing. On restart, the restored process forest
must satisfy all of the constraints imposed by process de-
pendencies. Otherwise, applications may not work cor-
rectly. For instance, incorrect settings of SIDs will cause
incorrect handling of signals related to terminals (includ-
ing xterm), as well as confuse job control since PGIDs
will not be restored correctly either.

A useful property of our checkpoint-restart algorithm is
that the restart phase can recreate the process forest us-
ing standard system calls, simplifying the restart process.
However, system calls do not allow process relationships
and identifiers to be changed arbitrarily after a process has
already been created. A key observation in devising suit-
able algorithms for saving and restoring the process forest
is determining what subset of dependencies require a priori
resolution, then leaving others to be setup retroactively.

There are two primary process relationships that must
be established as part of process creation to correctly con-
struct a process forest. The key challenge is preserving
session relationships. Sessions must be inherited by cor-
rectly ordering process creation because the operating sys-
tem interface only allows a process to change its own ses-
sion, to change it just once, and to change it to a new
session and become the leader. The second issue is pre-
serving thread group relationships, which arises in Linux
because of its threading model which treats threads as spe-
cial processes; this issue does not arise in operating system
implementations which do not treat threads as processes.
Hereinafter we assume the threading model of Linux 2.6 in
which threads are grouped into thread groups with a sin-
gle thread group leader, which is always the first thread
in the group. A thread must be created by its thread group
leader because the operating system provides no other way
to set the thread group. Given the correct handling of ses-
sion identifiers and thread groups, other relationships and

shared resources can be manipulated after process creation
using the operating system interface, and are hence simply
assigned once all processes have been created.

Since these two process relationships must be estab-
lished at process creation time to correctly construct a pro-
cess forest, the order in which processes are created is cru-
cial. Simply reusing the parent-child relationships main-
tained by the kernel to create a matching process forest is
not sufficient since the forest depends on more than the
process hierarchy at the time of checkpoint. For example,
it is important to know the original parent of a process to
ensure that it inherits its correct SID, however since or-
phaned children are promptly re-parented to init, the in-
formation about their original parent is lost. While one
could log all process creations and deletions to later de-
termine the original parent, this adds unnecessary runtime
overhead and complexity.

We introduce two algorithms—DumpForest and
MakeForest—that use existing operating system inter-
faces to efficiently save and restore the process forest, re-
spectively. The algorithms correctly restore a process for-
est at restart that is the same as the original process forest
at checkpoint. However, they do not require any state other
than what is available at checkpoint time because they do
not necessarily recreate the matching process forest in the
same way as the original forest was created.

6.1 DumpForest Algorithm

The DumpForest algorithm captures the state of the pro-
cess forest in two passes. It runs in linear time with the
number of process identifiers in use in a pod. A process
identifier is in use even if a process has terminated as long
as the identifier is still being used, for example as an SID
for some session group. The first pass scans the list of
processes identifiers within the pod and fills in a table of
entries; the table is not sorted. Each entry in the table rep-
resents a PID in the forest. The second pass records the
process relationships by filling in information in each ta-
ble entry. A primary goal of this pass is to determine the
creating parent (creator) of each process, including which
processes have init as their parent. At restart, those pro-
cesses will be created first to serve as the roots of the for-
est, and will recursively create the remaining processes as
instructed by the table.

Each entry in the table consists of the following set
of fields: status, PID, SID, thread group identifier, and
three pointers to the table locations of the entry’s cre-
ator, next sibling, and first child processes to be used by
MakeForest. Note that these processes may not neces-
sarily correspond to the parent, next sibling, and first child
processes of a process at the time of checkpoint. Table 1
lists the possible flags for the status field. In particular,
Linux allows a process to be created by its sibling, thereby

2007 USENIX Annual Technical Conference USENIX Association328



inheriting the same parent, which differs from traditional
parent-child only fork creation semantics; a Sibling flag
is necessary to note this case.

Flag Property of Table Entry
Dead Corresponds to a terminated process

Session Inherits ancestor SID before parent changes its own
Thread A thread but not a thread group leader
Sibling Created by sibling via parent inheritance

Table 1: Possible flags in the status field

6.1.1 Basic Algorithm

For simplicity, we first assume no parent inheritance in de-
scribing the DumpForest algorithm. The first pass of the
algorithm initializes the PID and SID fields of each entry
according to the process it represents, and all remaining
fields to be empty. As shown in Algorithm 1, the second
pass calls FindCreator on each table entry to populate
the empty fields and alter the status field as necessary. The
algorithm can be thought of as determining under what
circumstances the current parent of a process at time of
checkpoint cannot be used to create the process at restart.

The algorithm looks at each table entry and determines
what to do based on the properties of the entry. If the en-
try is a thread and not the thread group leader, we mark its
creator as the thread group leader and add Thread to its
status field so that it must be created as a thread on restart.
The thread group leader can be handled as a regular pro-
cess, and hence is treated as part of the other cases.

Otherwise, if the entry is a session leader, this is an entry
that at some point called setsid. It does not need to
inherit its session from anyone, so its creator can just be
set to its parent. If a pod had only one session group, the
session leader would be at the root of the forest and its
parent would be init.

Otherwise, if the entry corresponds to a dead process
(no current process exists with the given PID), the only
constraint that must be satisfied is that it inherit the correct
session group from its parent. Its creator is just set to be its
session leader. The correct session group must be main-
tained for a process that has already terminated because
it may be necessary to have the process create other pro-
cesses before terminating itself, to ensure that those other
processes have their session groups set correctly.

Otherwise, if the entry corresponds to an orphan pro-
cess, it cannot inherit the correct session group from
init. Therefore, we add a placeholder process in the ta-
ble whose function on restart is to inherit the session group
from the entry’s session leader, create the process, then
terminate so that the process will be orphaned. The place-
holder is assigned an arbitrary PID that is not already in
the table, and the SID identifying the session. To remem-
ber to terminate the placeholder process, the placeholder
entry’s status field is marked Dead.

Algorithm 1 DumpForest (second pass)

1: Procedure DumpForest
2: for all entries ent in the table do
3: if (ent.creator == NIL) then
4: call FindCreator(ent)
5: end if
6: end for
7: End
8:
9: Procedure FindCreator(ent)

10: leader ← session leader entry
11: if ent is a dead process then
12: parent ← init
13: ent.status |= Dead
14: else
15: parent ← parent process entry
16: end if
17: if ent is thread (but not thread group leader) then
18: ent.creator ← thread group leader
19: ent.status |= T hread
20: else if (ent == leader) then
21: ent.creator ← parent
22: else if (ent.status & Dead) then
23: ent.creator ← leader
24: else if (parent == init) then
25: call AddPlaceHolder(ent, leader)
26: else if (ent.sid == parent.sid) then
27: ent.creator ← parent
28: else
29: ent.creator ← parent
30: sid ← ent.sid
31: repeat
32: ent.status |= Session
33: if (ent.creator == init) then
34: call AddPlaceHolder(ent, leader)
35: end if
36: ent ← ent.creator
37: if (ent.creator == NIL) then
38: call FindCreator(ent)
39: end if
40: until (ent.sid == sid) or (ent.status & Session)
41: end if
42: End
43:
44: Procedure AddPlaceHolder(ent, leader)
45: add new entry new to table
46: new.creator ← leader
47: new.status |= Dead
48: ent.creator ← new
49: End
(Note: when the creator field is set, the matching child and sibling fields
are adjusted accordingly; details are omitted for brevity).

Otherwise, if the entry’s SID is equal to its parent’s, the
only constraint that must be satisfied is that it inherit the
correct session group from its parent. This is simply done
by setting its creator to be its parent.

If none of the previous cases apply, then the entry corre-
sponds to a process which is not a session leader, does not
have a session group the same as its parent, and therefore
whose session group must be inherited from an ancestor
further up the process forest. This case arises because the
process was forked by its parent before the parent changed

2007 USENIX Annual Technical ConferenceUSENIX Association 329



Figure 1: Simple process forest

its own SID. Its creator is set to be its parent, but we also
mark its status field Session, indicating that at restart
the parent will need to fork before (potentially) creating a
new session. When an entry is marked with Session, it
is necessary to propagate this attribute up its ancestry hi-
erarchy until an entry with that session group is located.
In the worst case, this would proceed all the way to the
session leader. This is required for the SID to correctly de-
scend via inheritance to the current entry. Note that going
up the tree does not increase the runtime complexity of
the algorithm because traversal does not proceed beyond
entries that already possess the Session attribute.

If the traversal fails to find an entry with the same SID, it
will stop at an entry that corresponds to a leader of another
session. This entry must have formerly been a descendant
of the original session leader. Its creator will have already
been set init. Because we now know that it needs to
pass the original SID to its own descendants, we re-parent
the entry to become a descendant of the original session
leader. This is done using a placeholder in a manner simi-
lar to how we handle orphans that are not session leaders.

6.1.2 Examples

Figure 1 illustrates the output of the algorithm on a sim-
ple process forest. Figure 1a shows the process forest
at checkpoint time. Figure 1b shows the table generated
by DumpForest. The algorithm first creates a table of
seven entries corresponding to the seven processes, then
proceeds to determine the creator of each entry. Processes
502, 505, and 506 have their Session attributes set, since
they must be forked off before their parents’ session iden-
tifiers are changed. Note that process 505 received this flag
by propagating it up from its child process 506.

Figure 2 illustrates the output of the algorithm on a pro-
cess forest with a missing process, 501, which exited be-
fore the checkpoint. Figure 2a shows the process forest at
checkpoint time. Figure 2b shows the table generated by
DumpForest. While the algorithm starts with six entries
in the table, the resulting table has nine entries since three
placeholder processes, 997, 998, and 999, were added to

Figure 2: Process forest with deletions

maintain proper process relationships. Observe that pro-
cess 503 initially has its creator set to init, but is re-
parented to the placeholder 998 as part of propagating its
child’s Session attribute up the tree.

6.1.3 Supporting Linux Parent Inheritance

We now discuss modifications to the basic DumpForest
algorithm for handling the unique parent inheritance fea-
ture in Linux which allows a process to create a sibling. To
inherit session relationships correctly, parent inheritance
must be accounted for in determining the creators of pro-
cesses that are not session leaders.

If its session leader is alive, we can determine that a pro-
cess was created by its sibling if its parent is the creator of
the session leader. If the session leader is dead, this check
will not work since its parent is now init and there is no
longer any information about its original parent. After a
process dies, there is no easy way to determine its original
parent in the presence of parent inheritance.

To provide the necessary information, we instead record
the session a process inherits when it is created, if and
only if the process is created with parent inheritance and
it is a sibling of the session group leader. This saved-SID
is stored as part of the process’s virtualization data struc-
ture so that it can be used later if the process remains alive
when the forest needs to be saved. A process created with
parent inheritance is a sibling of the session group leader
if either its creator is the session group leader, or its cre-
ator has the same saved-SID recorded, since the sibling
relationship is transitive.

To support parent inheritance, we modify Algorithm 1
by inserting a new conditional after the check for whether
an entry’s SID is equal to its parent’s and before the fi-
nal else clause in FindCreator. The conditional exam-
ines whether an entry’s saved-SID has been set. If it has
been set and there exists another entry in the process for-
est table whose PID is equal to this saved-SID, the entry’s
status field is marked Sibling so that it will be created
with parent inheritance on restart. The entry’s creator is
set to the entry that owns that PID, which is leader of the

2007 USENIX Annual Technical Conference USENIX Association330



session identified by the saved-SID. Finally, the creator of
this session leader is set to be the parent of the current
process, possibly re-parenting the entry if its creator had
already been set previously.

6.2 MakeForest Algorithm
Given the process forest data structure, the MakeForest
algorithm is straightforward, as shown in Algorithm 2. It
reconstructs the process hierarchy and relationships by ex-
ecuting completely in user mode using standard system
calls, minimizing dependencies on any particular kernel
internal implementation details. The algorithm runs in lin-
ear time with the number of entries in the forest. It works
in a recursive manner by following the instructions set
forth by the process forest data structure. MakeForest
begins with a single process that will be used in place of
init to fork the processes that have init set as their
creator. Each process then creates its own children.

The bulk of the algorithm loops through the list of chil-
dren of the current process three times during which the
children are forked or cleaned up. Each child that is
forked executes the same algorithm recursively until all
processes have been created. In the first pass through the
list of children, the current process spawns children that
are marked Session and thereby need to be forked be-
fore the current session group is changed. The process
then changes its session group if needed. In the second
pass, the process forks the remainder of the children. In
both passes, a child that is marked Thread is created
as a thread and a child that is marked Sibling is cre-
ated with parent inheritance. In the third pass, terminated
processes and temporary placeholders are cleaned up. Fi-
nally, the process either terminates if it is marked Dead
or calls RestoreProcessState() which does not re-
turn. RestoreProcessState() restores the state of
the process to the way it was at the time of checkpoint.

7 Shared Resources

After the process hierarchy and relationships have been
saved or restored, we process operating system resources
that may be shared among multiple processes. They are
either globally shared at the pod level, such as IPC identi-
fiers and pseudo terminals, or locally shared among a sub-
set of processes, such as virtual memory, file descriptors,
signal handlers and so forth. As discussed in Section 4,
globally shared resources are processed first, then locally
shared resources are processed. Shared resources may be
referenced by more than one process, yet their state need
only be saved once. We need to be able to uniquely iden-
tify each resource, and to do so in a manner independent
of the operating system instance to be able to restart on
another instance.

Algorithm 2 MakeForest

1: Procedure MakeForest
2: for all entries ent in the table do
3: if ent.creator == init then
4: call ForkChildren(ent)
5: end if
6: end for
7: End
8:
9: Procedure ForkChildren(ent)

10: for all children cld of ent do
11: if (cld.status & Session) then
12: call ForkChild(cld)
13: end if
14: end for
15: if (ent.sid == ent.pid) then
16: call setsid()
17: end if
18: for all children cld of ent do
19: if ¬(cld.status & Session) then
20: call ForkChild(cld)
21: end if
22: end for
23: for all children cld of ent do
24: if (cld.status & Dead) then
25: call waitpid(cld.pid)
26: end if
27: end for
28: if (ent.status & Dead) then
29: call exit()
30: else
31: call RestoreProcessState()
32: end if
33: End
34:
35: Procedure ForkChild(cld)
36: if (cld.status & T hread) then
37: pid = fork thread()
38: else if (cld.status & Sibling) then
39: pid = fork sibling()
40: else
41: pid = fork()
42: end if
43: if pid == 0 then
44: call ForkChildren(cld)
45: end if
46: End

Every shared resource is represented by a matching ker-
nel object whose kernel address provides a unique identi-
fier of that instance within the kernel. We represent each
resource by a tuple of the form ¿Address,TagÀ, where
address is its kernel address, and tag is a serial number
that reflects the order in which the resources were encoun-
tered (counting from 1 and on). Tags are, therefore, unique
logical identifiers for resources. The tuples allow the same
resource representation to be used for both checkpoint and
restart mechanisms, simplifying the overall implementa-
tion. During checkpoint and restart, they are stored in
an associative memory in the kernel, enabling fast trans-
lation between physical and logical identifiers. Tuples are
registered into the memory as new resources are discov-

2007 USENIX Annual Technical ConferenceUSENIX Association 331



ered, and discarded once the entire checkpoint (or restart)
is completed. This memory is used to decide whether a
given resource (physical or logical for checkpoint or restart
respectively) is a new instance or merely a reference to
one already registered. Both globally and locally shared
resources are stored using the same associative memory.

During checkpoint, as the processes within the pod are
scanned one by one, the resources associated with them
are examined by looking up their kernel addresses in the
associative memory. If the entry is not found (that is, a new
resource has been detected) we allocate a new (unique) tag,
register the new tuple and record the state of that resource.
The tag is included as part of that state. On the other hand,
if the entry is found, it means that the resource is shared
and has been already dealt with earlier. Hence it suffices
to record its tag for later reference. Note that the order of
the scan is insignificant.

During restart, the algorithm restores the state of the
processes and the resources they use. The data is read
in the same order as has been written originally, ensuring
that the first occurrence of each resource is accompanied
with its actual recorded state. For each resource identi-
fier, we examine whether the tag is already registered, and
if not we create a new instance of the required resource,
restore its state from the checkpoint data, and register an
appropriate tuple, with the address field set to the kernel
address that corresponds to the new instance. If a tuple
with the specified tag is found, we locate the correspond-
ing resource with the knowledge of its kernel address as
taken from the tuple.
Nested shared objects Nested sharing occurs in the ker-
nel when a common resource is referenced by multiple
distinct resources rather than by processes. One example
are objects that represent a FIFO in the filesystem, as a
FIFO is represented by a single inode which is in turn
pointed to by file descriptors of reader and writer ends.
Another example is a single backing file that is mapped
multiple times within distinct address spaces. In both ex-
amples shared objects—file descriptors and address spaces
respectively—refer to a shared object, yet may themselves
be shared by multiple processes.

Nested sharing is handled similarly to simple shar-
ing. To ensure consistency we enforce an additional rule,
namely that a nested object is always recorded prior to the
objects that point to it. For instance, when saving the state
of a file descriptor that points to a FIFO, we first record
the state of the FIFO. This ensures that the tuples for the
nested resource exist in time for the referring object.
Compound shared objects Many instances of nested
objects involve a pair of coupled resources. For example,
a single pipe is represented in the kernel by two distinct in-
odes that are coupled in a special form, and Unix domain
sockets can embody up to three disparate inodes for the lis-
tening, accepting and connecting sockets. We call such ob-

jects compound objects. Unlike unrelated resources, com-
pound objects have two or more internal elements that are
created and interlinked with the invocation of the appropri-
ate kernel subroutine(s) such that their lifespans are corre-
lated, e.g. the two inodes that constitute a pipe.

We consistently track a compound object by capturing
the state of the entire resource including all components at
once, at the time it is first detected, regardless of through
which component it was referred. On restart, the com-
pound object will be encountered for the first time through
some component, and will be reconstructed in its entirety,
including all other components. Then only the triggering
component (the one that was encountered) will need to be
attached to the process that owns it. The remaining com-
ponents will linger unattached until they are claimed by
their respective owners at a later time.

The internal ordering of the elements that compose a
compound object may depend on the type of the object. If
the object is symmetric, such as socketpairs, its con-
tents may be saved at an arbitrary order. Otherwise, the
contents are saved in a certain order that is particularly de-
signed to facilitate the reconstruction of the object during
restart. For example, the order for pipes is first the read-
side followed by the write-side. The order for Unix do-
main sockets begins with the listening socket (if it exists),
followed by the connecting socket and finally the accept-
ing socket. This order reflects the sequence of actions that
is required to rebuild such socket-trios: first create a lis-
tening socket, then a socket that connects to it, and finally
the third socket by accepting the connection.
Memory sharing Since memory footprint is typically
the most dominant factor in determining the checkpoint
image size, we further discuss how recording shared re-
sources is done in the case of memory. A memory re-
gion in a process’s address space can be classified along
two dimensions, one is whether it is mapped to a backing
file or anonymous, and the other is whether it is private to
some address space or shared among multiple ones. For
example, text segments such as program code and shared
libraries are mapped and shared, IPC shared memory is
anonymous and shared, the data section is mapped and pri-
vate, and the heap and stack are anonymous and private.

Memory sharing can occur in any of these four cases.
Handling regions that are shared is straightforward. If a
region is mapped and shared, it does not need to be saved
since its contents are already on the backing file. If a re-
gion is anonymous and shared, it is treated as a normal
shared object so that its contents are only saved once. Han-
dling regions that are private is more subtle. While it ap-
pears contradictory to have memory sharing with private
memory regions, sharing occurs due to the kernel’s COW
optimization. When a process forks, the kernel defers the
creation of a separate copy of the pages for the newly cre-
ated process until one of the processes sharing the common

2007 USENIX Annual Technical Conference USENIX Association332



Name Description
apache apache 2.0.55 with 50 threads (default) loaded

w/ httperf 0.8 (rate=1500, num-calls=20)
make compilation (make -j 5) of Linux kernel tree
mysql MySQL 4.2.21 loaded w/ standard sql-bench
volano VolanoMark 2.5 w/ Blackdown Java 1.4.2
UML User Mode Linux w/ 128 MB and Debian 3.0
gnome-base Gnome 2.8 session with THINC server
gnome-firefox gnome-base and Firefox 1.04 with

2 browser windows and 3 open tabs in each
gnome-mplayer gnome-base and MPlayer 1.0pre7-3.3.5 playing

an MPEG1 video clip
Microsoft-office gnome-base and CrossOver Office 5.0 running

Microsoft Office XP with 2 Word documents
and 1 Powerpoint slide presentation open

Table 2: Application scenarios

memory attempts to modify it. During checkpoint, each
page that has been previously modified and belongs to a
private region that is marked COW is treated as a nested
shared object so that its contents are only saved once. Dur-
ing restart, the COW sharing is restored. Modified pages
in either anonymous and private regions or mapped and
private regions are treated in this manner.

8 Experimental Results

To demonstrate the effectiveness of our approach, we have
implemented a checkpoint-restart prototype as a Linux
kernel module and associated user-level tools and eval-
uated its performance on a wide range of real applica-
tions. We also quantitatively compared our prototype with
two other commercial virtualization systems, OpenVZ and
Xen. OpenVZ provides another operating system virtu-
alization approach for comparison, while Xen provides a
hardware virtualization approach for comparison. We used
the latest versions of OpenVZ and Xen that were available
at the time of our experiments.

The measurements were conducted on an IBM HS20
eServer BladeCenter, each blade with dual 3.06 GHz Intel
XeonT M CPUs, 2.5 GB RAM, a 40 GB local disk, and Q-
Logic Fibre Channel 2312 host bus adapters. The blades
were interconnected with a Gigabit Ethernet switch and
linked through Fibre Channel to an IBM FastT500 SAN
controller with an Exp500 storage unit with ten 70 GB
IBM Fibre Channel hard drives. Each blade used the GFS
cluster filesystem [25] to access a shared SAN. Unless oth-
erwise indicated, the blades were running Debian 3.1 dis-
tribution and the Linux 2.6.11.12 kernel.

Table 2 lists the nine application scenarios used for
our experiments. The scenarios were running an Apache
web server, a kernel compile, a MySQL database server,
a volano chat server, an entire operating system at user-
level using UML, and four desktop applications scenarios
run using a full Gnome X desktop environment with an

XFree86 4.3.0.1 server and THINC [1] to provide remote
display access to the desktop. The four desktop scenarios
were running a baseline environment without additional
applications, a web browser, a video player, and a Mi-
crosoft Office suite using CrossOver Office. The UML
scenario shows the ability to checkpoint and restart an en-
tire operating system instance. The Microsoft Office sce-
nario shows the ability to checkpoint and restart Windows
applications using CrossOver Office on Linux.

We measured checkpoint-restart performance by run-
ning each of the application scenarios and taking a series
of ten checkpoints during their execution. We measured
the checkpoint image sizes, number of processes that were
checkpointed, checkpoint times, and restart times, then av-
eraged the measurements across the ten checkpoints for
each application scenario. Figures 3 to 8 show results for
our checkpoint-restart prototype.

Figure 3 shows the average total checkpoint image size,
as well as a breakdown showing the amount of data in the
checkpoint image attributable to the process forest. The
total amount of state that is saved is modest in each case
and varies according to the applications executed, ranging
from a few MBs on most applications to tens of MBs for
graphical desktop sessions. The results show that the total
memory in use within the pod is the most prominent com-
ponent of the checkpoint image size, accounting for over
99% of the image size.

An interesting case is UML, that uses memory mapping
to store guest main memory using an unlinked backing file.
This file is separate from memory and amounts to 129 MB.
By using the optimization for unlinked files as discussed
in Section 4 and storing the unlinked files separately on
the filesystem, the UML state stored in the checkpoint im-
age can be reduced to roughly 1 MB. The same occurs for
CrossOver Office, which also maps additional 16 MB of
memory to an unlinked backing file.

Figure 4 shows the average number of processes run-
ning within the pod at checkpoints for each application
scenario. On average the process forest tracks 35 processes
in most scenarios, except for apache and volano with
169 and 839 processes each, most of which are threads. As
Figure 3 shows the process forest always occupies a small
fraction of the checkpoint, even for volano.

Figure 5 shows the average total checkpoint times for
each application scenario, which is measured from when
the pod is quiesced until the complete checkpoint image
is written out to disk. We also show two other measures.
Checkpoint downtime is the time from when the pod is qui-
esced until the pod can be resumed; it is the time to record
the checkpoint data without committing it to disk. Sync
checkpoint time is the total checkpoint time plus the time
to force flushing the data to disk. Average total checkpoint
times are under 600 ms for all application scenarios and
as small as 40 ms, which is the case for UML. Comparing

2007 USENIX Annual Technical ConferenceUSENIX Association 333



0.001

0.01

0.1

1

10

100

o
ff

ic
e

m
ic

ro
s
o

ft

m
p

la
y
e
r

g
n

o
m

e

fi
re

fo
x

g
n

o
m

e

b
a
s
e

g
n

o
m

e

U
M

L

v
o

la
n

o

m
y
s
q

l

m
a
k
e

a
p

a
c
h

e

A
v
e
ra

g
e

c
h

e
c
k
p

o
in

t
s
iz

e
[M

B
] total

0.001

0.01

0.1

1

10

100

o
ff

ic
e

m
ic

ro
s
o

ft

m
p

la
y
e
r

g
n

o
m

e

fi
re

fo
x

g
n

o
m

e

b
a
s
e

g
n

o
m

e

U
M

L

v
o

la
n

o

m
y
s
q

l

m
a
k
e

a
p

a
c
h

e

A
v
e
ra

g
e

c
h

e
c
k
p

o
in

t
s
iz

e
[M

B
] forest

Figure 3: Average checkpoint size

1

10

100

1000

o
ff

ic
e

m
ic

ro
s
o

ft

m
p

la
y
e
r

g
n

o
m

e

fi
re

fo
x

g
n

o
m

e

b
a
s
e

g
n

o
m

e

U
M

L

v
o

la
n

o

m
y
s
q

l

m
a
k
e

a
p

a
c
h

e

A
v
e
ra

g
e

n
u

m
b

e
r

o
f

p
ro

c
e
s
s
e
s

Figure 4: Average no. of processes

0.1

1

10

100

1000

10000

o
ff

ic
e

m
ic

ro
s
o

ft

m
p

la
y
e
r

g
n

o
m

e

fi
re

fo
x

g
n

o
m

e

b
a
s
e

g
n

o
m

e

U
M

L

v
o

la
n

o

m
y
s
q

l

m
a
k
e

a
p

a
c
h

e

A
v
e
ra

g
e

c
h

e
c
k
p

o
in

t
ti

m
e

[m
s
] sync

0.1

1

10

100

1000

10000

o
ff

ic
e

m
ic

ro
s
o

ft

m
p

la
y
e
r

g
n

o
m

e

fi
re

fo
x

g
n

o
m

e

b
a
s
e

g
n

o
m

e

U
M

L

v
o

la
n

o

m
y
s
q

l

m
a
k
e

a
p

a
c
h

e

A
v
e
ra

g
e

c
h

e
c
k
p

o
in

t
ti

m
e

[m
s
] total

0.1

1

10

100

1000

10000

o
ff

ic
e

m
ic

ro
s
o

ft

m
p

la
y
e
r

g
n

o
m

e

fi
re

fo
x

g
n

o
m

e

b
a
s
e

g
n

o
m

e

U
M

L

v
o

la
n

o

m
y
s
q

l

m
a
k
e

a
p

a
c
h

e

A
v
e
ra

g
e

c
h

e
c
k
p

o
in

t
ti

m
e

[m
s
] downtime

Figure 5: Average checkpoint time

0

100

200

300

400

500

600

o
ff

ic
e

m
ic

ro
s
o

ft

m
p

la
y
e
r

g
n

o
m

e

fi
re

fo
x

g
n

o
m

e

b
a
s
e

g
n

o
m

e

U
M

L

v
o

la
n

o

m
y
s
q

l

m
a
k
e

a
p

a
c
h

e

C
h

e
c
k
p

o
in

t
d

o
w

n
ti

m
e

[m
s
] w/o COW+buffering

0

100

200

300

400

500

600

o
ff

ic
e

m
ic

ro
s
o

ft

m
p

la
y
e
r

g
n

o
m

e

fi
re

fo
x

g
n

o
m

e

b
a
s
e

g
n

o
m

e

U
M

L

v
o

la
n

o

m
y
s
q

l

m
a
k
e

a
p

a
c
h

e

C
h

e
c
k
p

o
in

t
d

o
w

n
ti

m
e

[m
s
] COW+buffering

Figure 6: COW and buffering impact

0

10

20

30

40

50

60

70

80

90

100

o
ff

ic
e

m
ic

ro
s
o

ft

m
p

la
y
e
r

g
n

o
m

e

fi
re

fo
x

g
n

o
m

e

b
a
s
e

g
n

o
m

e

U
M

L

v
o

la
n

o

m
y
s
q

l

m
a
k
e

a
p

a
c
h

e

P
e
rc

e
n

ta
g

e
o

f
c
h

e
c
k
p

o
in

t
ti

m
e commit

0

10

20

30

40

50

60

70

80

90

100

o
ff

ic
e

m
ic

ro
s
o

ft

m
p

la
y
e
r

g
n

o
m

e

fi
re

fo
x

g
n

o
m

e

b
a
s
e

g
n

o
m

e

U
M

L

v
o

la
n

o

m
y
s
q

l

m
a
k
e

a
p

a
c
h

e

P
e
rc

e
n

ta
g

e
o

f
c
h

e
c
k
p

o
in

t
ti

m
e record

0

10

20

30

40

50

60

70

80

90

100

o
ff

ic
e

m
ic

ro
s
o

ft

m
p

la
y
e
r

g
n

o
m

e

fi
re

fo
x

g
n

o
m

e

b
a
s
e

g
n

o
m

e

U
M

L

v
o

la
n

o

m
y
s
q

l

m
a
k
e

a
p

a
c
h

e

P
e
rc

e
n

ta
g

e
o

f
c
h

e
c
k
p

o
in

t
ti

m
e quiesce

Figure 7: Checkpoint time breakdown

0.1

1

10

100

1000

o
ff

ic
e

m
ic

ro
s
o

ft

m
p

la
y
e
r

g
n

o
m

e

fi
re

fo
x

g
n

o
m

e

b
a
s
e

g
n

o
m

e

U
M

L

v
o

la
n

o

m
y
s
q

l

m
a
k
e

a
p

a
c
h

e

A
v
e
ra

g
e

re
s
ta

rt
ti

m
e

[m
s
]

cold cache

0.1

1

10

100

1000

o
ff

ic
e

m
ic

ro
s
o

ft

m
p

la
y
e
r

g
n

o
m

e

fi
re

fo
x

g
n

o
m

e

b
a
s
e

g
n

o
m

e

U
M

L

v
o

la
n

o

m
y
s
q

l

m
a
k
e

a
p

a
c
h

e

A
v
e
ra

g
e

re
s
ta

rt
ti

m
e

[m
s
]

warm cache

Figure 8: Average restart time

with Figure 3, the results show that both the total check-
point times and the sync times are strongly correlated with
the checkpoint sizes. Writing the filesystem, particularly
with forced flushing of the data to disk, is largely lim-
ited by the disk I/O rate. For example, gnome-base has
an average checkpoint size of 39 MB and an average sync
checkpoint time of just under 3 s. This correlates directly
with the sustained write rate for GFS, which was roughly
15 MB/s in our measurements.

Perhaps more importantly, checkpoint downtimes in
Figure 5 show that the average time to actually perform
the checkpoint without incurring storage I/O costs is small,
ranging from 12 ms for a kernel make to at most 90 ms for
a full fledged desktop running Microsoft Office. Though
an application is unresponsive while it is quiesced and
being checkpointed, even the largest average checkpoint
downtimes are less 100 ms. Furthermore, the average
checkpoint downtimes were less than 50 ms for all appli-
cation scenarios except Microsoft Office.

Figure 6 compares the checkpoint downtime for each
application scenario with and without the memory buffer-
ing and COW mechanisms that we employ. Without these
optimizations, checkpoint data must be written out to disk
before the pod can be resumed, resulting in checkpoint
downtimes that are close to the total checkpoint times
shown in Figure 5. The memory buffering and COW
checkpoint optimization reduce downtime from hundreds
of milliseconds to almost always under 50 ms, in some
cases even as much as an order of magnitude.

Figure 7 shows the breakdown of the total checkpoint
time (excluding sync) for each application scenario, as

percentage of the total time attributable to different steps:
quiesce—the time to quiesce the pod, record—the time to
record the checkpoint data, and commit—the time to com-
mit the data by writing it out to storage. The commit step
amounts to 80-95% of the total time in almost all applica-
tion scenarios, except for UML where it amounts to only
15% due to a much smaller checkpoint size. Quiescing
the processes took less then 700 µs for all application sce-
narios except apache and volano, which took roughly
1.5 ms and 5 ms, respectively. The longer quiesce times
are due to the large number of processes being executed in
apache and volano. The time to generate and record
the process forest was even smaller, less than 10 µs for
all applications except apache and volano, which took
30 µs and 336 µs respectively. The time to record glob-
ally shared resources was under 10 µs in all cases.

Figure 8 presents the average total restart times for each
application scenario. The restart times were measured
for two distinct configurations: warm cache—restart was
done with a warm filesystem cache immediately after the
checkpoint was taken, cold-cache—restart was done with
a cold filesystem cache after the system was rebooted,
forcing the system to read the image from the disk. Warm
cache restart times were less than .5 s in all cases, ranging
from 24 ms for apache to 386 ms for a complete Gnome
desktop running Microsoft Office. Cold cache restart times
were longer as restart becomes limited by the disk I/O rate.
Cold cache restart times were less than 2 s in all cases,
ranging from 65 ms for UML to 1.9 s for Microsoft Office.
The cold restart from a checkpoint image is still noticeably
faster than the checkpoint to the filesystem with flushing

2007 USENIX Annual Technical Conference USENIX Association334



because GFS filesystem read performance is much faster
than its write performance.

To provide a comparison with another operating sys-
tem virtualization approach, we also performed our ex-
periments with OpenVZ. We used version 2.6.18.028stab
on the same Linux installation. Because of its lack of
GFS support, we copied the installation to the local disk
to conduct experiments. Since this configuration is differ-
ent from what we used with our prototype, the measure-
ments are not directly comparable. However, they provide
some useful comparisons between the two approaches. We
report OpenVZ results for apache, make, mysql and
volano; OpenVZ was unable to checkpoint the other sce-
narios. Table 3 presents the average total checkpoint times,
warm cache restart times, and checkpoint image sizes for
these applications. We ignore sync checkpoint times and
cold cache restart times to reduce the impact of the differ-
ent disk configurations used.

Scenario Checkpoint [s] Restart [s] Size [MB]
apache 0.730 1.321 7.7
make 2.230 1.376 53
mysql 1.793 1.288 22
volano 2.036 1.300 25

Table 3: Checkpoint-restart performance for subset of
applications that worked on OpenVZ

The results show that OpenVZ checkpoint and restart
times are significantly worse than our system. OpenVZ
checkpoint times were 5.2, 5.6, 12.4, and 3.0 times slower
for apache, make, mysql and volano, respectively.
OpenVZ restart times were 55.0, 6.6, 29.9, and 5.0 times
slower for apache, make, mysql and volano, re-
spectively. OpenVZ checkpoint sizes were .48, 1.3, 1.2,
and .46 times the sizes of our system. The difference
in checkpoint sizes was relatively small and does not ac-
count for the huge difference in checkpoint-restart times
even though different filesystem configurations were used
due to OpenVZ’s lack of support for GFS. OpenVZ restart
times did not vary much among application scenarios, sug-
gesting that container setup time may constitute a major
component of latency.

To provide a comparison with a hardware virtualization
approach, we performed our experiments with Xen. We
used Xen 3.0.3 with its default Linux 2.6.16.29. We were
unable to find a GFS version that matched this configu-
ration, so we used the local disk to conduct experiments.
We also used Xen 2.0 with Linux 2.6.11 because this con-
figuration worked with GFS. In both cases, we used the
same kernel for both “dom0” and “domU”. We used three
VM configurations with 128 MB, 256 MB, and 512 MB of
memory. We report results for apache, make, mysql,
UML, and volano; Xen was unable to run the other sce-
narios due to lack of support for virtual consoles. Table 4
presents the average total checkpoint times, warm cache

restart times, and checkpoint image sizes for these appli-
cations. We report a single number for each configuration
instead of per application since Xen results were directly
correlated with the VM memory configuration and did not
depend on the applications scenario. Checkpoint image
size was determined by the amount of RAM configured.
Checkpoint and restart times were directly correlated with
the size of the checkpoint images.

Xen Checkpoint [s] Restart [s] Image
Config. Xen 3 Xen 2 Xen 3 Xen 2 Size [MB]
128 MB 3.5 5.5 1.6 0.8 129
256 MB 10.3 12 13.4 6.6 257
512 MB 25.9 19 27.3 12 513

Table 4: Checkpoint-restart performance for Xen VMs

The results show that Xen checkpoint and restart times
are significantly worse than our system. Xen 3 check-
point times were 5.2 (volano on 128 MB) to 563 (UML
on 512 MB) times slower. Xen 3 restart times were 6.2
(volano on 128 MB) to 1137 (apache on 512 MB)
slower. Xen results are also worse than OpenVZ; both op-
erating system virtualization approaches performed better.
Restart times for the 256 MB and 512 MB VM configura-
tions were much worse than the 128 MB VM because the
images ended up being too large to be effectively cached in
the kernel, severely degrading warm cache restart perfor-
mance. Note that although precopying can reduce appli-
cation downtime for Xen migration [4], it will not reduce
total checkpoint-restart times.

9 Conclusions

We have designed, implemented, and evaluated a trans-
parent checkpoint-restart mechanism for commodity oper-
ating systems that checkpoints and restarts multiple pro-
cesses in a consistent manner. Our system combines a
kernel-level checkpoint mechanism with a hybrid user-
level and kernel-level restart mechanism to leverage exist-
ing operating system interfaces and functionality as much
as possible for transparent checkpoint-restart. We have
introduced novel algorithms for saving and restoring ex-
tended process relationships and for efficient handling of
shared state across cooperating processes. We have im-
plemented a checkpoint-restart prototype and evaluated its
performance on real-world applications. Our system gen-
erates modest checkpoint image sizes and provides fast
checkpoint and restart times without modifying, recompil-
ing, or relinking applications, libraries, or the operating
system kernel. Comparisons with two commercial sys-
tems, OpenVZ and Xen, demonstrate that our prototype
provides much faster checkpoint-restart performance and
more robust checkpoint-restart functionality than these
other approaches.

2007 USENIX Annual Technical ConferenceUSENIX Association 335



Acknowledgments

Dan Phung helped with implementation and experimental
results. Eddie Kohler, Ricardo Baratto, Shaya Potter and
Alex Sherman provided helpful comments on earlier drafts
of this paper. This work was supported in part by a DOE
Early Career Award, NSF ITR grant CNS-0426623, and
an IBM SUR Award.

References

[1] R. Baratto, L. Kim, and J. Nieh. THINC: A Virtual Display
Architecture for Thin-Client Computing. In Proceedings of
the 20th ACM Symposium on Operating Systems Principles
(SOSP 2005), pages 277–290, Brighton, UK, Oct. 2005.

[2] A. Beguelin, E. Seligman, and P. Stephan. Application
Level Fault Tolerance in Heterogeneous Networks of Work-
stations. Journal of Parallel and Distributed Computing,
43(2):147–155, June 1997.

[3] K. M. Chandy and L. Lamport. Distributed Snapshots: De-
termining Global States of Distributed Systems. ACM Trans-
actions on Computer Systems, 3(1):63–75, Feb. 1985.

[4] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield. Live Migration of
Virtual Machines. In Proceedings of the 2nd Symposium
on Networked Systems Design and Implementation (NSDI
2005), pages 273–286, Boston, MA, May 2005.

[5] B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, I. Pratt,
A. Warfield, P. Barham, and R. Neugebauer. Xen and the Art
of Virtualization. In Proceedings of the 19th ACM Sympo-
sium on Operating Systems Principles (SOSP 2003), pages
164–177, Bolton Landing, NY, Oct. 2003.

[6] P. Gupta, H. Krishnan, C. P. Wright, J. Dave, and E. Zadok.
Versatility and Unix Semantics in a Fan-Out Unification File
System. Technical Report FSL-04-1, Dept. of Computer
Science, Stony Brook University, Jan. 2004.

[7] Y. Huang, C. Kintala, and Y. M. Wang. Software Tools and
Libraries for Fault Tolerance. IEEE Bulletin of the Tecnnical
Committee on Operating System and Application Environ-
ments, 7(4):5–9, Winter 1995.

[8] L. V. Kale and S. Krishnan. CHARM++: a Portable Concur-
rent Object Oriented System Based on C++. In Proceedings
of the 8th Annual Conference on Object-Oriented Program-
ming Systems, Languages, and Applications (OOPSLA ’93),
pages 91–108, Washington, DC, Sept. 1993.

[9] B. A. Kingsbury and J. T. Kline. Job and Process Recov-
ery in a UNIX-based Operating System. In Proceedings of
the USENIX Winter 1989 Technical Conference, pages 355–
364, San Diego, CA, Jan. 1989.

[10] C. R. Landau. The Checkpoint Mechanism in KeyKOS. In
Proceedings of the 2nd International Workshop on Object
Orientation in Operating Systems, pages 86–91, Dourdan,
France, Sept. 1992.

[11] Linux Software Suspend. http://www.suspend2.
net.

[12] Linux VServer. http://www.linux-vserver.org.

[13] M. McKusick, K. Bostic, M. J. Karels, and J. S. Quarter-
man. The Design and Implementation of the 4.4BSD Oper-
ating System. Addison-Wesley, 1996.

[14] Network Appliance, Inc. http://www.netapp.com.
[15] OpenVZ. http://www.openvz.org.
[16] S. Osman, D. Subhraveti, G. Su, and J. Nieh. The De-

sign and Implementation of Zap: A System for Migrating
Computing Environments. In Proceedings of the 5th Sym-
posium on Operating Systems Design and Implementation
(OSDI 2002), pages 361–376, Boston, MA, Dec. 2002.

[17] J. S. Plank. An Overview of Checkpointing in Uniproces-
sor and Distributed Systems, Focusing on Implementation
and Performance. Technical Report UT-CS-97-372, Dept.
of Computer Science, University of Tennessee, July 1997.

[18] J. S. Plank, M. Beck, G. Kingsley, and K. Li. Libckpt:
Transparent Checkpointing under Unix. In Proceedings of
the USENIX Winter 1995 Technical Conference, pages 213–
223, New Orleans, LA, Jan. 1995.

[19] G. J. Popek and R. P. Goldberg. Formal Requirements for
Virtualizable Third Generation Architectures. Communica-
tions of the ACM, 17(7):412–421, July 1974.

[20] D. Price and A. Tucker. Solaris Zones: Operating Systems
Support for Consolidating Commercial Workloads. In Pro-
ceedings of the 18th Large Installation System Administra-
tion Conference, pages 241–254, Atlanta, GA, Nov. 2004.

[21] F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou. Rx: Treat-
ing Bugs as Allergies—a Safe Method to Survive Software
Failures. In Proceedings of the 20th ACM Symposium on
Operating Systems Principles (SOSP 2005), pages 235–248,
Brighton, UK, Oct. 2005.

[22] E. Roman. A Survey of Checkpoint/Restart Implementa-
tions. Technical Report LBNL-54942, Lawrence Berkeley
National Laboratory, July 2002.

[23] J. C. Sancho, F. Petrini, K. Davis, R. Gioiosa, and
S. Jiang. Current Practice and a Direction Forward in Check-
point/Restart Implementations for Fault Tolerance. In Pro-
ceedings of the 19th IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS’05) - Workshop 18,
page 300.2, Washington, DC, Apr. 2005.

[24] B. K. Schmidt. Supporting Ubiquitous Computing with
Stateless Consoles and Computation Caches. PhD thesis,
Stanford University, Aug. 2000.

[25] S. R. Soltis, T. M. Ruwart, and M. T. O’Keefe. The Global
File System. In Proceedings of the 5th NASA Goddard Con-
ference on Mass Storage Systems, pages 319–342, College
Park, MD, Sept. 1996.

[26] S. M. Srinivasan, S. Kandula, C. R. Andrews, and Y. Zhou.
Flashback: A Lightweight Extension for Rollback and De-
terministic Replay for Software Debugging. In Proceedings
of the USENIX 2004 Annual Technical Conference, General
Track, pages 29–44, Boston, MA, June 2004.

[27] W. R. Stevens. Advanced Programming in the UNIX Envi-
ronment. Professional Computing Series. Addison-Wesley,
Reading, MA, USA, 1993.

[28] T. Tannenbaum and M. Litzkow. The Condor Distributed
Processing System. Dr. Dobb’s Journal, 20(227):40–48,
Feb. 1995.

[29] VMware, Inc. http://www.vmware.com.

2007 USENIX Annual Technical Conference USENIX Association336




