Operating System Virtualization: Practice and Experience

Oren Laadan
Computer Science Department
Columbia University
New York, NY, 10027
orenl@cs.columbia.edu

ABSTRACT

Operating system (OS) virtualization can provide a num-
ber of important benefits, including transparent migration
of applications, server consolidation, online OS maintenance,
and enhanced system security. However, the construction of
such a system presents a myriad of challenges, even for the
most cautious developer, that if overlooked may result in a
weak, incomplete virtualization. We present a detailed dis-
cussion of key implementation issues in providing OS virtu-
alization in a commodity OS, including system call interposi-
tion, virtualization state management, and race conditions.
We discuss our experiences in implementing such functional-
ity across two major versions of Linux entirely in a loadable
kernel module without any kernel modification. We present
experimental results on both uniprocessor and multiproces-
sor systems that demonstrate the ability of our approach to
provide fine-grain virtualization with very low overhead.

Categories and Subject Descriptors

D.4.1 [Operating Systems]: Process Management; D.4.7
[Operating Systems]: Organization and Design; D.4.8
[Operating Systems]: Performance—Measurements

General Terms

Design, Experimentation, Performance
Keywords

Operating Systems, Virtualization

1. INTRODUCTION

Computers have become ubiquitous in academic, corpo-
rate, and government organizations as exponential scaling
laws have made computers faster, cheaper, and increasingly
connected. At the same time, the widespread use of com-
puters has given rise to enormous management complexity
and security hazards. Virtualization has emerged as a key
technology for addressing these issues.

Virtualization essentially introduces a level of indirection
to a system to decouple applications from the underlying
host system. This decoupling can be leveraged to provide

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SYSTOR 2010 May 24-26, Haifa, Israel

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Jason Nieh
Computer Science Department
Columbia University

. New York, NY, 10027
nieh@cs.columbia.edu

important properties such as isolation and mobility, provid-
ing a myriad of useful benefits. These benefits include sup-
porting server consolidation by isolating applications from
one another while sharing the same machine, improved sys-
tem security by isolating vulnerable applications from other
mission critical applications running on the same machine,
fault resilience by migrating applications off of faulty hosts,
dynamic load balancing by migrating applications to less
loaded hosts, and improved service availability and admin-
istration by migrating applications before host maintenance
so that they can continue to run with minimal downtime.

While virtualization can be performed at a number of
different levels of abstraction, providing virtualization at
the correct level to transparently support unmodified ap-
plications is crucial in practice to enable deployment and
widespread use. The two main approaches for providing
application transparent virtualization are hardware virtual-
ization and operating system (OS) virtualization. Hardware
virtualization techniques [3, 29, 33, 36] virtualize the under-
lying hardware architecture using a virtual machine monitor
to decouple the OS from the hardware so that an entire OS
environment and associated applications can be executed in
a virtualized environment. OS virtualization techniques [6,
24, 27, 30, 32, 34, 37| virtualize the OS to decouple appli-
cations from the OS so that individual applications can be
executed in virtualized environments. Hardware and OS vir-
tualization techniques each provide their own benefits and
can provide complementary functionality.

OS virtualization provides a fine granularity of control
at the level of individual processes or applications, which
is more beneficial than the hardware virtualization abstrac-
tion that works with entire OS instances. For example, OS
virtualization can enable transparent migration of individ-
ual applications, not just migration of entire OS instances.
This finer-granularity migration provides greater flexibility
and results in lower overhead [21, 24]. Furthermore, if the
operating system requires maintenance, OS virtualization
can be used to migrate the critical applications to another
running operating system instance. By decoupling applica-
tions from the OS instance, OS virtualization enables the
underlying OS to be patched and updated in a timely man-
ner with minimal impact on the availability of application
services [26]. Hardware virtualization alone cannot provide
this functionality since it ties applications to an OS instance,
and commodity operating systems inevitably incur down-
time due to necessary maintenance and security updates.

Given the benefits of OS virtualization, contemporary OSs
are increasingly interested in providing support for it [5].
While many of the concepts behind OS virtualization have
been discussed in detail in previous work, little attention has
been given to understanding how to actually implement it in

practice. Most work has focused on higher-level issues with-
out regard for many of the subtle issues and implementation
challenges in making OS virtualization function correctly for
unmodified applications and commodity OSs. While some
work has focused on higher level implementation considera-
tions regarding security in OS virtualization [11], we are not
aware of any previous work that considers implementation
issues in providing more complete OS virtualization, such as
in the context of transparent application migration.

We present a detailed discussion of key implementation is-
sues and challenges in providing OS virtualization in a com-
modity OS. We compare alternatives for implementing OS
virtualization at user-level vs. kernel-level, discuss perfor-
mance costs for methods of storing virtualization state, and
examine subtle race conditions that can arise in implement-
ing OS virtualization. Some OSs are gradually incorporating
virtualization support by making pervasive changes to the
OS kernel [22]. We describe an approach of implementing
OS virtualization in a minimally invasive manner by treating
the OS kernel as an unmodified black box. The experiences
from this approach are instrumental in demonstrating how
OS virtualization can be incorporated into commodity OSs
with minimal changes. Using this approach, we have im-
plemented a Linux OS virtualization prototype entirely in
a loadable kernel module. We present quantitative results
demonstrating that such a minimally invasive approach can
be done with very low overhead.

2. VIRTUALIZATION CONCEPTS

OS virtualization isolates processes within a virtual ex-
ecution environment by monitoring their interaction with
the underlying OS instance. Similar to hardware virtualiza-
tion [25], applications that run within the virtual environ-
ment should exhibit an effect identical to that demonstrated
as if they had been run on the unvirtualized system. In ad-
dition, a statistically dominant subset of the applications
interaction with system resources should be direct to mini-
mize overhead.

We classify OS virtualization approaches along two dimen-
sions, host-independence and completeness. Host-dependent
virtualization only isolates processes while host-independent
virtualization also decouples them. The distinction is that
host-dependent virtualization simply blocks or filters out
the namespace between processes, while host-independent
virtualization provides a private virtual namespace for the
applications’ referenced OS resources. The former does not
support transparent application migration since the lack of
resource translation tables mandates that the resource iden-
tifiers of an application remain static across hosts for a mi-
grating process, which can lead to identifier conflicts when
migrating between hosts. Examples of host-dependent virtu-
alization include Linux VServers [34] and Solaris Zones [27].
Host-independent virtualization encapsulates processes in a
private namespace that translates resource identifiers from
any host to the private identifiers expected by the migrating
application. Examples of this approach include Zap [21, 24]
and Capsules [30]. We refer to this virtual private names-
pace as a pod, based on the terminology used in Zap.

In terms of completeness, partial virtualization virtualizes
only a subset of OS resources. The most common example
of this is virtual memory, which provides each process with
its own private memory namespace but doesn’t virtualize
any other OS resources. As another example, the FreeBSD

Subsystem Description

Process ID PID and related IDs: thread group, process

group, session

Filesystem Filesystem root (chroot)

SysV IPC ID and KEY of message queues, semaphores,
and shared memory

Unix IPC Unix domain sockets, pipes, named pipes

Network Internet domain sockets

Devices Device specific resources

Pseudo terminals PTS IDs and devpts pseudo filesystem

Pseudo filesystems | E.g. procfs, devpts, shmfs

Miscellaneous Hostname, user/group ID, system name

Table 1: Kernel subsystems and related resources

Jail [19] abstraction provides partial virtualization by re-
stricting access to the filesystem, network, and processes
outside of the jail, but does not regulate SysV interprocess
communication (IPC) mechanisms. While partial virtual-
ization has been used to support tighter models of security
by limiting the scope of faulty or malicious processes, it can
be unsafe if there exist direct or indirect paths for processes
inside the environment to access resources outside or even
break out of the environment. The chroot environment in
Unix is a notorious example of a filesystem partial virtualiza-
tion mechanism that has serious security shortcomings [7].

Complete virtualization virtualizes all OS resources. While
commodity OSs provide virtualization for some resources,
complete virtualization requires virtualization for many re-
sources that are already not virtualized, including process
identifiers (PIDs), keys and identifiers for IPC mechanisms
such as semaphores, shared memory, and message queues,
and network addresses. Table 1 provides a summary of these
additional resources that must be virtualized; a more de-
tailed discussion is presented in [24].

Within this taxonomy of virtualization approaches, com-
plete and host-independent virtualization provides the broad-
est range of functionality, which includes providing the nec-
essary support for both isolation and migration of applica-
tions. An additional distinction between the taxonomies is
in the scope of the application with respect to the available
systems. Virtualization approaches that are host-dependent
and/or partial provide benefits only on a single host, while
complete, host-independent virtualization approaches pro-
vide the support for applications to exploit the available
systems that are accessible to the entire organization. The
remainder of this paper focuses on the demands of support-
ing this more general form of virtualization in the context
of commodity OSs.

3. INTERPOSITION ARCHITECTURE

To support private virtual namespaces, mechanisms must
be provided to translate between the pod’s resource identi-
fiers and the operating system resource identifiers. For every
resource accessed by a process in a pod, the virtualization
layer associates a virtual name to an appropriate OS physi-
cal name. When an OS resource is created for a process in
a pod, the physical name returned by the system is caught,
and a corresponding private virtual name is created and re-
turned to the process. Similarly, any time a process passes
a virtual name to the operating system, the virtualization
layer catches and replaces it with the corresponding physical
name. To enable this translation, a mechanism must be em-
ployed that redirects the normal control flow of the system
so that the private virtual namespaces are employed rather
than the default physical namespace.

Method Description

System-wide hash table

Convert physical host identifiers to virtual pod identifiers

Per-pod hash table

Convert virtual pod identifiers to physical host identifiers

Direct reference

Per-process fast reference to augmented virtualization state

PID reference count

Protect PIDs of processes that insides or outside pods from reuse

in-pod process flag

Indicate that a process is running inside a pod

init-pending process flag

Indicate that a process in a pod is pending initialization

Outside-pod table

Track identifiers used by processes running outside pods

Restricted-ID table

Track identifiers without a reference count that are in use

init-complete process flag | Indicate that the virtualization state of a resource has been initialized

Filesystem stacking

Virtualize per-pod pseudo filesystems view

Table 2: Summary of virtualization methods

Interposition is the key mechanism that can provide the
requisite redirection needed for virtualization of namespaces.
In our context, interposition captures events at the inter-
face between applications and the OS and performs some
processing on those events before passing them down to the
OS or up to the applications. The interposition that needs
to be done for implementing OS virtualization requires that
some preprocessing be done before the native kernel func-
tionality is executed, and some post-processing be done after
the native kernel functionality is executed. The interposi-
tion implementation itself is accomplished by wrapping the
existing system calls with our functions and translating be-
tween virtual names and physical names before and after the
original system call is invoked.

System call interposition can be implemented at different
layers of the system. We advocate using the loadable ker-
nel module technology that is now available with all major
commodity OSs. A kernel module can provide application-
transparent virtualization without base kernel changes and
without sacrificing scalability and performance. In addition,
by operating in privileged mode, virtualization can provide
the security necessary to ensure correct isolation. By work-
ing at the level of kernel modules, the virtualization module
can utilize the set of exported kernel subroutines, which is
a well-defined interface. Using the kernel API also denotes
a certain level of portability and stability in the implemen-
tation since changes in the kernel API are infrequent. In
other words, virtualization portability is protected to a large
extent from kernel changes in a similar way as legacy appli-
cations are protected.

There are other approaches to implementing system call
interposition. One approach is to implement interposition
as a user-level library [18, 20] such that interposition code
is executed in the context of the process executing the sys-
tem call. This is relatively easy to implement, potentially
yields more portable code, and utilizes the clear boundary
between user-level and kernel-level. Unfortunately, it does
not provide effective isolation of applications and can be
easily subverted at any time. It instead requires their coop-
eration and does not work for statically-linked libraries or
directly executed system calls.

Another approach is to use a kernel process tracing fa-
cility such as ptrace [23], which allows a user-level process
to monitor another process [35]. By using available kernel
functionality, this process tracing approach can enforce an
OS virtualization abstraction more effectively than strictly
user-level approaches. However, ptrace has many limita-
tions in terms of performance and security [35], and the se-
mantics of ptrace are highly system-specific, which results
in a non-portable method.

A third approach is to modify the kernel directly to im-
plement interposition. This offers maximum flexibility, with

the lowest interposition overhead. However, writing code
directly in the kernel is more complicated and cumbersome
than in user-level, harder to debug, and the result is most
likely to be non-portable. Tying the implementation to the
kernel internals requires tracking, in detail, all subsequent
kernel updates. Furthermore, imposing a kernel patch, re-
compilation and reboot process is a serious practical barrier
to deployment and ease-of-use.

Given the limitations of other approaches, we have im-
plemented OS virtualization as a loadable kernel module
that works with major Linux kernel versions, including both
Linux 2.4 and 2.6 kernels. Our implementation avoids mod-
ifications to the operating system kernel, and aims to build
strictly on its exported interface as much as possible. It sup-
ports the pod abstraction but also allows other processes to
run outside of virtualized environments to ease deployment
on systems which require such legacy functionality.

4. VIRTUALIZATION CHALLENGES

Given this kernel module interposition architecture, we
now discuss key implementation challenges in supporting
virtualized system calls. Virtualization requires that some
state be maintained by the virtualization module. The ba-
sic state that needs to be maintained is the pod’s resource
names, the underlying system physical resource names, and
the mapping between virtual and physical names. Through-
out this discussion we emphasize that performance is a pri-
mary concern and many of our approaches are engineered to
achieve low performance overhead. Table 2 provides a sum-
mary of the methods and data structures used to maintain
virtualization state efficiently.

A first approximation approach employs two types of hash
tables that can be quickly indexed to perform the necessary
translation. One is a system-wide hash table indexed by
physical identifiers on the host OS, that returns the cor-
responding pod and virtual identifier. The other is a per-
pod hash table indexed by virtual identifiers specific to a
pod, that returns the corresponding physical identifiers. A
separate pair of hash tables would be used for each OS re-
source that needs to be virtualized, including PIDs, SysV
IPC, and pseudo terminals. For multiprocessor and multi-
threaded systems, proper hash table maintenance requires
locking mechanisms to ensure state consistency. Handling
these locks to avoid deadlock and to lower performance over-
head is a non-trivial matter, and is discussed in Section 4.1
on race conditions.

The use of these hash tables alone can result in subopti-
mal performance. While hash tables provide constant time
lookup operation, there is a non-negligible performance over-
head due to added lock contention, extra computation re-
quired to do the lookup, and some resulting cache pollution.

user-space

4 N

preamble virtualization

kernel invocation in kernel

epilogue virtualization

G)

Figure 1: Anatomy of virtualization wrapper

user-space

In particular, the system-wide hash table is used for each
resource access to determine the pod associated with the
running process. The frequent use of this hash table can
cause lock contention and impair scalability.

To minimize the cost of translating between pod names-
paces and the underlying operating system namespace, we
associate with each native process data structure a direct ref-
erence to the process’s augmented virtualization state and
the process’s pod. These direct references act as a cache op-
timization that eliminates the need to use the table to access
the virtualization data of a process, reducing the hash table
lookup rate.

While this direct association only requires two references,
it is unlikely that the native kernel process data structure
has two unused references which can be used for this pur-
pose. Instead, an effective solution is to extend the area
occupied on the process’s kernel stack by two pointers that
reference the relevant data structures. In this manner, once
a kernel process data structure is obtained, there is no need
to refer back to any hash tables to translate from physical
to virtual identifiers. Because this operation is so common,
this reduces the virtualization overhead of the system across
a broad range of virtualized system calls and eliminates a
major potential source for lock contention.

For most of the subsystems referenced in Table 1, vir-
tualization consists of managing the pod’s state tables and
handling the race conditions discussed in Section 4.1. This
includes the following subsystems: PIDs, SysV IPC, net-
work identifiers, and pseudo terminals, though the latter
case of pseudo terminals requires further support through
the filesystem. The filesystem, devices, and most of the
miscellaneous systems are accessed through filesystem op-
erations, whose virtualization specifics are discussed in Sec-
tion 4.2. Unix IPC semantics are controlled using file de-
scriptors with process groups, so our handling of fork in
Section 4.1.2 is sufficient handling of Unix IPC virtualiza-
tion. The remaining subsystem is pseudo filesystems which
is discussed in Section 4.3.

4.1 Race Conditions

Race conditions occur due to the non-atomic transactions
carried out by the wrapper subroutines. This is inherent to a
virtualization approach that does not modify the kernel and
treats kernel subroutines as black-boxes from the virtualiza-
tion module’s point of view. Race conditions, which make it
difficult to maintain consistent virtual state, are more com-
mon in multiprocessor systems and preemptive kernels but
are also present in non-preemptive uniprocessor systems.

Figure 1 illustrates the anatomy of a typical system call
wrapper. Race conditions can either occur in the preamble
or epilogue of the system call wrapper, and can also be dis-

tinguished as a race condition that is caused by identifier
initialization, deletion, or reuse.

Preamble races can occur after a resource identifier has
been translated from virtual to the corresponding physi-
cal identifier but before the underlying kernel code is in-
voked. The race occurs if, in this time frame, the resource
is released in the kernel, and its physical identifier is subse-
quently reused and therefore ends up pointing to a distinct
resource, possibly in another pod. The race conditions that
are due to identifier reuse are generally rare given the very
brief vulnerability window in which an unusual sequence of
time consuming events must occur, and because the large
size of the namespace from which offending identifiers are
drawn. Allocation algorithms also attempt to avoid reusing
a recently reclaimed identifier. Nevertheless, factors such as
heavy workload, the presence of swapping activity, having
large portions of the namespace already in use, and enabling
concurrency can all contribute to the risk of a race event.

Epilogue races can occur after the kernel returns a physical
identifier of a resource but before the virtualization wrapper
converts it to a virtual identifier. Epilogue deletion races oc-
cur if the resource is freed during the period between kernel
invocation and post-processing, which results in its removal
from the virtualization state and causes the pending conver-
sion to fail. Epilogue initialization races can appear between
the time that a resource is allocated, which is usually after
the completion of the underlying kernel code, and the time
it is appropriately registered within the virtualization sub-
system. Since these two operations are not executed within
a single atomic section, the resource instance can be visible
and modifiable to processes that do not belong to the same
pod, or the resource instance can be exposed prematurely
to processes in the same pod. In the following sections, we
detail distinct problems and solutions and discuss the appli-
cability of the patterns for other system resources.

4.1.1 Process ID Races

PID races can occur if a PID is referenced and changes
during the execution of a virtualized system call such that
stale data ends up being used. A change occurs when the
PID is released and reclaimed by the kernel after a process
terminates, and the PID may end up being reassigned by
the kernel to a newborn process, as seen in Figure 2.

Process A Process B Process C

pid=100 pid=110
vpid=400 vpid=420
1: SYS_GETPGID(420)
2: virt_to_phys(110)
=110
3: kern_getpgid(110)
=110
4: SYS_EXIT(0)
=EXITED
5: CREATED
= pid=110
= vpid=755

6: phys_to_virt(110)
=755 #£ 420

Figure 2: PID deletion race. (1) Process A queries the
PGID of process B, (2) we convert from virtual to physical,
and (3) call the actual kernel system call. If (4) process B
now exits, and (5) a new process C gains the same PID, then
(6) we convert back from physical to virtual wrongly.

getppid and getpgid are examples of system calls vulner-
able to these races. getppid begins with trivial preamble
followed by invocation of the kernel’s system call, and then
translates the result from the physical value to the virtual
one. An epilogue deletion race exists if the mapping of par-
ent process’s PID changes between the invocation and the
translation, which can occur if the parent process terminates
exactly then. The wrapper subroutine will fail if the PID is
not reused, return an erroneous value if the PID is reused
by a new process in the same pod, or return a meaningless
value if the PID is reused by a new process in another pod.
Similarly, getpgid begins with translating its PID argument
from virtual to physical, then calls the kernel’s system call,
and wraps up by translating the return PID back from phys-
ical to virtual. It is exposed to the same epilogue deletion
race as with getppid in addition to a preamble race.

Preamble races are potentially more harmful, especially
for system calls that modify process state. For getpgid, a
preamble race between the preamble and system call invo-
cation can arise if the process terminates exactly then. One
of four effects can occur as a result. First, if the PID is not
reused, the kernel system call will return an error. Second,
if the PID is reused and assigned to a new process in the
same pod, the returned value will be the process group ID
of another process in the same pod. Both of these cases are
harmless as a similar race is inherent to Unix and may legally
occur during its normal non-virtualized operation. Third, if
the PID is reused and assigned to a process not in a pod,
the physical process group ID returned by the kernel will
not have a corresponding virtual group ID and the wrap-
per subroutine will fail. Fourth, if the PID is reused and
assigned to a process in some other pod, the process group
ID from another pod will be returned. This results in infor-
mation leakage and violates the isolation between pods. It
also causes inconsistency as two successive system calls will
return different results. Moreover, other system calls that
tamper with the system state can result in worse behavior.
For instance, a race in the case of kill could end up deliv-
ering a signal from a process in one pod to another process
is some other pod, and setpgid could attempt to modify a
process group ID of a process in another pod, to a possibly
undefined value there.

To prevent these races, we ensure that a reference count
on the object in question is taken to guarantee that neither
a PID nor the corresponding task structure are freed and
reclaimed prematurely. This effectively protects the refer-
enced object for the duration of the transaction. As long as
that reference is held, the kernel will not reclaim the resource
even if the process that owns it has exited. To implement
this, we use the kernel’s own reference count primitives for
these objects and piggyback on them by calling the corre-
sponding kernel subroutines to modify the reference count.

‘We minimize the interaction with the kernel by only mod-
ifying the kernel’s reference count twice during the entire
lifetime of a process. It is incremented when the process is
associated with a pod, either by entering a pod or as a result
of fork, and is decremented after the process exits. We com-
bine this with a reference count that is maintained as part
of the per process virtualization state. This count is initial-
ized to one when the process joins a pod and modified twice
in every transaction that is vulnerable to a PID race. It is
incremented at the beginning of the transaction and decre-
mented when the reference is no longer needed. The sepa-

Parent Child
pid=100
pid=400

1: SYS_FORK()
2: kern_fork()

= pid=110
3: CREATED
— pid=110
4 SYS_GETPID()
5: kern_getpid()
=110
6: phys_to_virt(110)
=UNDEFINED
= vpid=420

Figure 3: PID initialization race. (1,2) The parent forks
and (3) a child is created. The child executes before the
parent completes the fork and (4) queries its PID. We (4)
call the kernel system call, but (6) cannot convert back from
physical to virtual because the virtual PID is uninitialized.

ration between the kernel’s reference count on the original
object and the module’s reference count on the virtualized
object reduces lock contention by preferring per pod locks
over the kernel global lock. It also improves portability by
reducing the dependency on the kernel without additional
code complexity, since the reference count for virtualized
objects is also required for other reasons.

Similar to processes in a pod, regular processes not run-
ning in a pod are vulnerable to a symmetric race in which
a regular process examines another regular process and the
latter either enters a pod or dies before the former completes
the transaction. If not addressed, this can result in an in-
teraction between a regular process and a process in a pod,
which should otherwise be forbidden. For example, consider
a regular process that attempts to send a signal to another
regular process. If the PID of the latter joins the scope of
some pod, either by the owner entering or by being reused
after the owner exits, after the sender already completed the
PID translation but before it invoked the underlying native
kill, the sender would end up delivering a signal to a pro-
cess otherwise invisible to it.

We resolve this race by keeping a reference count for PIDs
accessed outside of pods. Regular processes are associated
with a special pseudo-pod. Referenced PIDs are then guar-
anteed not to be reclaimed prematurely. At the same time,
processes are prohibited from entering a pod while a positive
reference count exists for one of their PIDs. To complete the
solution, we added the constraint that a process may only
enter a pod executing in its own context. The rationale for
this is similar to fork and other system calls; a fork cannot
be imposed on a process, but rather must be executed by
the process itself. This guarantees certain properties on the
process state, such as well-defined state and a specific en-
try point which eliminate apriori numerous races and other
subtleties.

4.1.2 PID Initialization Races

A key initialization race that must be addressed is correct
initialization of the virtualization state of a process, par-
ticularly on process creation as a result of the fork system
call, as seen in Figure 3. When fork is called, the virtualized
system call performs some preliminary internal management
and accounting, then invokes the native system call which
returns twice, once in the context of the parent, and once in

the context of the child. When executed in the context of
the child process, the call returns immediately to user-level
and does not return control to the kernel, so that no post-
processing can be done as part of the virtualized system call
execution by the child process. In particular, the child pro-
cess is expected to return and begin executing before the
parent process returns from the native system call.

As a consequence, there is a brief period in time in which
the child process can resume execution without informing
the virtualization module of its existence. Since the vir-
tualization module is not aware that the child process had
already been created, it is not able to initialize any neces-
sary fields in its hash tables for that process, including any
mappings between virtual and physical names for that child.
Although the parent process can attempt to initialize the
appropriate data structures on behalf of the child, it would
only do so after its execution of the system call reaches the
post-processing part. There is no guarantee for that to occur
before the child process resumes execution in user-level, and
potentially even issues other system calls. The problem is
inherent to a system call interposition approach that treats
fork as a black-box. As a result, it becomes difficult to de-
termine whether the new child process belongs to a pod and
must be virtualized. If the problem is not fixed, the process
will not be isolated within a pod, and may freely interact
with the underlying system and other processes.

In constructing an efficient method to ensure that a child
process’s state is properly initialized, a key observation is
that an uninitialized process may execute freely as long as
no interaction occurs with its virtualized state. As soon as
such an interaction takes place, the process must first be ini-
tialized before it is allowed to continue execution. Assuming
a method exists to detect that a process is not initialized,
there are three cases to address. First, when a parent pro-
cess returns from the native fork system call, it tests if the
child process has already been initialized. If not, it initial-
izes the virtualization state of the child, including storing
the mapping of virtual and physical resource names in the
appropriate virtualization data structure. Second, the na-
ture of host-independent complete virtualization guarantees
that the child process will not access any of its virtualization
state until it calls a virtualized system call. As a result, the
child process can wait until it calls a virtualized system call
to have its virtualization state initialized. Each virtualized
system call has a preprocessing step which tests whether
the calling process is in a pod and whether its virtualiza-
tion state has been initialized. When an uninitialized child
process executes a virtualized system call, the system no-
tices the uninitialized state and initializes the virtualization
state at that time. Third, if some other process attempts to
access the uninitialized child process via a virtualized sys-
tem call, the child process is identified as being uninitialized
which causes the system to initialize the virtualization state
at that time. Conceptually the solution is to ensure that
all direct and indirect access to the resource is virtualized,
hence the first time the resource is accessed, it is also ini-
tialized.

To provide correct operation with low overhead, we aug-
ment the use of hash tables by storing some per process vir-
tualization state as part of the in-kernel process data struc-
ture. The data structure used to represent a process in the
kernel typically contains a set of flags used to note various
process states. In general, the fields in the kernel process

Syscall SYS_GETPID

if not in-pod then
pid — kern_getpid()
return pid

end if

. if init-pending then
call initialize_self()

end if

pod «— lookup_pod()

pid — kern_getpid()

: vpid «— phys_to_virt(pid)

: return vpid

PR B e BN Rl o

—_

Figure 4: Pseudo code for getpid wrapper

structure used to store such information are not completely
populated so that unused parts remain. We use two bits
of these unused parts to piggyback on the native fork sys-
tem call to implicitly initialize a minimal virtualization state
that identifies a process as being in a pod and uninitialized.

These bits serve as two helper flags for virtualization. The
first is the in-pod flag and indicates whether a process is in
a pod. A crucial advantage of using this field is that it is
inherited across child process creation given the semantics
of fork. A child of a process that is already in a pod atom-
ically inherits the flags and is therefore immediately iden-
tified as also being in a pod. Thus, processes in pods can
be readily and efficiently filtered and made invisible to reg-
ular processes, even when uninitialized. The second flag is
the init-pending flag and indicates that a process in a pod is
pending initialization. A parent process sets its init-pending
flag when processing the virtualized fork system call before
executing the native system call. The flag is inherited atom-
ically by the child process so that both the parent and the
child process appear to be uninitialized. The presence of the
flag on the parent is meaningless and ignored. The flag is
cleared on both when the child process has been initialized.

The combined approach of employing the helper flags in
addition to the hash tables provides a performance benefit
as well. Hash table lookup is part of the critical path of four
common tasks: first, when testing whether a process belongs
to a pod when it issues a system call to decide whether to vir-
tualize or not; second, when testing whether a target process
(e.g. in a pod) should be masked out from another process
(e.g. not in a pod); third, when access to the virtualization
data of a process is needed; and fourth, when a physical-
to-virtual translation or vice versa is required. While hash
tables provide constant time lookup operation, there is a
non-negligible performance overhead due to added lock con-
tention, extra computation required to do the lookup, and
some resulting cache pollution.

Testing for the flag on a process trivializes the first two
tasks and eliminates the need to perform a hash table lookup.
This is particularly beneficial for regular processes not run-
ning in pods that would otherwise suffer a performance degra-
dation due to such a lookup in each virtualized system call.
For example in Figure 4, a negative return value on the
in-pod check at the beginning of the wrapper short-circuits
the lookup_pod() call. Since PIDs-related functions are a
main part of the code path, the overhead for the system as
a whole is lowered. Isolation of processes in a pod from pro-
cesses outside of the pod becomes easy as well: if a process
not running in any pod attempts to access a process in a
pod, the in-pod flag of the process in a pod will already be
set and hence it is straightforward to deny access.

4.1.3 SysV IPC Races

SysV IPC [31] primitives consist of message queues, shared
memory and semaphores. Unique identifiers refer to active
instances. Keys are used to obtain identifiers. IPC iden-
tifiers and keys are global resources that must be virtual-
ized using virtual-to-physical and physical-to-virtual hash
tables. They are also mutable during system calls, poten-
tially resulting in initialization, preamble, and epilogue dele-
tion races. For simplicity, we focus our discussion on mes-
sage queues, but the same principles apply for the other two
primitives.

Initialization races can occur when a new identifier is cre-
ated as it may become visible to the system prior to the
initialization of its virtualization data. For instance, an IPC
identifier allocated inside a pod whose virtualization state
has not yet been initialized cannot be determined to belong
to the pod, and therefore may be potentially accessed by a
process outside the pod. This issue is aggravated since most
IPC primitives will alter the system state, possibly before
the resource is ready. Similar to the solution to the process
initialization race condition we are assured that the resource
cannot be accessed without going through the virtualization
layer. Unlike processes however, the internal data structure
that represents IPC resources is not extensible, making it
impossible to associate either a pointer or a flag with it.

To prevent misuse of IPC identifiers before their virtual-
ization data is initialized, we introduce a third hash table
called the outside-pod table to indicate whether a given in-
stance has been initialized. The outside-pod table stores all
identifiers in use by processes not in a pod. As with PIDs,
this may be thought of as treating the namespace that does
not belong to any pod as a pseudo-pod where virtual and
physical identifiers are mapped one-to-one. Regular pro-
cesses must consult the outside-pod table to access an iden-
tifier, analogous to testing the in-pod flag for PIDs. They
will be blocked from accessing uninitialized identifiers since
they will fail to find them in the outside-pod table.

The outside-pod table must be correctly populated to ac-
count for IPC resources that may already exist when the
virtualization module is loaded. When the module is loaded,
it must scan the kernel data structures for instances of IPC
primitives and place the identifiers in the outside-pod ta-
ble. Special care must be taken not to overlook an instance
that is being created at the time of the scan or afterwards,
by a process that started a native (non-virtualized) system
call prior to the scan. Otherwise, that identifier will not be
accounted for and will consequently become invisible to all
processes, including the process that created it. A perfor-
mance issue with this scheme is the added overhead to IPC
related system calls for processes that do not belong to a
pod as every operation on an identifier by a process not in
a pod implies a lookup in the outside-pod table.

Preamble races can occur due to identifier reuse, as seen
in Figure 5. For example, consider a process in a pod that
holds a valid message queue identifier and calls msgsnd to
send a message. Suppose that after the translation from
the virtual namespace to the physical namespace by the
wrapper subroutine, another process in the same pod deletes
that message queue from the system, then subsequently that
identifier is reused for a new message queue in another pod.
When the first process invokes the native system call, it will
end up violating the isolation semantics between pods. Since
the semantics of IPC allow to remove instances at any time

Pod 1: Pod 2:
ipc id=10
ipc vid=55

Process A Process B Process C

1: SYS_MSGSND(55, ...)
2: virt_to_phys(55)

=10
3: SYS_MSGCTL
(55, IPCRM,...)
4: virt_to_phys(55)
=10
5: kern_ipcrm(10)
=deleted
6: SYS_MSGGETY(...)
=10

7: kern_msgsnd(10, ...)
=ILLEGAL

Figure 5: IPC reuse race. (1) Process A sends to queue
with virtual ID 55. (2) we convert the ID from physical to
virtual. (3,4,5) process B deletes the queue in the same pod,
and (6) process C allocates a new queue with the same ID in
another pod. When (7) process A calls the actual kernel sys-
tem call, it sends the message illegally across pod boundary.

regardless of how many processes may be using it, the ker-
nel does not keep a usage count on them, thus hindering
the piggybacking on a native reference count to handle said
races similarly to PIDs.

To prevent improper reuse of identifiers we propose a
fourth hash table named restricted-ID table to track all the
instances which are being referenced to at any time by the
virtualization code together with their reference count. Iden-
tifiers will be inserted to the table during the preamble, and
taken out if the reference count drops to zero in the epi-
logue. The virtualization code of msgget will inhibit reuse
of an identifier as long as it appears in the table, by having
the epilogue inspect new identifiers to ensure that they are
not restricted. If they are, the epilogue will deallocate that
instance and a new allocation is attempted.

However, this scheme is still incomplete as illustrated by
the following subtlety: suppose a process calls msgsnd with
some identifier and is preempted between the preamble and
the invocation of the actual system call. Suppose also that
another process (in the same pod) now removes that in-
stance, and a third process in another pod allocates a new
message queue with the same identifier, but is preempted
before testing it against the restricted-ID table. If the orig-
inal process now kicks in it will eventually access the new
message queue rather than the intended one. The outcome
clearly undermines isolation between pods.

A simple solution is to have the epilogue of msgget mark
the virtualization state of identifiers that were deallocated so
the epilogue of msgsnd can detect this condition. When this
occurs, msgsnd responds by retrying the operation. This is
sufficient to ensure that the pod boundaries are respected,
since the offending (newly allocated) identifiers never gets
a chance to be used in the other pod. Once interaction is
confined to the original pod, any side effects are legal since
similar circumstances can occur on the native OS.

A performance issue with the above is the added overhead
to IPC related system calls, even for processes that run out-
side any pod. This overhead comes directly from the extra
bookkeeping by the virtualization logic. First, every cre-
ation of an instance, either inside or outside a pod, involves
a lookup in the restricted-ID table. Second, every operation

on an identifier requires that the identifier be inserted in the
restricted-ID table for the duration of the system call. Fi-
nally, every operation on an identifier by a process not in a
pod implies a lookup in the outside-pod table.

Unlike PIDs, IPC consists of two inter-related resources,
namely identifiers and keys. Both are global and not asso-
ciated with specific processes that own a reference to them.
Keys identify a context and are persistent while identifiers
are created when such contexts are instantiated to allocate a
message queue, hence representing a specific instance. Once
a key has been instantiated, future attempts to instantiate
it will resort to the existing instance, until that instance is
explicitly deleted. For example, the first call to msgget with
some key value will allocate a new message queue and as-
sign a unique identifier that represents that key. Subsequent
calls will detect the active queue that is associated with the
specified key and will return the same identifier, until finally
the queue is removed, and so on.

IPC keys are unusual in that the user can select the value
of a key when allocating a new message queue. With all
other kernel resources, their physical names are assigned
solely by the kernel. Since the kernel always selects unique
identifiers, it is not possible for two distinct resources to
have the same physical name. In contrast, values of keys are
set forth by the application and may potentially coincide
across two distinct pods. If the same key is used in two sep-
arate pods and passed to the OS for allocating new message
queues, the OS would not create a message queue in each
pod. Instead, it would incorrectly create a single queue and
provide the same queue identifier in both pods.

To address this problem, we leverage a special key value,
IPC_PRIVATE, designed to allocate private message queues
that are not associated with any specific key, and whose
identifier cannot be obtained by a subsequent call to msgget.
The virtualization wrapper of msgget first searches for the
given virtual key in the corresponding hash table and returns
the corresponding virtual identifier if found. Otherwise, it
invokes the original system call, substituting the original
key argument with the special IPC_PRIVATE, causing the OS
to generate a private queue. By creating private message
queues, we ensure the uniqueness of each queue within the
system. After the system call returns a new identifier, the
epilogue allocates a corresponding virtual identifier, popu-
lates the table with a new mapping, and associates the vir-
tual key with the virtual ID.

The special behavior of IPC allocation and its virtualiza-
tion leads to a unique type of preamble race condition. Con-
sider two processes in the same pod trying to allocate a mes-
sage queue with the same key. Under normal circumstances,
the one that is scheduled first will receive the identifier of
a new queue, and the other will receive the same identifier.
However, if both processes complete their preamble before
either of them invokes the real system call, the preamble will
have replaced the original key with IPC_PRIVATE and they
will now each obtain a distinct, private queue.

The kernel already serializes certain types of IPC calls, like
creation, deletion and manipulation of message queues—but
not their actual use-with semaphores that ensure mutual ex-
clusive modifications. Since the offending system calls are al-
ready serialized by design, we can use a matching semaphore
to protect the virtualization wrapper and make the entire
virtualized operation atomic without compromising scala-
bility. This solution also eliminates other race conditions

such as epilogue deletion races. A deletion race can only
occur when a physical-to-virtual translation of IPC identi-
fiers takes place. In the IPC context this translation only
happens during allocation. However, deletion and alloca-
tion are mutually exclusive by use of the semaphore and are
therefore protected from this race.

4.1.4 Pseudo Terminals Races

Pseudo terminals [31] (PTS) are pairs of master/slave de-
vices whose input and output streams are cross linked. The
slave end emulates the behavior of a line terminal for the
process using it. When the master PTS multiplexer device
is opened, a corresponding inode for a slave device is cre-
ated in the devpts pseudo filesystem and named /dev/ptsN,
where N is the device minor number. The inode is destroyed
when the device is released. In addition to virtualizing the
pseudo terminal name (the device minor number), it is essen-
tial to virtualize the entries in /dev/ptsN to export adequate
views in the contexts of different pods. It also prevents races
arising from having indirect paths to the resource. This is
discussed further in Section 4.3.

The only conceivable system call involving pseudo termi-
nals is for a process to query the identifier of a terminal
attached to a file descriptor. This is always race-free since
the initialization of the pseudo terminal must have already
been completed when the matching open system call ter-
minated, and the deletion of the pseudo terminal could not
have occurred since it would have required that the terminal
be closed, yet the said file descriptor is still kept open. While
pseudo terminals are not subject to preamble and deletion
races, they are subject to initialization races. The initial-
ization pitfall is similar to the problem with IPC where a
process not in a pod may be able to access a recently cre-
ated slave device in a pod prior to the completion of its
setup. A plausible approach is to use an identical solution
to the outside-pod table used with IPC to completely mask
out pseudo terminals while not yet initialized.

We employ a lower overhead approach that takes advan-
tage of the ability to borrow one bit from the in-kernel data
structure of pseudo terminals. We use the bit to store a
per device init-complete flag that marks the device as ini-
tialized when it is set. Since the bit is unused, the flag is
not set upon creation of a pseudo terminal. A newly created
pseudo terminal without the flag set is noted as uninitial-
ized and is made invisible to any process trying to access
them, be it inside or outside a pod. The flag is set once the
initialization is successfully completed and the appropriate
associations in the translation hash tables have been made,
making the pseudo terminal finally accessible within its pod,
or among regular processes if it was originally created out-
side of any pod. This approach is similar to the init-pending
flag used for dealing with process initialization races. Using
a per-instance flag instead of a global hash table improves
scalability and performance by avoiding the need to serialize
access to a table, and by eliminating both the extra cycles
of the lookup and the associated cache pollution.

Similar to the outside-pod table with SysV IPC, it is pos-
sible that access to a pseudo terminal not belonging to any
pod is denied for a brief period from processes not in a pod
that should otherwise be able to access it. This can hap-
pen in the period between the creation of the new inode and
the final completion of its initialization. Since such behav-
ior can be expected in traditional Unix, we regard this as a

non-virtualization issue. When the virtualization module is
loaded, it is necessary to scan the kernel for already open
pseudo terminals to set their initialization flags. This must
be done carefully to account for rare races that can occur
during the scan itself.

4.2 Filesystem Virtualization

To provide modular support for multiple filesystems, many
commodity OSs provide a virtual filesystem framework that
supports a form of interposition known as filesystem stack-
ing [38]. We leverage this support along with the chroot
utility to simplify filesystem virtualization. Filesystem vir-
tualization is accomplished by creating a special directory
per pod that serves as a staging area for the pod’s private
filesystem hierarchy. Storage requirements are minimized by
sharing read-only portions of the filesystem among pods, if
applicable, through loopback mounting or networked filesys-
tems. The chroot system call is used to confine processes
that belong to the pod within their private subtree. To
ensure that the root of that filesystem is never traversed,
we use a simple form of filesystem stacking that overloads
the underlying filesystem permission function to implement
a barrier directory that enforces the chroot-ed environment
and ensures that it is only accessible to files within the owner
pod. This use of filesystem stacking leverages existing kernel
functionality and avoids the need to replicate that function-
ality as part of the virtualization implementation.

4.3 Pseudo Filesystems

Pseudo filesystems are memory-based filesystems that pro-
vide the user with an interface to kernel resources and facil-
ities. Pseudo filesystems share three key properties. First,
they provide a public, indirect path to a view of global re-
sources. Second, creation and deletion of resource instances
are reflected dynamically in this view because the actual be-
havior of the resources is tracked using dedicated callback
subroutines. Third, they may generate a process specific
view that is context dependent and differs among processes
(e.g. the symbolic link /proc/self). To ensure proper vir-
tualization semantics, we must virtualize these views to pro-
vide context dependent views corresponding to the respec-
tive pod being used. We briefly discuss how this is done
cleanly and simply for two important pseudo filesystems,
devpts and procfs.

The devpts filesystem provides an interface to pseudo ter-
minals. Similar to the filesystem virtualization described
earlier, we use a filesystem stacking approach to virtualize
devpts. Given that each pod uses a dedicated subtree of the
filesystem as its root filesystem, we provide a pod devpts
by stacking an instance of a virtualization filesystem on the
/dev/pts directory in each pod. This is a very lightweight
stackable filesystem whose sole purpose is to virtualize the
underlying filesystem in the context of the specific pod in
which it resides. In addition, the required logic is completely
independent of the specific pseudo filesystem, which signif-
icantly reduces complexity while leveraging the generality
and portability of filesystem stacking.

The procfs filesystem maintains a view of the processes
running in the system as well as of system properties. A
key feature is that it provides an exported interface that
loadable kernel modules can use to dynamically extend its
layout. We harness this dynamic extensibility to provide
each pod with the requisite context dependent view. For

each pod, the virtualization layer automatically creates a
private subtree within the procfs hierarchy by mirroring the
original filesystem structure. To keep the overhead low, we
do not replicate code or create additional inodes, but instead
use hardlinks to refer to existing inodes. This subtree is
loopback-mounted at the appropriate point (/proc) within
the pod’s root subtree. This approach is appealing due to
the simplicity and lowered virtualization overhead compared
to other approaches such as filesystem stacking.

S. EXPERIMENTAL RESULTS

To demonstrate the effectiveness of our OS virtualiza-
tion implementation, we measured its performance on both
micro-benchmarks and real application workloads. We quan-
tify the overhead of OS virtualization, measure the addi-
tional cost of correctly handling various race conditions,
and also present measurements using hardware virtualiza-
tion to provide a basis of comparison between virtualization
approaches.

We ran our experiments on both Linux 2.4 and 2.6 ker-
nels, and on both UP and SMP systems. However, we only
present data for Linux 2.6 on SMP due to space constraints.
The operating system configuration used was Debian Stable.
We conducted the measurements on an IBM HS20 eServer
BladeCenter. Each blade had dual 3.06 GHz Intel Xeon™™
CPUs, 2.5 GB RAM, a 40 GB local disk, and was connected
to a Gigabit Ethernet switch. Hyperthreading was enabled
for the SMP kernel measurements.

We performed our experiments on three configurations:
Base—a vanilla Linux system providing a baseline measure
of system performance; With—Base with our virtualization
module loaded but no pods instantiated, providing a mea-
sure of the overhead incurred by regular processes running
outside of a pod; Pod—Base with our virtualization module
loaded and benchmarks executed inside of a pod, providing
a measure of the overhead incurred when running inside of
a pod.

5.1 Micro-benchmarks

To measure the basic cost of OS virtualization, we used
micro-benchmarks to measure the performance of different
system calls with different types of virtualization overhead.
Seven micro-benchmarks were used. Each ran a system call
in a loop and measured its average execution time: get-
pid, getsid, getpgid, fork, execve, shmget, and shmat.
In particular, the fork benchmark forked and waited for a
child that exited immediately, the execve benchmark forked
and waited for a child that executed a program that exits
immediately, the shmget benchmark created and removed
IPC shared memory segments, and the shmat benchmark
attached a segment of shared memory twice, modified both
copies, and detached it.

Figure 6 shows the execution time of each benchmark on
each configuration using a SMP kernel and normalized to
Base. Each bar shows the actual execution time reported
by the benchmark. Comparing With and Pod with Base,
the measurements show that operating system virtualization
overhead is quite small in all cases, generally 2-4% and less
than 35% in the worst case.

We performed a simple comparison on the UP kernel to
quantify the cost of using ptrace for system call interposi-
tion in lieu of our kernel module implementation. We exe-
cuted a version of the getpid micro-benchmark that consists

3.0 r 2.0
Base mmmm
With

25 Pod mmmmm

15

162s
162s
201s

360 ns
366 ns
368 ns
361 ns
373 ns
484 ns
473 ns
490 ns
598 ns

Normalized completion time
P
Normalized completion time

make

execve shmat

getpid
gets shmget

getpgid
id fork

System call

Figure 6: Virtualization cost (micro) Figure 7: Virtualization cost (macro)

of two processes: a tracer and a tracee. The tracer process
is notified about every entry and exit of system calls of the
tracee. It then peeks into the tracee’s memory, emulating
the work of the wrapper’s preamble and epilogue. The tracee
executes getpid repeatedly and we measured the average ex-
ecution time for the system call. The average execution time
was 5.5 us for tracing without peeking and 7.7 us for trac-
ing and peeking. getpid degrades by a factor of 13 just for
monitoring, and by a factor of 20 if the tracer also peeks into
the tracee’s memory. This overhead does not even take into
account the added cost of basic virtualization functionality.
In comparison, our kernel module virtualization overhead is
only 2 percent for the same system call.

We also compared our measurements with results reported
for in-kernel interposition mechanisms. SLIC [13] reports
10% overhead due to the basic dispatcher code, roughly
35% for the interception of getpid, and somewhat lower
for more involved system calls. However their base system
was a slower UltraSparc and we expect their overhead would
be much less on a more modern system. Systrace [28] re-
ports 30% overhead for the same case, which includes their
security policy checks, on hardware that is similar to ours.
Our measurements suggest that a loadable kernel module
implementation is not outperformed by an implementation
that modifies the kernel directly.

The actual With and Pod execution times for the first
three benchmarks shown in Figure 6 provide a quantitative
measure of the basic cost of OS virtualization functional-
ity. getpid only adds a test of the in-pod and init-pending
flags to determine whether the process is in a pod, and if
so, whether it is pending initialization. The overhead is
8 ns and represents the minimum overhead of a virtualized
system call. With and Pod execution times are the same
for getpid because the cost of obtaining the virtual identi-
fier is negligible since it is stored as part of the per process
virtualization state, which is directly referenced; no hash
table translation is required. Compared to getpid, getsid
also uses the hash table to translates the return value from
physical to virtual identifier if a process is in a pod. This
translation overhead is 111 ns as indicated by the difference
between With and Pod getsid execution times. Most of
this time is due to the extra locking mechanisms required
for correct operation on SMP. Consequently, the overhead
is noticeably lower for UP, where the same translation takes
approximately 12ns. getpgid also needs to do a hash table
lookup and modify the kernel’s process reference count for
the With case, as discussed in Section 4.1.1. This added
17 ns versus the Base case due to the lookup, since the ref-
erence count adds negligible overhead. For the Pod case,
getpgid also needs to modify the virtualization module’s

2.04s

hackbench

Application benchmark

0.283 ms
0.291 ms

mysql volano

No. of Apache instances

Figure 8: Virtualization scalability

process reference count and perform an additional hash ta-
ble translation, adding 108 ns versus the With case, mostly
due to locking mechanisms.

While more complex system calls require more OS virtu-
alization logic, the overhead of the additional logic is amor-
tized by the additional overhead of the native system call.
For example, even though the virtualization cost of fork is
roughly 6 us as shown in Figure 6, the virtualization over-
head as a percentage of the system call execution time is
only 4%. The overhead is due to allocating and prepar-
ing the virtualization data structure for the child process,
linked list maintenance and ensuring correct initialization.
All of the more complex system calls have small overhead
except for shmget, which has 35% overhead for With and
Pod compared to Base. The higher overhead here is largely
due to the use of an additional semaphore as discussed in
Section 4.1.3, which does not compromise scalability, but it
does increase execution time.

Most of the micro-benchmarks took shorter to run on an
UP system versus a SMP system, due to the kernel’s locking
mechanisms, which are trivialized in the UP kernel. On a
UP system, OS virtualization overhead was noticeably lower
for three of the micro-benchmarks, getsid, getpgid, and
shmget. In those cases, the extra locking mechanisms re-
sult in more overhead for processes running in a pod. The
cost of these mechanisms is more prominent for the simple
system calls but is amortized for the more complex system
calls. However, the cost of synchronization is noticeable for
shmget because it requires the use of a semaphore which is
much more expensive than simple spin locks. Except for
getsid, getpgid, and shmget, OS virtualization overhead
was roughly 3 percent or less in all other cases.

5.2 Application Benchmarks

To provide a more realistic measure of virtualization cost
that is expected in actual use, we measured the performance
of different virtualization approaches using five different ap-
plication workloads: make—complete build of the Linux
kernel using gcc 3.3 (make -j 10); hackbench—a scheduler
performance scalability benchmark which creates many pro-
cesses in groups of readers and writers sending small mes-
sages [15] (32 groups); mysql—Super Smack 1.3 database
benchmark using MySQL 4.1.9; volano—VolanoMark Java
chat server benchmark 2.5.0.9 using Blackdown Java 2 Run-
time Environment 1.4.2-02; httperf—httperf 0.8 web server
performance benchmark using Apache web server 2.0.53.

Figure 7 shows the execution time of the make, hackbench,
mysql, and volano benchmarks on Base and Pod using an
SMP kernel with all measurements normalized to Base. (We
omit the With case, since the micro-benchmarks results al-

ready show that the overhead for regular processes running
outside a pod is negligible.) Each bar shows the actual exe-
cution time reported by the benchmark. The mysql bench-
mark reports queries/s, but is converted to query service
time to be consistent with the other benchmarks. The mea-
surements show that Pod provides comparable performance
to Base. OS virtualization overhead as shown by the Pod
case is 2% or less for all applications.

To provide a measure of performance scalability, we mea-
sured the performance of httperf as we scaled the number of
instances of the benchmark running at the same time. For
Base, we ran multiple instances of Apache with each instance
listening on a different port. For Pod, we ran an Apache in-
stance in each pod. We scaled the number of httperf and
Apache instances from 1 to 128 and measured the average
request rate across all instances.

We also executed this benchmark inside a Xen virtual ma-
chine running a Linux OS, to provide a measure of the over-
head of hardware virtualization. Xen was used given its
claims of superior performance versus other hardware virtu-
alization systems [3]. For Xen, we ran an Apache instance
in each Xen VM. To enable Xen to scale to a larger number
of Apache instances, we configured the Xen VM used with
128 MB RAM.

Figure 8 shows the results of this experiment. As ex-
pected, the average httperf performance per instance de-
creases as the number of instances increases due to com-
petition for a fixed set of hardware resources. httperf per-
formed similarly on all systems when only one instance was
executed. However, as the number of instances increased,
httperf performance on Xen falls off substantially compared
to its performance on Base or Pod. Xen scalability was fur-
ther limited by its inability to run more than 16 application
instances at the same time because it could not allocate any
additional VM instances given the 128 MB RAM per VM
and the 2 GB RAM available in the machine used. In con-
trast, both Base and Pod continue to provide comparable
scalable performance up to 128 instances. It is worth not-
ing that in addition to performance scalability, Xen is also
limited by storage scalability since each VM requires a sep-
arate OS image. Since OS virtualization does not require
separate OS images per virtual execution environment, it
does not suffer from this storage limitation.

6. RELATED WORK

Given its various benefits, a number of OS virtualization
systems have been implemented over the past decade. Cap-
sules [30] was an early effort in Sun’s Solaris operating sys-
tem. This research inspired Zap [24], the earliest system to
provide complete, host-independent virtualization in a ker-
nel module without base kernel changes. Our work builds
on previous work on Zap, but discusses for the first time
various key implementation issues that arise in practice in
efficiently supporting complete, host-independent OS virtu-
alization while preserving scalable OS performance. Some
virtualization systems that do not provide complete, host-
independent virtualization have been implemented in Win-
dows [9, 37] without kernel changes, in part by interposing at
the DLL level with the associated disadvantages of user-level
interposition described in Section 2. Other recent virtual-
ization systems have been implemented by making extensive
kernel changes to restructure the underlying operating sys-
tem [27, 32, 34].

Building on ideas from Capsules, Zap, and other early
virtualization systems, some commodity OSs are gradually
incorporating virtualization support by making pervasive
changes to the OS kernel. The implementation of per-process
namespaces in the Linux kernel [5, 22] began in 2005 and is
still in progress. This effort has affected nearly every corner
of the Linux kernel. In contrast, our approach is minimally
invasive since it treats the OS kernel as an unmodified black
box. This makes it easier to backport to fit commodity OS
kernels, and the use of a kernel module simplifies deploy-
ment.

Interposition has been the subject of extensive research,
and is repeatedly relied on by a host of approaches for se-
curity and other general OS extensions, spanning all three
approaches: user-level methods [1, 2, 14, 17, 18, 20] and [35]
(the latter presenting an excellent analysis of ptrace), ker-
nel modifications [4, 8, 16, 28, 34], loadable kernel modules
[10, 11, 13] and hybrid methods [12]. Some of these have
pointed out severe limitation of the security of user-level
based interposition mainly due to vulnerability to races as
well as bypassability. Our work reiterates these deficiencies
in the context of virtualization. We have not found any
work that deals with the issue of referencing unexported
kernel functionality or data structures. Garfinkel [11] fo-
cuses on process isolation in the context of security whereas
our work pertains to OS virtualization, which not only iso-
lates but also decouples the process from the OS instance.
Virtualization addresses a superset of the race conditions as-
sociated with isolation, introduces new classes of races such
as initialization and deletion races, and is required to keep
references on OS resources. Our approach is also concerned
with performance considerations in addressing these races,
and in particular scalability.

7. CONCLUSIONS

While OS virtualization concepts have been previously
discussed, previous work does not address important im-
plementation issues in supporting OS virtualization in the
context of commodity OSs. To the best of our knowledge,
our work explores these implementation issues in depth for
the first time. We discuss the need for system call interposi-
tion for implementing OS virtualization and compare various
approaches for providing this functionality. We demonstrate
the benefits of a loadable kernel module implementation and
show that the overhead of this approach is substantially less
than other approaches such as using process tracing func-
tionality. We discuss how OS virtualization state should be
stored and describe several important optimizations for en-
suring low performance overhead. Furthermore, we discuss
in detail various race conditions that can arise in implement-
ing OS virtualization and how these race conditions can be
addressed. We built an OS virtualization prototype as a
Linux kernel module that works across multiple kernel ver-
sions, demonstrating the portability of our approach. Our
experimental results demonstrate that OS virtualization can
be achieved with very low overhead.

8. ACKNOWLEDGEMENTS

Dan Phung provided helpful comments and edits on earlier
drafts of this paper. This work was supported in part by
NSF grants CNS-0717544, CNS-0914845, and CNS-0905246,
and AFOSR MURI grant FA9550-07-1-0527.

(1

(2]

(3]

(4]

5]

(6]

(7]
8]

9

(10]

(11]

(12]

(13]

(14]

[15]
[16]

(17]

(18]

(19]

[20]

(21]

REFERENCES

A. Acharya and M. Raje. MAPbox: Using Parameterized
Behavior Classes to Confine Applications. In Proceedings of
the 2000 USENIX Security Symposium, Denver, CO, Aug.
2000.

R. M. Balzer and N. M. Goldman. Mediating Connectors: A
Non-Bypassable Process Wrapping Technology. In Proceedings
of the 19" IEEE International Conference on Distributed
Computing Systems (ICDCS), Austin, TX, June 1999.

P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, and I. P. A. Warfield. Xen and the Art of
Virtualization. In Proceedings of the 19tk Symposium on
Operating System Principles (SOSP), Bolton Landing, NY,
Oct. 2003.

A. Berman, V. Bourassa, and E. Selberg. TRON: Process-
Specific File Protection for the UNIX Operating System. In
Proceedings of 1995 USENIX Winter Conference, New
Orleans, LA, Jan. 1995.

S. Bhattiprolu, E. W. Biederman, S. Hallyn, and D. Lezcano.
Virtual Servers and Checkpoint/Restart in Mainstream Linux.
SIGOPS Operating Systems Review, 42(5), July 2008.

T. Boyd and P. Dasgupta. Process Migration: A Generalized
Approach using a Virtualizing Operating System. In
Proceedings of the 22™¢ International Conference on
Distributed Computing Systems (ICDCS), Vienna, Austria,
July 2002.

How to Break Out of a Chroot Jail.
http://www.bpfh.net/simes/computing/chroot-break.html.

C. Cowan, S. Beattie, G. Kroah-Hartman, C. Pu, P. Wagle,
and V. Gligor. SubDomain: Parsimonious Server Security. In
Proceedings of the 14" USENIX Systems Administration
Conference (LISA), New Orleans, LA, Mar. 2000.

P. Dasgupta and T. Boyd. Virtualizing Operating System for
Seamless Disributed Environments. In Proceedings of the
IASTED International Conference on Parallel and
Distributed Computing and Systems (PDCS), Nov. 2000.

T. Fraser, L. Badger, and M. Feldman. Hardening COTS
Software with Generic Software Wrappers. In Proceedings of
the IEEE Symposium on Security and Privacy, Oakland, CA,
May 1999.

T. Garfinkel. Traps and Pitfalls: Practical Problems in System
Call Interposition Based Security Tools. In Proceedings of the
Network and Distributed Systems Security Symposium, San
Diego, CA, Feb. 2003.

T. Garfinkel, B. Pfaff, and M. Rosenblum. Ostia: A Delegating
Architecture for Secure System Call Interposition. In
Proceedings of the Network and Distributed Systems Security
Symposium, San Diego, CA, Feb. 2004.

D. P. Ghormley, D. Petrou, S. H. Rodriguez, and T. E.
Anderson. SLIC: An Extensibility System for Commodity
Operating Systems. In Proceedings of the 1998 USENIX
Annual Technical Conference, Berkeley, CA, June 1998.

I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer. A
Secure Environment for Untrusted Helper Applications:
Confining the Wily Hacker. In Proceedings of the 1996
USENIX Annual Technical Conferemce, San Jose, CA, July
1996.

Hackbench. http://developer.osdl.org/craiger/hackbench.

S. Ioannidis and S. Bellovin. Sub-Operating Systems: A New
Approach to Application Security. Technical Report
MS-CIS-01-06, University of Pennsylvania, Feb. 2000.

K. Jain and R. Sekar. User-Level Infrastructure for System
Call Interposition: A Platform for Intrusion Detection and
Confinement. In Proceedings of the Network and Distributed
System Security Symposium, San Diego, California, Feb. 2000.
M. Jones. Interposition Agents: Transparently Interposing
User Code at the System Interface. In Proceedings of the 14"
ACM Symposium on Operating Systems Principles (SOSP),
Asheville, NC, Dec. 1993.

P.-H. Kamp and R. N. M. Watson. Jails: Confining the
Omnipotent Root. In Proceedings of the 2™ International
SANE Conference, Maastricht, The Netherlands, May 2000.
E. Krell and B. Krishnamurthy. COLA: Customized
Overlaying. In Proceedings of 1992 USENIX Winter
Conference, San Francisco, CA, Jan. 1992.

O. Laadan and J. Nieh. Transparent Checkpoint-Restart of
Multiple Processes on Commodity Operating Systems. In
Proceedings of the 2007 USENIX Annual Technical
Conference, Santa Clara, CA, June 2007.

[22]

(23]

[24]

28]

[26]

(27]

(28]

(29]

30]
(31]
(32]
33]

[34]
(35]

[36]

(37]

(38]

PID Namespaces in the 2.6.24 Kernel.
http://lwn.net/Articles/259217/.

M. McKusick, K. Bostic, M. J. Karels, and J. S. Quarterman.
The Design and Implementation of the 4.4BSD Operating
System. Addison-Wesley, 1996.

S. Osman, D. Subhraveti, G. Su, and J. Nieh. The Design and
Implementation of Zap: A System for Migrating Computing
Environments. In Proceedings of the 5" Symposium on
Operating Systems Design and Implementation (OSDI),
Boston, MA, Dec. 2002.

G. J. Popek and R. P. Goldberg. Formal Requirements for
Virtualizable Third Generation Architectures. Commun.
ACM, 17(7):412-421, 1974.

S. Potter and J. Nieh. Reducing Downtime Due to System
Maintenance and Upgrades. In Proceedings of the 19" Large
Installation System Administration Conference (LISA), San
Diego, CA, Dec. 2005.

D. Price and A. Tucker. Solaris Zones: Operating Systems
Support for Consolidating Commercial Workloads. In
Proceedings of the 18" Large Installation System
Administration Conference (LISA), Atlanta, GA, Nov. 2004.
N. Provos. Improving Host Security with System Call Policies.
In Proceedings of the 12t" USENIX Security Symposium,
Washington, DC, Aug. 2003.

C. P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. S. Lam,
and M. Rosenblum. Optimizing the Migration of Virtual
Computers. In Proceedings of the 5t Symposium on
Operating Systems Design and Implementation (OSDI),
Boston, MA, Dec. 2002.

B. K. Schmidt. Supporting Ubiquitous Computing with
Stateless Consoles and Computation Caches. PhD thesis, CS
Department, Stanford University, 2000.

W. R. Stevens. Advanced Programming in the UNIX
Environment. Professional Computing Series. Addison-Wesley,
1993.

Parallels Virtuozzo Containers.
http://www.parallels.com/products/virtuozzo.

VMware, Inc. http://www.vmware.com.

Linux VServer Project. http://www.linux-vserver.org.

D. Wagner. Janus: An Approach for Confinement of Untrusted
Applications. Master’s thesis, University of California,
Berkeley, Aug. 1999.

A. Whitaker, M. Shaw, and S. D. Gribble. Scale and
Performance in the Denali Isolation Kernel. In Proceedings of
the 5" Symposium on Operating Systems Design and
Implementation (OSDI), Boston, MA, Dec. 2002.

Microsoft Application Virtualization.
http://www.microsoft.com/systemcenter/appv/default.mspx.

E. Zadok. FiST: A System for Stackable File System Code
Generation. PhD thesis, Computer Science Department,
Columbia University, May 2001.

