The MOSIX multicomputer operating system
for high performance cluster computing

Amnon Barak, Oren La’adan’

Institute of Computer Science, The Hebrew University of Jerusalem
Jerusalem 91904, Israel

Abstract

The scalable computing cluster at Hebrew University consists of 64 Pentium and
Pentium-Pro servers that are connected by fast Ethernet and the Myrinet LANSs.
It is running the MOSIX operating system, an enhancement of BSD/OS with algo-
rithms for adaptive resource sharing, that are geared for performance scalability in
a scalable computing cluster. These algorithms use a preemptive process migration
for load-balancing and memory ushering, in order to create a convenient multi-user
time-sharing execution environment for HPC, particularly for applications that are
written in PVM or MPI. This paper begins with a brief overview of MOSIX and
its resource sharing algorithms. Then the paper presents the performance of these
algorithms as well as the performance of several large-scale, parallel applications.

Keywords: Cluster computing, load-balancing, preemptive process migration,
PVM, multicomputer systems

1 Introduction

Scalable Computing Clusters (CC), ranging from a cluster of (homogeneous)
servers to a Network of (heterogeneous) Workstations (NOW), are rapidly
becoming the standard platforms for executing demanding applications, high
performance and interactive computing. The main attractiveness of such sys-
tems is that they are made of affordable, low-cost, commodity hardware, e.g.
Pentium based Personal Computers (PC’s), and fast LANs e.g. Myrinet [6].
Other advantages are that these systems are scalable, i.e., can be tuned to

! Future Generation Computer Systems 13 (1997/98) 361-372
Copyright (©)1998 Elsevier Science B.V. All rights reserved

available budget and needs, and that they use standard software compo-
nents, i.e., UNIX, PVM [8] and the MPI [10] parallel programming environ-
ments. Two examples of such systems are the UC Berkeley NOW project [1],
which uses a cluster of SPARC based workstations connected by Myrinet, and
NASA’s Beowulf “pile-of-PCs” [14], that are connected by multiple Ethernet
interface boards.

Unlike MPP’s, which allow a single user per partition, CC’s are geared for
multi-user, time-sharing environments. In order to make CC systems as easy
to program, manage, and use as an SMP, it is necessary to develop means
for global (cluster-wide) resource allocation and sharing that can respond to
resource availability, distribute the workload dynamically and utilize the avail-
able, cluster-wide resources efficiently and transparently. Such mechanisms
are necessary for performance scalability in clusters of servers and to sup-
port a flexible use of workstations, since the overall available resources in such
systems are expected to be much larger than the available resources at any
workstation or server. The development of such mechanisms is particularly im-
portant to support multi-user, time-sharing parallel execution environments,
where it is necessary to share the resources and at the same time distribute the
workload dynamically, to utilize the global resources efficiently. Throughout
this paper we use the term Computing Cluster (CC) to refer to a collection of
UNIX computers (nodes), ranging from a network of workstations to a cluster
of servers that are connected by a local area network.

The main techniques for dynamic work distribution are load-balancing and
load-sharing, that use some form of remote execution and process migration.
These techniques can perform initial distribution of processes among the nodes
and redistribution of the work load when the system becomes unbalanced.

One mechanism that can perform dynamic work distribution efficiently and
transparently, is a preemptive process migration. This mechanism can move a
process from one node to another dynamically, for load-balancing or memory
ushering, to improve the performance and the overall utilization of the CC
resources. We use the term “memory ushering” to describe the use of remote
memory resources to avoid local paging and thus provide processes with the
memory resources they require. In spite of the advantages of process migration,
very few operating systems have implemented it for adaptive resource shar-
ing. Instead, most existing systems provide explicit, user-controlled remote
execution and migration, while other systems provide automated remote exe-
cutions, but perform preemptive process migration at the explicit request of
a user with a limited functionality.

This paper presents the CC MOSIX, an enhancement of BSD/OS [5,12] that
supports preemptive process migration for load-balancing and memory ush-
ering in a cluster of PC’s. These algorithms attempt to improve the overall

performance, by dynamic distribution of the workload and the available re-
sources among all the processes. The goal is that the application programs do
not have to know the current state of the resource usage. Parallel applications
can be executed by simply creating many processes, just like a single-machine
environment. The paper presents the performance of these algorithms and the
performance of several, large scale parallel applications.

The paper is organized as follows: the next section gives an overview of MOSIX
and its main characteristics. Section 3 presents the performance of its com-
munication protocol and the resource sharing algorithms. Section 4 presents
the performance of several, large scale parallel applications. Our conclusions
are given in Section 5.

2 What is MOSIX

MOSIX [4] is a set of enhancements of BSD/OS [5] with algorithms for adap-
tive resource sharing. These algorithms are geared for efficient resource utiliza-
tion among the (homogeneous) nodes of a distributed-memory, shared-nothing
scalable CC, including LAN connected networks of workstations and servers.
This section describes possible hardware configurations for MOSIX and its
main software characteristics.

2.1 Hardware configurations

MOSIX is designed to run on clusters of Pentium based workstations, PC’s, file
and CPU servers that are connected by standard LANSs or fast interconnection
networks. Depending on the type of applications and the budget, MOSIX
configurations may range from a small cluster of PC’s that are connected by
Ethernet, to a high performance system, with a large number of high-end,
Pentium based servers that are connected by a Gigabit/Sec. scalable LAN;,
e.g. Myrinet [6].

The main advantage of the above configurations is the use of standard, low-
cost, off-the-shelf, commodity hardware components. For example, one mul-
ticomputer that we use has 32 Pentium-Pro 200MHz based servers that are
connected by Fast Ethernet and Myrinet. At a cost of less than $100,000, this
system delivers almost 2 GigaFLOPS, it has over 8GB of main memory and
50GB of disk space.

2.2 The MOSIX operating system enhancements

MOSIX is a set of enhancements of BSD/OS with adaptive resource sharing
algorithms and a mechanism for preemptive process migration that are geared
for efficient cluster computing. These algorithms are designed to respond dy-
namically to variations in resource usage among the nodes, by migrating pro-
cesses from one node to another, preemptively and transparently, to improve
the overall performance. The granularity of the work distribution in MOSIX
is the UNIX process. Users can run parallel applications by initiating multi-
ple processes in one node, then allow the system to assign these processes to
the best available nodes at that time. If during the execution of the processes
other resources become available, then the MOSIX algorithms are designed to
utilize these new resources, by possible reassignment of the processes among
the nodes. The ability to assign and then reassign processes is particularly im-
portant for “ease-of-use” and to provide an efficient multi-user, time-sharing
execution environment.

In MOSIX, each user interacts with the multicomputer via the user’s “home”
node (workstation or server), which is similar to the “home node” of Sprite [7].
The system image model is a computing cluster, in which all the user’s pro-
cesses seem to run at the home node, and all the processes of each user have
the execution environment of the user’s home node. Processes that migrate to
other (remote) nodes use local (in the remote node) resources whenever pos-
sible, but interact with the user’s environment through the user’s home node.
As long as the requirement for resources such as the CPU or main memory
are below certain threshold levels, all the user’s processes are confined to the
user’s home node. When these requirements exceed the threshold levels, e.g.,
the load created by one CPU bound process or the size of the local memory,
then some processes are migrated to other nodes. The overall goal is to max-
imize the performance by efficient utilization of the network-wide resources.

The MOSIX enhancements are implemented in the BSD/OS kernel, without
changing its interface, and they are completely transparent to the application
level. Its main characteristics are:

e Probabilistic information dissemination algorithms - that provide each node
with sufficient knowledge about available resources in other nodes, without
polling or further reliance on remote information. Each node sends, at regu-
lar intervals, information about its available resources to a randomly chosen
subset of nodes. At the same time it maintains a small buffer (window) with
the most recently arrived information. The use of randomness supports scal-
ing, even information dissemination and dynamic configurations.

e Preemptive process migration - that can migrate any user’s process, any
time, to any available node, transparently. The cost of the process migration

includes a fixed cost, to establish a new process frame in the remote site, and
an additional cost, proportional to the number of pages copied. In practice,
only the page table and the dirty pages of the process are copied.

e Dynamic load-balancing - that continuously attempts to reduce the load
differences between pairs of nodes by migrating processes from over-loaded
nodes to less loaded nodes. This scheme is decentralized — all of the nodes
execute the same algorithms, and the reduction of the load differences is
performed independently by pairs of nodes. The load-balancing algorithm
responds to changes in the loads of the nodes, the runtime characteristics
of the processes, and the number of nodes. This algorithm prevails as long
as there is no extreme shortage of other resources, e.g., free memory.

e Memory ushering - by a memory depletion prevention algorithm that is
geared to place the maximal number of processes in the “network RAM”
across all the nodes, to avoid as much as possible processes thrashing or the
swapping out of processes. The algorithm is triggered when a node starts
excessive paging due to insufficient free memory. In this case the algorithm
overrides the load-balancing algorithm and it attempts to migrate a process
to a node which has sufficient free memory, even if this migration results in
an uneven load distribution.

o Efficient kernel communication - that was specifically designed to reduce the
overhead of the system’s kernel communications, e.g. between the process
and its home node, when it is executing in a remote site, and for process
migration. The new protocol is geared for a locally distributed system, e.g.,it
does not support general inter-networking such as routing, and it assumes
a relatively reliable media. The result is a fast, reliable datagram protocol
with low startup latency and high throughput.

e Decentralized control and autonomy - each node is capable of operating as
an independent system, i.e., it makes all its own control decisions indepen-
dently, and there is no master-slave relationships between the nodes. This
organization allows a dynamic configuration, where nodes may join or leave
the network with minimal disruptions.

e Scaling considerations - that ensure that the system runs as well on large
configurations as it does on small configurations. The main considerations
include symmetry, and the use of randomness in the system control algo-
rithms. Each node bases its decisions on partial knowledge about the state
of the other nodes and it does not even attempt to determine the overall
state of the cluster or any specific node.

The most noticeable properties of executing parallel applications on MOSIX
are its adaptive resource distribution policy, and the symmetry and flexibility
of its configuration. The combined effect of these properties is that application
programs do not need to know the current state of the system configuration,
nor be concerned about the use of the resources in the various nodes. Parallel
applications can be executed by creating many processes, just like in a single-
machine system.

3 Performance of the MOSIX algorithms

This section presents the performance of the communication protocol, the
process migration mechanism, the load-balancing and the memory ushering
algorithms of MOSIX. The execution platforms were two computing clusters,
with 16 identical Pentiums and 32 Pentium-Pro servers that were connected
by fast Ethernet and the Myrinet LANSs.

3.1 Performance of the TCP/IP protocol for the Myrinet LAN

MOSIX uses an optimized TCP/IP protocol for Inter Process Communication
(IPC) as well as for process migration. The performance of the IPC between
two Pentium-Pro 200MHz servers connected by the Myrinet LAN are shown
in Figure 1.

350 —— 70—

Bandwidth [Mbit/Sec]
Latency [msec]

L 00 L—L L

0 Il 2 Il Il
256 2048 4096 8192 16384 30000 64 512 1024 2048 4096 8192

Packet Size[Bytes] Packet Size [Bytes]

Fig. 1. Performance of the IPC over the Myrinet LAN

Figure 1(a) presents the maximal IPC bandwidth of the Socket interface (API)
via UDP and TCP for different packet sizes [9]. From the figure it follows
that the maximal bandwidth of UDP and TCP are obtained for packet size
of 16 KB. They are 325.2 Mbit/Sec. and 250.5 Mbit/Sec. respectively. The
corresponding latencies are presented in Figure 1(b). Note that since the UDP
protocol is much simpler than TCP, its bandwidth is better for packet sizes
greater than 4K Bytes, and its latency is consistently better for all packet
sizes.

3.2 Performance of the process migration mechanism

Process migration is carried out in two stages. The first stage involves es-
tablishing a connection and negotiations between two nodes and creating a
process frame in the remote node. In the second stage the active memory of
the process is transferred. The cost of the negotiations stage is fixed, while
the data transfer cost is proportional to the amount of data transfered.

1

T T
- - Ethernet 100 -9---

0.4

- ~ Myrinet —-—

09 - ~ i

s N B
, AN
’ e \
o8| , e N g
;0004 - \ ,
07 | ! o7 ' g
| 0003 /.
|
—_ | -
g oel \ 0002) 7 MByteisec=06 i
2 '\ 0001 l
L , .

£ |\ O i
= 05 ,
S ,
®
k=3
s

0.3

0.2
MByte/Sec = 28.6
0.1 |-

Process size [MByte]

Fig. 2. Migration times vs. process size

The performance of the process migration mechanism between two Pentium-
Pro 200MHz servers that were connected by Ethernet-100 and the Myrinet
LANs using TCP/IP, are shown in Figure 2. From the figure it can be seen
that the migration time is a linear function of the process size. It amounts
to 76.8 Mbit/Sec. for Ethernet-100 and 228.8 Mbit/Sec. for the Myrinet. The
corresponding migration latencies (magnified) are 3ms and 2ms respectively.

3.8 Performance of the load-balancing algorithms

We conducted two tests to highlight the advantages of load-balancing by pre-
emptive process migration. We measured the total execution times of a set
of identical CPU-bound processes under PVM, with and without the MOSIX
load-balancing algorithms [3], using a 16 node Pentium CC. Note that the pro-
cess migration mechanism can migrate any user process, including processes
that were initially been assigned to nodes by PVM.

The first benchmark was executed on a system with a background load. This
background load reflects processes of other users, in a typical time-sharing,
multi-user environment. It was generated by a set of additional CPU-bound
processes that were executed in cycles of a random computing period followed

by an idle (suspend) period. The results of this benchmark are shown in Fig-
ure 3(a). These results show that the average slow-down of PVM vs. MOSIX
is over 35%, with as much as 62% slow-down, in the measured range, for 20
processes.

— . . .
PYM —~-- L PYM -o-- |

MOSIX —~— 1700 MOSIX —~—
1200 gromeTeTT
/ 1600 |

1100 1500 |

1000 1400

1300 |
900 | 300

]

¢ 1200 -
@
800 -

Time [Sec.]
Time [S:

£ 1100 [
700
1000 -

600 -

500

400 -

300 -

@ (b)
Fig. 3. MOSIX vs. PVM: (a) with background load, (b) random execution times

A second benchmark, shown in Figure 3(b), presents the execution of parallel
programs with unpredictable execution times, e.g. due to recursion, different
amount of processing, etc., which are difficult to pre-schedule. We ran a set of
CPU-bound processes that were executed for random durations, in the range
0 — 600 seconds. From the measurements it follows that the average slow-
down of PVM vs. MOSIX is over 52%, with as much as 75% slow-down for
36 processes. Note that in a system with processors of different speeds, this
slow-down can reach hundreds of percents.

3.4 Performance of the memory ushering algorithm

The memory ushering algorithm allows a node that has exhausted its main
memory to use available free memory in other nodes, by migrating processes
instead of paging or swapping to local disks [2]. The memory ushering algo-
rithm is most useful in cases when memory is not being used uniformly or
when nodes have different amounts of memory. Another scenario where this
algorithm would be useful is when a large process is created, so that it can
not fit into the free memory of any node. However, this process could fit into
some of the nodes providing that the currently running processes are migrated
away from these nodes.

The specific benchmark represents cases where the load of the nodes is bal-
anced, but memory is not being used uniformly. In each execution, a set of
processes with size distribution e~ and average size of 8MB, was created and
assigned to the nodes using PVM, such that some nodes run out of free mem-
ory. Each execution included a set of processes with a total size equal to the
cluster-wide available memory (110MB per node). The benchmark was exe-
cuted on clusters ranging from 8 to 32 nodes. For all cluster sizes we executed
the same number of processes per node, thus ensuring the same load per node.
In each case we executed the same set of processes twice using PVM with and
without MOSIX.

1800
mosix
pvm []
1500 —
1200
Y
e
=900
c
R=]
5
3
i
600 -
300
0-
8 nodes 16 nodes 24 nodes 32 nodes

Fig. 4. Performance of the memory ushering algorithm

The measured times of the executions are shown in Figure 4, where each bar
represents the average measurement of five executions. From the measure-
ments it follows that PVM without the process migration is 29% to 175%
slower than PVM with the MOSIX process migration for 8 to 32 nodes re-
spectively. These results prove the usefulness of the memory ushering and
load-balancing algorithms.

Another interesting observation from Figure 4 is the effects of scaling. Al-
though, for each cluster size we executed the same number of processes per
node, it can be seen that the execution times of PVM monotonically increase
by an average of 3.8% per node, relatively to the results obtained for 8 nodes.
The corresponding times of MOSIX consistently decrease by 0.4% per node,
when the cluster is scaled up from 8 to 32 nodes. These results show that the
memory ushering and load-balancing algorithms of MOSIX are scalable, and
indicate that MOSIX could perform well on much larger clusters.

4 Performance of parallel applications

This section presents our experience with the execution of several, large scale,
parallel applications. The executions were carried on a MOSIX cluster with 32
Pentiums that were connected by fast Ethernet and 32 Pentium-Pro 200MHz
that were connected by fast Ethernet and the Myrinet.

4.1 Global self organization of all known protein sequences

This project is a study of sequences of proteins. Unlike other projects which use
algorithms for pairwise sequence comparisons and “nearest neighbors” meth-
ods for a small number of sequences, this project deals with the universe of
all protein sequences, by translating the space of these sequences into an Eu-
clidean space. Then a statistical, hierarchical clustering model is constructed.
It offers additional insight into the large-scale organization and representation
of the space of all protein sequences, and also reveals significant biological
signatures of protein sequences [11].

The clustering algorithm associates each data point with the nearest centroid,
where the centroids are re-estimated to minimize the distortion within each
cluster. This process is repeated until convergence to a (local) minimum of the
distortion. At each iteration, the cluster of highest aspect ratio is split. The
algorithm is performed on two randomly chosen subsets of the data, aborting
every split on which the two processes “disagree”. The process terminates
when all attempted splits get aborted.

The clustering algorithm was executed on a 32-node MOSIX configuration.
The input data consisted of about 540,000 points, in a 200-dimension Eu-
clidean space, that were initially split among several processes. In the execu-
tion, each process made the association of its (local) data points, and then
calculated the first two moments (mean and covariance). For synchronization,
a “master” process collected the results from all the “slaves”, re-estimated
the centroids and redistributed them. Since the algorithm is computational
intensive, with only a small amount of communication, the speedup obtained
was proportional to the number of nodes. The total amount of memory was
about 1GByte. The longest execution time was 20 days, i.e., over 15,000 hours,
during which we executed a case with 150 clusters.

Observations: this is a straightforward example of a parallel application that
can benefit from the multiplicity of resources, e.g. CPU cycles and memory of
a CC. The main MOSIX advantage s its ability to execute a memory intensive
application for 20 days, without swapping, while at the same time allowing free
access to the CC by other users.

10

4.2 Quantum simulations of large molecules

This project involves the development of novel parallel algorithms for quan-
titative simulations of large biological molecules, by computing the multidi-
mensional, quantum wave-functions of these systems and studying their spec-
troscopic and dynamical properties. The algorithms use classical quantum
mechanics methods to solve the time-independent and the time-dependent
Schrodinger equations for systems of high dimensionality. The method uses
as a first approximation a separation of variables, so that different degrees
of freedom are handled by different processes. This is an intensive compute
process, which requires a large amount of CPU time. The method was recently

applied to calculate the ground-state wave-function and excited states of the
protein BPTTI.

LB —

MOSIX -—
800
700

600

500

Time [sec]

I T T S S S T S SO T A T S B |
12 3 4 5 6 7 8 9 10 11 12 13 14 15 16

No. of nodes

Fig. 5. Speedup (sp) obtained in a classical molecular dynamics simulation

The specific application that was executed was parallel molecular dynamics on
chemical systems with over 10,000 degrees of freedom, that simulate molecules
of the order of complexity of proteins. The algorithm, which includes correla-
tion effects (between the different degrees of freedom) was applied on Bacteri-
orhodopsin. Figure 5 shows the performance of this algorithm and the speedup
obtained, using a 16 node Pentium-Pro 200MHz CC. The parallel algorithm
uses a straight-forward spatial decomposition, with an internal mechanism for
load-balancing between the different processes by modifications to the initial
data decomposition. As the number of partitions increases, the communica-
tions overhead becomes very significant, since the CPU work of each partition
decreases.

Observations: an intensive compute and communication bound parallel appli-
cation can obtain a good speedup, with the increase in the number of nodes. In
the current case, this speedup is impaired for 16 nodes due to the (relatively
small) size of the problem.

11

4.8 Molecular dynamics simulation

Molecular Dynamics (MD) simulation has been used extensively as a tool to
study irradiation damage. We describe two parallelization methods of large
scale simulations.

4.3.1 High energy MD:

The first case is a physical system that consists of an energetic atom (in the
range of 100 kev) impacting a surface, where a simulation for a large number
of time steps and a large number N > 108 of atoms, is needed. The key issues
are the different time scales involved and the number of particles.

The simulation applies a spatial decomposition into cubic cells. Most of the
calculation is local, except the force calculation phase. In this phase each
process needs data from all its 26 neighboring processes. The use of non-local
potentials implied that this data communication became a major part of the
execution. Hence, the decomposition attempted to minimize the surface to
volume ratio. All communication was implemented using the PVM library.

100 T T

MOSIX —+—
SP-2 -~

80 -

40

Time per Atom [sec]

20 -

0.5 1 2 4 8 16 32

No. of processors (log scale)

Fig. 6. MD performance of MOSIX vs. the IBM SP2

The simulations were executed on a 16 node Pentium-Pro MOSIX CC, and
the obtained results were compared with similar executions on the IBM SP2.
The results of these executions are shown in Figure 6. From the figure it
follows that MOSIX outperforms the SP2 by a factor of 2.6 for 16 nodes. The
corresponding factors for 4 and 8 nodes are even higher. We suspect that in
these last two cases, slower (“thin”) nodes were used in the SP2. Note that in
spite of the massive communication, MOSIX obtained a speedup of 8.4.

Figure 7 shows the scalability (in the problem size) on an 8 node MOSIX CC.
Observe that the time per atom decreases with the increase in the problem size.

12

24 MOSIX —-— |
22 B
20 B
32K

18 B

16 108K B

Time per Atom [sec]

256K
14 + -

864K
12 B

Il
100000 le+06

No. of Atoms (log scale)

Fig. 7. MD scalability in problem size on MOSIX

This is due to a better initial load distribution and reduced communication
overhead per atom. Since the simulation scales well in size, we expect that a
large number (over 4 million) of atoms can be simulated on a MOSIX system
with 32 nodes.

Observations: a cluster of Pentium-Pro 200MHz PC’s connected by Myrinet
can outperform the IBM SP2 for heavy applications such as MD simulations,
which are both CPU and communication intensive.

4.3.2 Integration using MD:

This problem consists of the statistical analysis of the desorption probability
of an atom from a surface due to a nuclear stimulated desorption. Prediction
of the spatial distribution of a desorbing atom requires simulations over a
wide range of physical parameters. The time needed for each simulation varies
considerably with the initial parameters. A single case takes about 40 minutes
(average) on an “SGI” workstation, resulting in up to a month execution time
for a simulation with 10% different initial conditions.

The parallelization consists of concurrent execution of a large number of inde-
pendent simulations, using different initial conditions. When some processes
end, others are created, as needed, until a sufficiently small variance in the ob-
served variable was achieved. The main execution requirement was to keep the
system load balanced, in spite of the unpredictable execution times and total
number of the processes. The MOSIX system enabled to completely disregard
this issue and relieved the program from all assignment related decisions.

Observations: The MOSIX load-balancing scheme simplifies the execution of

jobs with unpredictable execution parameters, e.g., time and number of pro-
cesses, especially in the presence of other users’ processes.

13

4.4 Shell model study of heavy nucle:

This project uses an algorithm which is based on permutational group con-
cepts for doing calculations in the nuclear shell model. The Drexel University
Shell Model (DUSM) code is an implementation of this new approach for per-
forming shell model calculations in multishell configurations with good isospin.
This code is CPU intensive and it requires minimal usage of disk space and
I/O, compared to other traditional Shell-Model codes. The advantages of the
current algorithm is particularly apparent for large nuclei in the fp shell.

We developed a parallel version of DUSM (DUPSM) [13]. This version has
two computational phases: building the Hamiltonian matrix, and the Lanczos
diagonalization procedure. The use of the permutational symmetry group in-
troduces extra (unconserved) labels with which to label the basis; this splits
the Hamiltonian matrix into independent submatrices. These submatrices are
assigned to different nodes, effectively giving a straight-forward domain de-
composition in Hilbert space. The building of the Hamiltonian matrix uses
the bulk of the CPU time in large calculations. This part of the code scales
almost perfectly with the number of nodes. At the end of this phase each node
has different number of matrix elements. These elements are then redistributed
among the nodes so that each node has the same number of matrix elements.
This redistribution is performed by an algorithm that imitates the MOSIX
load-balancing algorithm. The Lanczos procedure, in the second phase, has
also been parallelized using the same data decomposition. This phase requires
massive IPC of Lanczos vectors and therefore it does not scale linearly.

The computations were performed for the nuclei ®!Sc and ®?Se¢, with 11-12
nucleons in the fp shell. The actual executions were performed on a 32 node
Pentium-Pro 200MHz MOSIX system. These calculations used sparse Hamil-
tonian matrices of order 50,000, requiring about 170 MBytes in each node.
The execution time was about 1 hour for each matrix, where one calculation
of the full spectra has about 20 such matrices. This calculation was repeated
about 30-40 times for each nuclei.

Observations: This 1s an intensive CPU and Memory bound application. The
MOSIX load-balancing scheme simplifies the redistribution of the work load,
which results in an almost linear speedup. With additional nodes we can use
DUPSM to execute heavier nucles.

14

5 Conclusions

This paper presented the MOSIX multicomputer system for a scalable cluster
of PC’s, and its performance for the execution of several large parallel appli-
cations. The use of adaptive resource sharing algorithms implies that users do
not have to know the current state of the resource usage of the various PC’s,
or even the number of PC’s. Parallel applications can be executed by allow-
ing MOSIX to assign and reassign the processes to the best possible nodes,
almost like an SMP. The performance of the CC MOSIX shows a good uti-
lization of the resources, relatively good speedups in a scalable configuration
and competitive results vs. the IBM SP2.

The main outcome of the MOSIX project is that it is possible to build a low-
cost, scalable CC from commodity components, such as PC’s, UNIX and PVM,
as an alternative to traditional mainframes and MPP’s. The main advantage of
MOSIX over other CC environments is its ability to respond at run-time to un-
predictable and irregular resource requirements by many users, e.g., execution
times, memory usage or the number of processes - MOSIX adapts well to all
such cases. As such MOSIX offers a convenient, general-purpose environment,
for executing large scale, demanding sequential and parallel applications.

The MOSIX project is expanding in several directions. First, we are developing
new competitive algorithms for adaptive resource management that can deal
with different kind of resources, e.g., load, memory, IPC and I/O. We are also
researching algorithms for network RAM, in which a large process can utilize
available memory in several nodes. We are also developing extensions to JAVA
for supporting adaptive object migration, similarly to the MOSIX algorithms.
Beyond that we are considering to port MOSIX for LINUX.

The BSD/OS version of MOSIX has been operational for over 4 years. It is used
for student course work, research of operating systems for scalable CC, and
the development of parallel applications. A 6 processors version, called MOG6,
is available for experimentation at URL http://www.cs.huji.ac.il/mosix.

Acknowledgments

We are grateful to A. Shiloh for his valuable contributions, and to Y. Ashke-
nazy, A. Braverman, E. Fredj, B. Gerber, . Gilderman, I. Kelson , A. Novosel-
sky, G. Yona and M. Vallieres for their contributions.

This research was supported in part by the Ministry of Defense and the Min-
istry of Science.

15

References

[1] T.E. Anderson, D.E. Culler and D.A. Patterson, A case for NOW (Networks of
Workstations), IEEE Micro 15 (1) (1995) 54-64.

[2] A. Barak and A. Braverman, Memory ushering in a scalable computing cluster,
Proc. IEEE Third International Conference on Algorithms and Architecture for
Parallel Processing (Melbourne, 1997).

[3] A. Barak, A. Braverman, I. Gilderman and O. Laden, Performance of PVM with
the MOSIX preemptive process migration, Proc. Seventh Israeli Conference on
Computer Systems and Software Engineering (Herzliya, 1996) 38—45.

[4] A. Barak, S. Guday and R.G. Wheeler, The MOSIX distributed operating system,
load balancing for UNIX, Lecture Notes in Computer Science 672 (Springer-
Verlag, Berlin, 1993).

[5] Berkeley Software Design, Inc., BSDI internet server (BSD/OS 3.0)
administrative notes (Colorado Springs, CO, 1997).

[6] N.J. Boden, D. Cohen, R.E. Felderman, A.K. Kulawik, C.L. Seitz, J.N.Seizovic,
and W-K. Su, Myrinet: A gigabit-per-second local area network, IEEE Micro
15 (1) (1995) 29-36.

[7] F. Douglis and J. Ousterhout, Transparent process miration: design alternatives
and the sprite implementation, Software — Practice & Ezperience 21 (8) (1991)
757-785.

[8] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek and V. Sunderam,
PVM - Parallel Virtual Machine (MIT Press, Cambridge, MA, 1994).

[9] I. Gilderman and A. Barak, Profiling the communication layers performance of
the Myrinet gigabit LAN, Technical Report, The Hebrew University of Jerusalem
(1997).

[10] W. Gropp, E. Lust and A.Skjellum, Using MPI: Portable Parallel Programming
with the Message-Passing Interface (MIT Press, Cambridge, MA, 1994).

[11] M. Linial, N. Linial, N. Tishby and G. Yona, Global self organization of
all known protein sequences reveals inherent biological signatures, Journal of
Molecular Biology 268 (1997) 539 - 556.

[12] M.K. McKusick, M.J. Karels, K. Bostic and J.S. Quarterman, The design and
implementation of the 4.4BSD operating system (Addison-Wesley, Reading, MA,
1996).

[13] A. Novoselsky, M. Vallieres and O. La’adan, Full fp shell calculation of *Ca
and 5'Sc, Physical Review Letters (1997) to appear.

[14] D. Ridge, D. Becker, P. Merkey and T. Sterling, Beowulf: harnessing the power
of parallelism in a pile-of-PCs, Proc. IEEE Aerospace (1997).

16

