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Abstract 

With the increased interest in network of workstations 
for  parallel and high performance computing it is neces- 
sary to reexamine the use of process migration algorithms, 
to improve the overall utilization of the system, to achieve 
high performance and to allow flexible use of idle worksta- 
tions. Currently, almost all programming environments for  
parallel systems do not use process migration for  task as- 
signments. Instead, a static process assignment is used, with 
sub optimal performance, especially when several users ex- 
ecute multiple processes simultaneously. This paper high- 
lights the advantages of a process migration scheme for  
better utilizations of the computing resources as well as to 
gain substantial speedups in the execution of parallel and 
multi-tasking applications. We executed several CPU and 
communication bound benchmarks under PVM, a popular 
programming environment for  parallel computing that uses 
static process assignment. These benchmarks were exe- 
cuted under the MOSIX multicomputer operating system, 
with and without its preemptive process migration scheme. 
The results of these benchmarks prove the advantages of us- 
ing preemptive process migrations. The paper begins with 
an overview of MOSIX, a multicomputer enhancement of 
UNIX that supports transparent process migration for load- 
balancing, and PVM. We then present the performance of 
the executions of the benchmarks. Our results show that in 
some cases the improvements in the performance of PVM 
with the MOSIX process migration can reach tens or even 
hundreds of percents. 
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1 Introduction 

With the increased interest in Network of Workstations 
(NOW) as an alternative to Massive Parallel Processors 
(MPP) for high performance and general purpose comput- 
ing [l], it is necessary to reexamine the use of dynamic 
process migration to improve the overall utilization of the 
NOW and to allow flexible use of idle workstations. In tra- 
ditional MPPs, process migration mechanisms were not de- 
veloped due to their complexity and because in many cases 
the whole machine was used to run one application at a time. 
The operating systems of many MPPs supports static, single 
process allocation to each node, a simple scheme that is easy 
to implement and use but may result in poor performance. 

In a NOW system, where many users need to share the 
resources, the performance of executing multiple processes 
can significantly be improved by process migrations, for ini- 
tial distribution of the processes, to redistribute the processes 
when the system becomes unbalanced or even to relieve a 
workstation when its owner wishes so. One mechanism that 
can perform all these tasks is a preemptive process migra- 
tion, which combined with load balancing can maximize 
the overall performance, respond to resource availability 
and achieve high degree of overall utilization of the NOW 
resources. 

In spite of the advantages of process migration and load 
balancing, there are only few systems that support these 
services [2, 7, 91. The main reason is the fact that most 
parallel programming environments are implemented above 
the operating systems and are geared to support heteroge- 
neous configurations. For example, p4 [5], is a library 
of macros and routines for programming a wide range of 
parallel machines, including shared-memory and message 
passing systems. In p4, process allocation is pre-scheduled, 
using a configuration file that specifies the pool of hosts, the 
name of an object file to be executed, and the number of 
instances to start, on a per-machine basis. Dynamic process 
creation is limited to process spawning in the local host by 
a pre-assigned parent process. 

This paper presents the performance of executing sev- 
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era1 benchmarks using PVM, with its static process assign- 
ment vs. PVM with the MOSIX preemptive process migra- 
tion [2]. PVM [8] is a popular programming environment 
which lets users exploit collections of networked computers 
and parallel computers. Its main advantages are the support 
of heterogeneous networks and machines, dynamic process 
and virtual machine management, and a simple and efficient 
user interface library. The main disadvantages of PVM are 
its static assignment of tasks to hosts, which results in its 
inability to respond to variations in the load of the hosts, 
and its assumption that all the workstations are of the same 
speed. While static assignment may be acceptable in MPPs, 
where the nodes have the same speed and each node exe- 
cutes one task, it is unacceptable in a NOW environment, 
where the resources are shared by many users, the execution 
times of the tasks are not known a priori, and the machine 
configuration may change. In these cases, a static assign- 
ment policy might lead to a considerable degradation in the 
overall system utilization. 

In order to highlight the potential speedup gains (loss) 
of PVM, we executed several benchmarks under PVM and 
the MOSIX operating system. MOSIX [3,2]  is an enhance- 
ment of UNIX that provides resource (memory, communica- 
tion) sharing and even work distribution in a NOW, by sup- 
porting a preemptive process migration and dynamic load- 
balancing. The MOSIX enhancements are implemented 
at the operating system kernel, without changing the UNIX 
interface, and they are completely transparent to the applica- 
tion level. Executions under PVM, with its static allocation, 
in a configuration with hosts of different speeds resulted in 
a low utilization of the NOW, and speedups of tens, or even 
hundreds of percents, once a process migration is imple- 
mented. 

Recently, a group at OGI developed MPVM [6], a process 
migration mechanism for PVM. Unlike the MOSIX imple- 
mentation which is done at the operating system kernel, 
MPVM is implemented at the user-level, with its obvious 
limitations, e.g. relatively high migration costs. For exam- 
ple, process migration in MOSIX includes only the “dirty- 
pages” while in MPVM the entire virtual address space of 
the process is transfered. Another advantage of the MOSIX 
approach is its transparent process migration, which makes 
work distribution easier and achieve high overall utilization. 
Nevertheless, MPVM is an interesting development and we 
hope to compare its performance to that of MOSIX. 

This paper is organized as follows: the next section 
presents an overview of MOSIX and its unique properties. 
Section 3 gives an overview of PVM. Section 4 presents 
the performance of several benchmarks of CPU bound pro- 
cesses under MOSIX, PVM and PVM with the MOSIX 
process migration. Section 5 presents the performance of 
communication bound processes. Our conclusions are given 
in Section 6. 

2 The MOSIX Multicomputer System 

MOSIX is an enhancement of UNIX that allows 
distributed-memory multicomputers, including LAN con- 
nected Network of Workstations (NOW), to share their re- 
sources by supporting preemptive process migration and dy- 
namic load balancing among homogeneous subsets of nodes. 
These mechanisms respond to variations in the load of the 
workstations by migrating processes from one workstation 
to another, preemptively, at any stage of the life cycle of a 
process. The granularity of the work distribution in MOSIX 
is the UNIX process. Users can benefit from the MOSIX 
execution environment by initiating multiple processes, e.g. 
for parallel execution. Alternatively, MOSIX supports an 
efficient multi-user, time-sharing execution environment. 

The NOW MOSIX is designed to run on configurations 
that include several nodes, i.e. personal workstations, file 
servers and CPU servers, that are connected by LANs, 
shared buses, or fast interconnection networks. In these 
configurations each node is an independent computer, with 
its own local memory, communication and 110 devices. A 
low-end configuration may include few personal worksta- 
tions that are connected by Ethernet. A larger configura- 
tion may include additional file and/or CPU servers that 
are connected by ATM. A high-end configuration may in- 
clude a large number of nodes that are interconnected by 
a high performance, scalable, switch interconnect that pro- 
vides low latency and high bandwidth communication, e.g. 
Myrinet 141. 

In MOSIX, each user interact with the multicomputer via 
the user’s “home” workstation. The system image model 
is a NOW, in which all the user’s processes seem to run at 
the home workstation. All the processes of each user have 
the execution environment of the user’s workstation. Pro- 
cesses that migrate to other (remote) workstations use local 
resources whenever possible, but interact with the user’s 
environment through the user’s workstation. As long as the 
load of the user’s workstation is light, all the user’s pro- 
cesses are confined to the user’s workstation. When this 
load increases above a certain threshold level, e.g. the load 
created by one CPU bound process, the process migration 
mechanism (transparently) migrates some processes to other 
workstations or to the CPU servers. 

2.1 The Unique Properties of MOSIX 

The MOSIX enhancements are implemented in the UNIX 
kernel, without changing its interface, and they are com- 
pletely transparent to the application level, e.g. MOSIX 
uses standard NFS. Its main unique properties are: 

a Network transparency - for all cross machine opera- 
tions, i.e. for networkrelated operations, theinteractive 
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user and the application level programs are provided 
with a virtual machine that looks like a single machine. 

Preemptive process migration - that can migrate any 
user’s process, transparently, at any time, to any avail- 
able node. The main requirement for a process migra- 
tion is transparency, that is, the functional aspects of 
the system’s behavior should not be altered as a result 
of migrating a process. Achieving this transparency re- 
quires that the system is able to locate the process and 
that the process is unaware of the fact that it has been 
moved from one node to another. In MOSIX these two 
requirements are achieved by maintaining in the user’s 
(home) workstation, a structure, called the deputy [3], 
that represents the process and interacts with its envi- 
ronment. We note that the concept of the deputy of a 
process is based on the observation that only the system 
context of a process is site dependent. The migration 
itself involves the creation of a new process structure at 
the remote site, followed by a copy of the process page 
table and the “dirty” pages. After a migration there 
are no residual dependencies other than at the home 
workstation. The process resumes its execution in the 
new site by few page faults, which bring the necessary 
parts of the program to that site [3]. 

Dynamic load balancing - that initiates process mi- 
grations in order to balance the loads of the NOW. The 
algorithms respond to variations in the loads of the 
nodes, the runtime characteristics of the processes, the 
number of workstations and their speeds. In general, 
load-balancing is accomplished by continuous attempts 
to reduce the load differences between pairs of nodes, 
and by dynamically migrating processes from nodes 
with a higher load to nodes with a lower load. The 
policy is symmetrical and decentralized, i.e., all of the 
nodes execute the same algorithms, and the reduction 
of the load differences is performed independently by 
any pair of nodes. 

Memory sharing - by memory depletion prevention 
algorithms that are geared to place the maximal num- 
ber of processes in the main memory of the NOW, even 
if this implies an uneven load distribution among the 
nodes. The rational behind this policy is to delay as 
much as possible swapping out of pages or a whole 
process, until the entire, network wide main memory 
is used. The algorithms of the policy are activated 
when the amount of a workstation’s free memory is 
decreased bellow a certain threshold value. The deci- 
sions of which process to migrate and where to migrate 
it are based on knowledge about the amount of free 
memory in other nodes that is circulated among the 
workstations. These decisions are geared to optimize 
the migration overhead. 
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0 Efficient kernel communication - that was specifi- 
cally developed to reduce the overhead of the internal 
kernel communications, e.g. between the process and 
its home site, when it is executing in a remote site. The 
new protocol was specifically designed for alocally dis- 
tributed system. As such, it does not support general 
inter-networking issues, e.g. routing, and it assumes a 
reliable media. The result is a fast, reliable datagram 
protocol with low startup latency and high throughput. 
The protocol applies a ‘look ahead” packet acknowl- 
edgement scheme and run-time fine tuning in order to 
achieve near optimal utilization of the network media 
and the corresponding system resources. 

0 Probabilistic information dissemination algorithms 
- that are geared to provide each workstation with suf- 
ficient knowledge about available resources in other 
workstations, without polling or further reliance on 
remote information. The information gathering algo- 
rithms measure the amounts of the available resources 
at each workstation using suitable resource indices, 
which reflects the availability of the local resources to 
possible incoming processes from other workstations. 
The resource indices of each workstation are sent at 
regular intervals to a randomly chosen subset of work- 
stations, by the information dissemination algorithm. 
The receiver algorithm maintains a small buffer (win- 
dow), with the values of the most recently arrived index 
values and at the same time it flushs out older values. 
We note that the use of random workstation ID is due 
to scaling considerations, for even distribution of the 
information among the participating workstations, to 
support a dynamic configuration and to overcome par- 
tial (workstations) failures. 

0 Decentralized control - each workstation makes all its 
own control decisions independently and there are no 
master-slave relationships between the workstations. 

0 Autonomy - each workstation is capable of operating 
as an independent system. This property allows a dy- 
namic configuration, where workstations may join or 
leave the network with minimal disruptions. 

The most noticeable properties of executing applications 
on MOSIX are its network transparency, the symmetry and 
flexibility of its configuration, and its preemptive process 
migration. The combined effect of these properties is that 
application programs do not need to know the current state 
of the system configuration. This is most useful for time- 
sharing and parallel processing systems. Users need not 
recompile their applications due to node or communication 
failures, nor be concerned about the load of the various 
processors. Parallel applications can simply be executed by 
creating many processes, just like a single-machine system. 
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3 PVM implementation issues: inter-process communications (IPC) 
and process control. These topics are discussed below. 

This section presents an overview of the Parallel Vir- 
tual Machine (PVM) [8]. PVM is an integral framework 
that enables a collection of heterogeneous computers to be 
used as a coherent and flexible concurrent computational 
resource. The supported architectures include shared- and 
distributed-memory multiprocessors, vector supercomput- 
ers, special purpose computers, and workstations that are 
interconnected by a variety of networks. Below is a brief 
description of some aspects of PVM. 

3.1 Heterogeneity 

PVM supports heterogeneity at three levels: applications, 
machines and networks. At the application level, subtasks 
can exploit the architecture best suited for them. At the ma- 
chine level, computers with different data formats are sup- 
ported, including serial, vector and parallel architectures. 
The virtual machine can be interconnected via different net- 
works, at the network level. Under PVM, a user-defined 
collection of computational resources can be dynamically 
configured to appear as one large distributed-memory com- 
puter, called “virtual machine” 

3.2 Computing Model 

PVM supports a straightforward message passing model. 
Using dedicated tools, one can automatically start up tasks 
on the virtual machine. A task, in this context, is a unit of 
computation, analogous to a UNIX process. PVM allows 
the tasks to communicate and synchronize with each other. 
By sending and receiving messages, multiple tasks of an 
application can cooperate to solve a problem in parallel. 
The model assumes that any task can send a message to any 
other PVM task, with no limit on the size or amount of the 
messages. 

3.3 Implementation 

PVM is composed of two parts. The first is the li- 
brary of PVM interface routines. These routines provide 
a set of primitives to perform invocation and termination of 
tasks, message transmission and reception, synchronization, 
broadcasts, mutual exclusion and shared memory. Applica- 
tion programs must be linked with this library to use PVM. 
The second part consists of supporting software, that is ex- 
ecuted on all the computers, that make up the virtual ma- 
chine, called “daemon”. These daemons interconnect with 
each other through the network. Each daemon is responsi- 
ble for all the application components processes executing 
on its host. Thus, control is completely distributed, except 
one master daemon. Two crucial topics rise when discussing 

3.3.1 Inter Process Communications 

In PVM different daemons communicate via the network. 
PVM assumes existence of only unreliable, unsequenced, 
point-to-point data transfer facilities. Therefore, the re- 
quired reliability as well as additional operations like broad- 
casts, are built into PVM , above the UDP protocol. For 
IPC, the data is routed via the daemons, e.g., when task A 
invokes a send operation, the data is transferred to the local 
daemon, which decodes the destination host and transfers 
the data to the destination daemon. This daemon decodes 
the destination task and delivers the data. This protocol uses 
3 data transfers, of which one is across the network. Alterna- 
tively, a direct-routing policy can be chosen (depending on 
available resources). In this policy, after the first communi- 
cation instance between two tasks, the routing data is locally 
cached (at the task). Subsequent calls are performed directly 
according to this information. This way, the number of data 
transfers is reduced to only one, over the network. Addi- 
tional overheads are incurred by acknowledgment schemes 
and packinghnpacking operations. 

3.3.2 Process Control 

Process control includes the policies and means by which 
PVM manages the assignment of tasks to processors and 
controls their executions. In PVM, the computational re- 
sources may be accessed by tasks using four different poli- 
cies: (a) a transparent mode policy, in which subtasks are au- 
tomatically assigned to available nodes; (b) the architecture- 
dependent mode, in which the assignment policy of PVM 
is subject to a specific architecture constraints; (c) the 
machine-specific mode, in which a particular machine may 
be specified; and (d) a user’s defined policy that can be 
“hooked” to PVM. Note that this last policy requires a good 
knowledge of the PVM internals. 

The default policy used by PVM is the transparent mode 
policy. In this case, when a task initiationrequest is invoked, 
the local daemon determines a candidate pool of target nodes 
(among the nodes of the virtual machine), and selects the 
next node from this pool in a round-robin manner. The 
main implications of this policy are the inability of PVM 
to distinguish between machines of different speeds, and 
the fact that PVM ignores the load variations among the 
different nodes. 

4 Performance of CPU-bound Processes 

In this section we compare the performance of the execu- 
tion of sets of identical CPU-bound processes under PVM, 
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No. of 
Processes 

1 
2 
4 
8 
16 
17 
20 
24 
25 
27 
31 
32 
33 
36 
38 
40 
43 
47 
48 

Optimal 
Time 
300 
300 
300 
300 
300 
450 
450 
450 
525 
525 
563 
600 
700 
700 
750 
750 
833 
883 
900 

MOSIX 
Time 

301.91 
302.92 
304.57 
305.73 
310.83 
456.91 
462.07 
471.87 
533.15 
549.07 
574.03 
603.17 
705.93 
715.35 
759.90 
767.67 
833.33 
901.81 
916.11 

PVM 
Time 

301.83 
303.78 
305.60 
308.57 
317.12 
604.36 
602.40 
603.25 
603.83 
603.86 
604.63 
603.14 
906.3 1 
905.27 
905.34 
905.39 
908.96 
907.79 
908.51 

PVM Slow- 
down (%) 

0.0 
0.3 
0.3 
0.9 
2.0 

32.3 
30.4 
27.8 
13.3 
10.0 
5.3 
0.0 

28.4 
26.5 
19.1 
17.9 
9.1 
0.7 
-0.8 

PVM on 
MOSIX 
304.54 
304.70 
306.59 
301.88 
303.40 
452.84 
454.07 
454.67 
530.15 
559.81 
595.17 
604.64 
707.39 
708.41 
755.53 
771.71 
839.61 
893.65 
907.71 

Table 1 .  Optimal vs. MOSIX vs. PVM vs. PVM on MOSIX execution times (Sec.) 

with and without process migration, in order to highlight 
the advantages of the MOSIX preemptive process migra- 
tion mechanism and its load balancing scheme. Several 
benchmarks were executed, ranging from pure CPU-bound 
processes in an idle system, to a system with a background 
load. We note that in the measurements, process migration 
is performed only when the difference between the loads 
of two nodes is above the load created by one CPU bound 
process. This policy differs from the time-slicing policy 
commonly used by shared-memory multicomputers. 

The execution platform for all the benchmarks is a NOW 
configuration, with 16 identical, Pentium-90 based worksta- 
tions that were connected by an Ethernet LAN. 

4.1 CPU-Bound Processes 

The first benchmark is intended to show the efficiency of 
the MOSIX load balancing algorithms. We executed a set 
of identical CPU-bound processes, each requiring 300 sec- 
onds, and measured the total execution times under MOSIX 
(with its preemptive process migration), followed by mea- 
surements of the total execution times under PVM (without 
process migration), and then the execution times of these 
processes under PVM with the MOSIX process migration. 

Table 1 summarizes the results of these benchmarks (all 
execution times are in seconds). In the table, the first col- 
umn lists the number of processes. The second column 
lists the theoretical execution times of these processes using 
the optimal assignment algorithm with preemptive process 

migration and no communication overhead. Column three 
lists the measured execution times of the processes using 
the MOSIX load balancing algorithm. Column four lists 
the execution times of the same processes under PVM and 
column five gives the PVM slowdown, i.e. the ratio be- 
tween column four and column three. Column six lists the 
corresponding execution times of the processes under PVM 
with the MOSIX load balancing. 

By comparing columns 2 and 3 of Table 1, it follows 
that the average slow-down ratio of the MOSIX policy vs. 
the optimal execution algorithm is only 1.95% (consider 
that MOSIX imposes a minimal residency period of 1 Sec. 
for each new process before it can be migrated). Another 
result is that the execution times of PVM (forth column) 
can be significantly slower than PVM under MOSIX (sixth 
column). Observe that the initial allocation of PVM reduces 
the residency times imposed by MOSIX, as shown in column 
six. 

Figure 1 depicts the results of Table 1. Comparison of the 
measured results shows that the average slowdown of PVM 
vs. MOSIX is over 15%, when executing more than 16 
processes. This slowdown can become very significant, e.g. 
32% for 17 processes and 28% for 33 processes. In contrast, 
the measurements show that PVM with the MOSIX process 
migration is slightly better than MOSIX itself, due to the 
residency period that is imposed by MOSIX. 

As indicated earlier, one drawback of PVM is its inabil- 
ity to distinguish between machines of different speeds. To 
demonstrate this point, we executed the above set of pro- 
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Figure 1. MOSIX, PVM and PVM on MOSIX ex- 
ecution times 

cesses on a cluster of Pentium-90 and several (three times 
slower) i486/DX66 based workstations. The results of this 
test show that PVM was 336% slower than MOSIX. 

4.2 CPU-Bound Processes with Random Execu- 
tion Times 

The second benchmark compares the execution times of 
a set of CPU-bound processes that were executed for ran- 
dom durations, in the range 0 - 600 seconds, under MOSIX 
and PVM. These processes reflect parallel programs with 
unpredictable execution times, e.g. due to recursion, dif- 
ferent amount of processing, etc., which are difficult to pre- 
schedule. In each test, all the processes started the execution 
simultaneously and the completion time of the last process 
was recorded. In order to obtain accurate measurements, 
each test was executed five times, with different random 
execution times. We note that the same sequence of ran- 
dom execution times were used in the MOSIX and the PVM 
executions. 

1700 
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?-. g 1200 

E F 1100 
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900 
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PVM +- 
MOSIX + 

16 20 24 28 32 36 40 44 48 

No. of Processes 

Figure 2. MOSIX vs. PVM random execution 
times 

The results of this benchmark are presented in Figure 2, 
From the corresponding measurements it follows that the 
average slowdown of PVM vs. MOSIX is over 52%, with 
an averaged standard deviation of 13.9%. This slowdown 
reached as much as 75% for 36 processes, and over 600% 
when the above benchmark was executed on a cluster of 
Pentium-90 and i486IDX66 based workstations. 

4.3 CPU-bound Processes with a Background 
Load 

The third benchmark compares the execution times of 
a set of identical CPU-bound processes under MOSIX and 
PVM, in a system with a background load. This addi- 
tional load reflects processes of other users in a typical 
time-sharing computing environment. 

The specific background load consisted of 8 additional 
CPU-bound processes that were executed in cycles, where 
each cycle included an execution period followed by an idle 
(suspended) period. The background processes were exe- 
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Figure 3. MOSIX vs. PVM with background 
load execution times 

cuted independently, throughout the execution time of the 
benchmark, and the durations of the execution and suspen- 
sion periods were random variables, in the range of 0 to 30 
seconds. In order to get accurate measurements, each test 
was executed five times. 

The results of this benchmark are presented in Figure 3. 
Comparison of the corresponding measured results shows 
that the average slowdown of PVM vs. MOSIX is over 
35%, with as much as 62% slowdown, in the measured 
range, for 20 processes. From these measurements it fol- 
lows that in a multi-user environment, when it is expected 
that background processes of other users are running, ex- 
ecution of parallel programs under PVM may result in a 
significant slowdown vs. the same executions with a pre- 
emptive process migration. 

5 Communication Bound Processes 

Table 2. MOSIX vs. PVM communication 
bound processes execution times (Sec.) 

The next benchmark shows the overhead imposed by the 
MOSIX internal migration mechanisms over Unix domain 
IPC. In this test we executed a similar (to the above) set of 
communicating processes which were created in one ma- 
chine and were forced to migrate out to other machines. We 
note that due to the use of the home model in MOSIX, pro- 
cesses that migrate to remote nodes, perform all their Unix 
domain IPC via their home sites. The main implication is 
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a reduced communication bandwidth and increased latency 
due to possible bottlenecks at the home sites. For exam- 
ple, the communication time between two processes, one of 
which was migrated away from their common home site, 
was 10% slower than the communication time between two 
processes that did not have a common home site. The above 
overhead, of the two processes with the common home site, 
reached as much as 50% when both processes were migrated 
away. 

The phenomenon presented in the previous paragraph 
may lead to a substantial communication overhead, when 
a large number of processes are created in one node, and 
later migrate to other nodes. To overcome this potential 
bottleneck, our current policy is to spawn communicating 
processes using PVM and then to refine the (static) PVM 
allocation by the MOSIX preemptive (dynamic) process mi- 
gration. 

6 Conclusions 

In this paper we presented the performance of several 
benchmarks that were executed under MOSIX, PVM, and 
PVM with the MOSIX preemptive process migration. We 
showed that in many executions, the performance of PVM 
without the process migration was significantly lower than 
its performance with the process migration. We predict 
that in a typical multi-user environment, where each user 
is executing only a few process, users may loose hundreds 
of percents in the performance due to lack of preemptive 
process migration mechanisms, as discussed in [ 101. We 
note that the choice of PVM was based on its popularity. 
We predict that the speedup ratios presented here character- 
ize many other parallel programming environments that use 
static process assignments. 

The NOW MOSIX is compatible with BSDI’s 
BSD/OS [ 111, which is based on BSD-Lite from the Com- 
puter Systems Research Group at UC Berkeley. The current 
implementation has been operational for over 3 years on a 
cluster of 32 Pentiums and several i486 based workstations. 
It is used for research and development of multicomputer 
systems and parallel applications. Its unique mechanisms 
provide a convenient environment for writing and executing 
parallel programs, with minimal burden to the application 
programmers. 

Currently we are researching the idea of migrateable 
sockets to overcome potential bottlenecks of executing a 
large number of communicating processes. We are also de- 
veloping optimization algorithms for memory sharing, by 
using competitive, on-line algorithms to utilize available 
remote memory. Another area of research is optimization 
of the communication overhead by migrating communicat- 
ing processes to common sites, to benefit from fast, shared 
memory communication. 

After we install the Myrinet LAN [4], we intend to start 
several new projects that benefit from its fast communication 
speed. One project is to develop a memory sewer that 
can swap portions of a large program to “idle” memory in 
remote workstations. This mechanisms could benefit from 
our process migration mechanism, that is capable to page 
across the network. This project is similar to the network 
RAM project described in [ 11. Another project is to develop 
a shared memory mechanism based on network RAM and 
process migrations. 

Finally, we note that a limited (up to 6 processors) ver- 
sion of MOSIX, called M06, is available on the Internet: 
WWW: http://www.cs.huji.ac.il/mosix. MO6 allows users 
of BSD/OS to build a low-cost, distributed memory multi- 
computer. 
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