
Performance of PVM with the MOSIX Preemptive Process Migration Scheme *

Amnon Barak, Avner Braverman, Ilia Gilderman and Oren Laden
Institute of Computer Science

The Hebrew University of Jerusalem
Jerusalem 9 1904, Israel3

Abstract

With the increased interest in network of workstations
for parallel and high performance computing it is neces-
sary to reexamine the use of process migration algorithms,
to improve the overall utilization of the system, to achieve
high performance and to allow flexible use of idle worksta-
tions. Currently, almost all programming environments for
parallel systems do not use process migration for task as-
signments. Instead, a static process assignment is used, with
sub optimal performance, especially when several users ex-
ecute multiple processes simultaneously. This paper high-
lights the advantages of a process migration scheme for
better utilizations of the computing resources as well as to
gain substantial speedups in the execution of parallel and
multi-tasking applications. We executed several CPU and
communication bound benchmarks under PVM, a popular
programming environment for parallel computing that uses
static process assignment. These benchmarks were exe-
cuted under the MOSIX multicomputer operating system,
with and without its preemptive process migration scheme.
The results of these benchmarks prove the advantages of us-
ing preemptive process migrations. The paper begins with
an overview of MOSIX, a multicomputer enhancement of
UNIX that supports transparent process migration for load-
balancing, and PVM. We then present the performance of
the executions of the benchmarks. Our results show that in
some cases the improvements in the performance of PVM
with the MOSIX process migration can reach tens or even
hundreds of percents.

Key words: Distributed systems, dynamic load-balancing,
high performance systems, preemptive process migration.

*Supported in part by grants from the Ministry of Defense
Ministry of Science and Arts.
3 E-mail: amnon@cs.huji.ac.il
WWW: http://www.cs.huji.ac.il/mosix

0-8186-7536-5/96 $5.00 0 1996 IEEE
Proceedings of ICCSSE '96

and the

38

1 Introduction

With the increased interest in Network of Workstations
(NOW) as an alternative to Massive Parallel Processors
(MPP) for high performance and general purpose comput-
ing [l], it is necessary to reexamine the use of dynamic
process migration to improve the overall utilization of the
NOW and to allow flexible use of idle workstations. In tra-
ditional MPPs, process migration mechanisms were not de-
veloped due to their complexity and because in many cases
the whole machine was used to run one application at a time.
The operating systems of many MPPs supports static, single
process allocation to each node, a simple scheme that is easy
to implement and use but may result in poor performance.

In a NOW system, where many users need to share the
resources, the performance of executing multiple processes
can significantly be improved by process migrations, for ini-
tial distribution of the processes, to redistribute the processes
when the system becomes unbalanced or even to relieve a
workstation when its owner wishes so. One mechanism that
can perform all these tasks is a preemptive process migra-
tion, which combined with load balancing can maximize
the overall performance, respond to resource availability
and achieve high degree of overall utilization of the NOW
resources.

In spite of the advantages of process migration and load
balancing, there are only few systems that support these
services [2, 7, 91. The main reason is the fact that most
parallel programming environments are implemented above
the operating systems and are geared to support heteroge-
neous configurations. For example, p4 [5], is a library
of macros and routines for programming a wide range of
parallel machines, including shared-memory and message
passing systems. In p4, process allocation is pre-scheduled,
using a configuration file that specifies the pool of hosts, the
name of an object file to be executed, and the number of
instances to start, on a per-machine basis. Dynamic process
creation is limited to process spawning in the local host by
a pre-assigned parent process.

This paper presents the performance of executing sev-

Authorized licensed use limited to: Columbia University. Downloaded on January 22, 2009 at 16:28 from IEEE Xplore. Restrictions apply.

http://www.cs.huji.ac.il/mosix

era1 benchmarks using PVM, with its static process assign-
ment vs. PVM with the MOSIX preemptive process migra-
tion [2]. PVM [8] is a popular programming environment
which lets users exploit collections of networked computers
and parallel computers. Its main advantages are the support
of heterogeneous networks and machines, dynamic process
and virtual machine management, and a simple and efficient
user interface library. The main disadvantages of PVM are
its static assignment of tasks to hosts, which results in its
inability to respond to variations in the load of the hosts,
and its assumption that all the workstations are of the same
speed. While static assignment may be acceptable in MPPs,
where the nodes have the same speed and each node exe-
cutes one task, it is unacceptable in a NOW environment,
where the resources are shared by many users, the execution
times of the tasks are not known a priori, and the machine
configuration may change. In these cases, a static assign-
ment policy might lead to a considerable degradation in the
overall system utilization.

In order to highlight the potential speedup gains (loss)
of PVM, we executed several benchmarks under PVM and
the MOSIX operating system. MOSIX [3,2] is an enhance-
ment of UNIX that provides resource (memory, communica-
tion) sharing and even work distribution in a NOW, by sup-
porting a preemptive process migration and dynamic load-
balancing. The MOSIX enhancements are implemented
at the operating system kernel, without changing the UNIX
interface, and they are completely transparent to the applica-
tion level. Executions under PVM, with its static allocation,
in a configuration with hosts of different speeds resulted in
a low utilization of the NOW, and speedups of tens, or even
hundreds of percents, once a process migration is imple-
mented.

Recently, a group at OGI developed MPVM [6], a process
migration mechanism for PVM. Unlike the MOSIX imple-
mentation which is done at the operating system kernel,
MPVM is implemented at the user-level, with its obvious
limitations, e.g. relatively high migration costs. For exam-
ple, process migration in MOSIX includes only the “dirty-
pages” while in MPVM the entire virtual address space of
the process is transfered. Another advantage of the MOSIX
approach is its transparent process migration, which makes
work distribution easier and achieve high overall utilization.
Nevertheless, MPVM is an interesting development and we
hope to compare its performance to that of MOSIX.

This paper is organized as follows: the next section
presents an overview of MOSIX and its unique properties.
Section 3 gives an overview of PVM. Section 4 presents
the performance of several benchmarks of CPU bound pro-
cesses under MOSIX, PVM and PVM with the MOSIX
process migration. Section 5 presents the performance of
communication bound processes. Our conclusions are given
in Section 6.

2 The MOSIX Multicomputer System

MOSIX is an enhancement of UNIX that allows
distributed-memory multicomputers, including LAN con-
nected Network of Workstations (NOW), to share their re-
sources by supporting preemptive process migration and dy-
namic load balancing among homogeneous subsets of nodes.
These mechanisms respond to variations in the load of the
workstations by migrating processes from one workstation
to another, preemptively, at any stage of the life cycle of a
process. The granularity of the work distribution in MOSIX
is the UNIX process. Users can benefit from the MOSIX
execution environment by initiating multiple processes, e.g.
for parallel execution. Alternatively, MOSIX supports an
efficient multi-user, time-sharing execution environment.

The NOW MOSIX is designed to run on configurations
that include several nodes, i.e. personal workstations, file
servers and CPU servers, that are connected by LANs,
shared buses, or fast interconnection networks. In these
configurations each node is an independent computer, with
its own local memory, communication and 110 devices. A
low-end configuration may include few personal worksta-
tions that are connected by Ethernet. A larger configura-
tion may include additional file and/or CPU servers that
are connected by ATM. A high-end configuration may in-
clude a large number of nodes that are interconnected by
a high performance, scalable, switch interconnect that pro-
vides low latency and high bandwidth communication, e.g.
Myrinet 141.

In MOSIX, each user interact with the multicomputer via
the user’s “home” workstation. The system image model
is a NOW, in which all the user’s processes seem to run at
the home workstation. All the processes of each user have
the execution environment of the user’s workstation. Pro-
cesses that migrate to other (remote) workstations use local
resources whenever possible, but interact with the user’s
environment through the user’s workstation. As long as the
load of the user’s workstation is light, all the user’s pro-
cesses are confined to the user’s workstation. When this
load increases above a certain threshold level, e.g. the load
created by one CPU bound process, the process migration
mechanism (transparently) migrates some processes to other
workstations or to the CPU servers.

2.1 The Unique Properties of MOSIX

The MOSIX enhancements are implemented in the UNIX
kernel, without changing its interface, and they are com-
pletely transparent to the application level, e.g. MOSIX
uses standard NFS. Its main unique properties are:

a Network transparency - for all cross machine opera-
tions, i.e. for networkrelated operations, theinteractive

39

Authorized licensed use limited to: Columbia University. Downloaded on January 22, 2009 at 16:28 from IEEE Xplore. Restrictions apply.

user and the application level programs are provided
with a virtual machine that looks like a single machine.

Preemptive process migration - that can migrate any
user’s process, transparently, at any time, to any avail-
able node. The main requirement for a process migra-
tion is transparency, that is, the functional aspects of
the system’s behavior should not be altered as a result
of migrating a process. Achieving this transparency re-
quires that the system is able to locate the process and
that the process is unaware of the fact that it has been
moved from one node to another. In MOSIX these two
requirements are achieved by maintaining in the user’s
(home) workstation, a structure, called the deputy [3],
that represents the process and interacts with its envi-
ronment. We note that the concept of the deputy of a
process is based on the observation that only the system
context of a process is site dependent. The migration
itself involves the creation of a new process structure at
the remote site, followed by a copy of the process page
table and the “dirty” pages. After a migration there
are no residual dependencies other than at the home
workstation. The process resumes its execution in the
new site by few page faults, which bring the necessary
parts of the program to that site [3].

Dynamic load balancing - that initiates process mi-
grations in order to balance the loads of the NOW. The
algorithms respond to variations in the loads of the
nodes, the runtime characteristics of the processes, the
number of workstations and their speeds. In general,
load-balancing is accomplished by continuous attempts
to reduce the load differences between pairs of nodes,
and by dynamically migrating processes from nodes
with a higher load to nodes with a lower load. The
policy is symmetrical and decentralized, i.e., all of the
nodes execute the same algorithms, and the reduction
of the load differences is performed independently by
any pair of nodes.

Memory sharing - by memory depletion prevention
algorithms that are geared to place the maximal num-
ber of processes in the main memory of the NOW, even
if this implies an uneven load distribution among the
nodes. The rational behind this policy is to delay as
much as possible swapping out of pages or a whole
process, until the entire, network wide main memory
is used. The algorithms of the policy are activated
when the amount of a workstation’s free memory is
decreased bellow a certain threshold value. The deci-
sions of which process to migrate and where to migrate
it are based on knowledge about the amount of free
memory in other nodes that is circulated among the
workstations. These decisions are geared to optimize
the migration overhead.

40

0 Efficient kernel communication - that was specifi-
cally developed to reduce the overhead of the internal
kernel communications, e.g. between the process and
its home site, when it is executing in a remote site. The
new protocol was specifically designed for alocally dis-
tributed system. As such, it does not support general
inter-networking issues, e.g. routing, and it assumes a
reliable media. The result is a fast, reliable datagram
protocol with low startup latency and high throughput.
The protocol applies a ‘look ahead” packet acknowl-
edgement scheme and run-time fine tuning in order to
achieve near optimal utilization of the network media
and the corresponding system resources.

0 Probabilistic information dissemination algorithms
- that are geared to provide each workstation with suf-
ficient knowledge about available resources in other
workstations, without polling or further reliance on
remote information. The information gathering algo-
rithms measure the amounts of the available resources
at each workstation using suitable resource indices,
which reflects the availability of the local resources to
possible incoming processes from other workstations.
The resource indices of each workstation are sent at
regular intervals to a randomly chosen subset of work-
stations, by the information dissemination algorithm.
The receiver algorithm maintains a small buffer (win-
dow), with the values of the most recently arrived index
values and at the same time it flushs out older values.
We note that the use of random workstation ID is due
to scaling considerations, for even distribution of the
information among the participating workstations, to
support a dynamic configuration and to overcome par-
tial (workstations) failures.

0 Decentralized control - each workstation makes all its
own control decisions independently and there are no
master-slave relationships between the workstations.

0 Autonomy - each workstation is capable of operating
as an independent system. This property allows a dy-
namic configuration, where workstations may join or
leave the network with minimal disruptions.

The most noticeable properties of executing applications
on MOSIX are its network transparency, the symmetry and
flexibility of its configuration, and its preemptive process
migration. The combined effect of these properties is that
application programs do not need to know the current state
of the system configuration. This is most useful for time-
sharing and parallel processing systems. Users need not
recompile their applications due to node or communication
failures, nor be concerned about the load of the various
processors. Parallel applications can simply be executed by
creating many processes, just like a single-machine system.

Authorized licensed use limited to: Columbia University. Downloaded on January 22, 2009 at 16:28 from IEEE Xplore. Restrictions apply.

3 PVM implementation issues: inter-process communications (IPC)
and process control. These topics are discussed below.

This section presents an overview of the Parallel Vir-
tual Machine (PVM) [8]. PVM is an integral framework
that enables a collection of heterogeneous computers to be
used as a coherent and flexible concurrent computational
resource. The supported architectures include shared- and
distributed-memory multiprocessors, vector supercomput-
ers, special purpose computers, and workstations that are
interconnected by a variety of networks. Below is a brief
description of some aspects of PVM.

3.1 Heterogeneity

PVM supports heterogeneity at three levels: applications,
machines and networks. At the application level, subtasks
can exploit the architecture best suited for them. At the ma-
chine level, computers with different data formats are sup-
ported, including serial, vector and parallel architectures.
The virtual machine can be interconnected via different net-
works, at the network level. Under PVM, a user-defined
collection of computational resources can be dynamically
configured to appear as one large distributed-memory com-
puter, called “virtual machine”

3.2 Computing Model

PVM supports a straightforward message passing model.
Using dedicated tools, one can automatically start up tasks
on the virtual machine. A task, in this context, is a unit of
computation, analogous to a UNIX process. PVM allows
the tasks to communicate and synchronize with each other.
By sending and receiving messages, multiple tasks of an
application can cooperate to solve a problem in parallel.
The model assumes that any task can send a message to any
other PVM task, with no limit on the size or amount of the
messages.

3.3 Implementation

PVM is composed of two parts. The first is the li-
brary of PVM interface routines. These routines provide
a set of primitives to perform invocation and termination of
tasks, message transmission and reception, synchronization,
broadcasts, mutual exclusion and shared memory. Applica-
tion programs must be linked with this library to use PVM.
The second part consists of supporting software, that is ex-
ecuted on all the computers, that make up the virtual ma-
chine, called “daemon”. These daemons interconnect with
each other through the network. Each daemon is responsi-
ble for all the application components processes executing
on its host. Thus, control is completely distributed, except
one master daemon. Two crucial topics rise when discussing

3.3.1 Inter Process Communications

In PVM different daemons communicate via the network.
PVM assumes existence of only unreliable, unsequenced,
point-to-point data transfer facilities. Therefore, the re-
quired reliability as well as additional operations like broad-
casts, are built into PVM , above the UDP protocol. For
IPC, the data is routed via the daemons, e.g., when task A
invokes a send operation, the data is transferred to the local
daemon, which decodes the destination host and transfers
the data to the destination daemon. This daemon decodes
the destination task and delivers the data. This protocol uses
3 data transfers, of which one is across the network. Alterna-
tively, a direct-routing policy can be chosen (depending on
available resources). In this policy, after the first communi-
cation instance between two tasks, the routing data is locally
cached (at the task). Subsequent calls are performed directly
according to this information. This way, the number of data
transfers is reduced to only one, over the network. Addi-
tional overheads are incurred by acknowledgment schemes
and packinghnpacking operations.

3.3.2 Process Control

Process control includes the policies and means by which
PVM manages the assignment of tasks to processors and
controls their executions. In PVM, the computational re-
sources may be accessed by tasks using four different poli-
cies: (a) a transparent mode policy, in which subtasks are au-
tomatically assigned to available nodes; (b) the architecture-
dependent mode, in which the assignment policy of PVM
is subject to a specific architecture constraints; (c) the
machine-specific mode, in which a particular machine may
be specified; and (d) a user’s defined policy that can be
“hooked” to PVM. Note that this last policy requires a good
knowledge of the PVM internals.

The default policy used by PVM is the transparent mode
policy. In this case, when a task initiationrequest is invoked,
the local daemon determines a candidate pool of target nodes
(among the nodes of the virtual machine), and selects the
next node from this pool in a round-robin manner. The
main implications of this policy are the inability of PVM
to distinguish between machines of different speeds, and
the fact that PVM ignores the load variations among the
different nodes.

4 Performance of CPU-bound Processes

In this section we compare the performance of the execu-
tion of sets of identical CPU-bound processes under PVM,

41

Authorized licensed use limited to: Columbia University. Downloaded on January 22, 2009 at 16:28 from IEEE Xplore. Restrictions apply.

No. of
Processes

1
2
4
8
16
17
20
24
25
27
31
32
33
36
38
40
43
47
48

Optimal
Time
300
300
300
300
300
450
450
450
525
525
563
600
700
700
750
750
833
883
900

MOSIX
Time

301.91
302.92
304.57
305.73
310.83
456.91
462.07
471.87
533.15
549.07
574.03
603.17
705.93
715.35
759.90
767.67
833.33
901.81
916.11

PVM
Time

301.83
303.78
305.60
308.57
317.12
604.36
602.40
603.25
603.83
603.86
604.63
603.14
906.3 1
905.27
905.34
905.39
908.96
907.79
908.51

PVM Slow-
down (%)

0.0
0.3
0.3
0.9
2.0

32.3
30.4
27.8
13.3
10.0
5.3
0.0

28.4
26.5
19.1
17.9
9.1
0.7
-0.8

PVM on
MOSIX
304.54
304.70
306.59
301.88
303.40
452.84
454.07
454.67
530.15
559.81
595.17
604.64
707.39
708.41
755.53
771.71
839.61
893.65
907.71

Table 1 . Optimal vs. MOSIX vs. PVM vs. PVM on MOSIX execution times (Sec.)

with and without process migration, in order to highlight
the advantages of the MOSIX preemptive process migra-
tion mechanism and its load balancing scheme. Several
benchmarks were executed, ranging from pure CPU-bound
processes in an idle system, to a system with a background
load. We note that in the measurements, process migration
is performed only when the difference between the loads
of two nodes is above the load created by one CPU bound
process. This policy differs from the time-slicing policy
commonly used by shared-memory multicomputers.

The execution platform for all the benchmarks is a NOW
configuration, with 16 identical, Pentium-90 based worksta-
tions that were connected by an Ethernet LAN.

4.1 CPU-Bound Processes

The first benchmark is intended to show the efficiency of
the MOSIX load balancing algorithms. We executed a set
of identical CPU-bound processes, each requiring 300 sec-
onds, and measured the total execution times under MOSIX
(with its preemptive process migration), followed by mea-
surements of the total execution times under PVM (without
process migration), and then the execution times of these
processes under PVM with the MOSIX process migration.

Table 1 summarizes the results of these benchmarks (all
execution times are in seconds). In the table, the first col-
umn lists the number of processes. The second column
lists the theoretical execution times of these processes using
the optimal assignment algorithm with preemptive process

migration and no communication overhead. Column three
lists the measured execution times of the processes using
the MOSIX load balancing algorithm. Column four lists
the execution times of the same processes under PVM and
column five gives the PVM slowdown, i.e. the ratio be-
tween column four and column three. Column six lists the
corresponding execution times of the processes under PVM
with the MOSIX load balancing.

By comparing columns 2 and 3 of Table 1, it follows
that the average slow-down ratio of the MOSIX policy vs.
the optimal execution algorithm is only 1.95% (consider
that MOSIX imposes a minimal residency period of 1 Sec.
for each new process before it can be migrated). Another
result is that the execution times of PVM (forth column)
can be significantly slower than PVM under MOSIX (sixth
column). Observe that the initial allocation of PVM reduces
the residency times imposed by MOSIX, as shown in column
six.

Figure 1 depicts the results of Table 1. Comparison of the
measured results shows that the average slowdown of PVM
vs. MOSIX is over 15%, when executing more than 16
processes. This slowdown can become very significant, e.g.
32% for 17 processes and 28% for 33 processes. In contrast,
the measurements show that PVM with the MOSIX process
migration is slightly better than MOSIX itself, due to the
residency period that is imposed by MOSIX.

As indicated earlier, one drawback of PVM is its inabil-
ity to distinguish between machines of different speeds. To
demonstrate this point, we executed the above set of pro-

42

Authorized licensed use limited to: Columbia University. Downloaded on January 22, 2009 at 16:28 from IEEE Xplore. Restrictions apply.

1000

900

800

- 700
d

2
2

600

500

400

300

PVM -4-

MOSIX -+--
PVM on MOSlX

0 4 8 12 16 20 24 28 32 36 40 44 48

No. of Processes

Figure 1. MOSIX, PVM and PVM on MOSIX ex-
ecution times

cesses on a cluster of Pentium-90 and several (three times
slower) i486/DX66 based workstations. The results of this
test show that PVM was 336% slower than MOSIX.

4.2 CPU-Bound Processes with Random Execu-
tion Times

The second benchmark compares the execution times of
a set of CPU-bound processes that were executed for ran-
dom durations, in the range 0 - 600 seconds, under MOSIX
and PVM. These processes reflect parallel programs with
unpredictable execution times, e.g. due to recursion, dif-
ferent amount of processing, etc., which are difficult to pre-
schedule. In each test, all the processes started the execution
simultaneously and the completion time of the last process
was recorded. In order to obtain accurate measurements,
each test was executed five times, with different random
execution times. We note that the same sequence of ran-
dom execution times were used in the MOSIX and the PVM
executions.

1700

1600

1500

1400

1300

?-. g 1200

E F 1100

v,

1000

900

800

700

600

PVM +-
MOSIX +

16 20 24 28 32 36 40 44 48

No. of Processes

Figure 2. MOSIX vs. PVM random execution
times

The results of this benchmark are presented in Figure 2,
From the corresponding measurements it follows that the
average slowdown of PVM vs. MOSIX is over 52%, with
an averaged standard deviation of 13.9%. This slowdown
reached as much as 75% for 36 processes, and over 600%
when the above benchmark was executed on a cluster of
Pentium-90 and i486IDX66 based workstations.

4.3 CPU-bound Processes with a Background
Load

The third benchmark compares the execution times of
a set of identical CPU-bound processes under MOSIX and
PVM, in a system with a background load. This addi-
tional load reflects processes of other users in a typical
time-sharing computing environment.

The specific background load consisted of 8 additional
CPU-bound processes that were executed in cycles, where
each cycle included an execution period followed by an idle
(suspended) period. The background processes were exe-

43

Authorized licensed use limited to: Columbia University. Downloaded on January 22, 2009 at 16:28 from IEEE Xplore. Restrictions apply.

1200

1100

1000

900

-
0 W

E 800

F
E

700

600

500

400

300

No. of
Processes

4
8
12
16

No. of Processes

0 4 8 12 16 20 24 28 32 36 40 44 48

1Kl3 Messages 16KB Messages
MOSIX PVM MOSIX PVM

0.77 4.17 10.66 10.91
1.15 4.59 18.62 20.31
1.67 4.61 24.95 30.65
1.58 5.13 30.31 41.80

Figure 3. MOSIX vs. PVM with background
load execution times

cuted independently, throughout the execution time of the
benchmark, and the durations of the execution and suspen-
sion periods were random variables, in the range of 0 to 30
seconds. In order to get accurate measurements, each test
was executed five times.

The results of this benchmark are presented in Figure 3.
Comparison of the corresponding measured results shows
that the average slowdown of PVM vs. MOSIX is over
35%, with as much as 62% slowdown, in the measured
range, for 20 processes. From these measurements it fol-
lows that in a multi-user environment, when it is expected
that background processes of other users are running, ex-
ecution of parallel programs under PVM may result in a
significant slowdown vs. the same executions with a pre-
emptive process migration.

5 Communication Bound Processes

Table 2. MOSIX vs. PVM communication
bound processes execution times (Sec.)

The next benchmark shows the overhead imposed by the
MOSIX internal migration mechanisms over Unix domain
IPC. In this test we executed a similar (to the above) set of
communicating processes which were created in one ma-
chine and were forced to migrate out to other machines. We
note that due to the use of the home model in MOSIX, pro-
cesses that migrate to remote nodes, perform all their Unix
domain IPC via their home sites. The main implication is

44

Authorized licensed use limited to: Columbia University. Downloaded on January 22, 2009 at 16:28 from IEEE Xplore. Restrictions apply.

a reduced communication bandwidth and increased latency
due to possible bottlenecks at the home sites. For exam-
ple, the communication time between two processes, one of
which was migrated away from their common home site,
was 10% slower than the communication time between two
processes that did not have a common home site. The above
overhead, of the two processes with the common home site,
reached as much as 50% when both processes were migrated
away.

The phenomenon presented in the previous paragraph
may lead to a substantial communication overhead, when
a large number of processes are created in one node, and
later migrate to other nodes. To overcome this potential
bottleneck, our current policy is to spawn communicating
processes using PVM and then to refine the (static) PVM
allocation by the MOSIX preemptive (dynamic) process mi-
gration.

6 Conclusions

In this paper we presented the performance of several
benchmarks that were executed under MOSIX, PVM, and
PVM with the MOSIX preemptive process migration. We
showed that in many executions, the performance of PVM
without the process migration was significantly lower than
its performance with the process migration. We predict
that in a typical multi-user environment, where each user
is executing only a few process, users may loose hundreds
of percents in the performance due to lack of preemptive
process migration mechanisms, as discussed in [101. We
note that the choice of PVM was based on its popularity.
We predict that the speedup ratios presented here character-
ize many other parallel programming environments that use
static process assignments.

The NOW MOSIX is compatible with BSDI’s
BSD/OS [111, which is based on BSD-Lite from the Com-
puter Systems Research Group at UC Berkeley. The current
implementation has been operational for over 3 years on a
cluster of 32 Pentiums and several i486 based workstations.
It is used for research and development of multicomputer
systems and parallel applications. Its unique mechanisms
provide a convenient environment for writing and executing
parallel programs, with minimal burden to the application
programmers.

Currently we are researching the idea of migrateable
sockets to overcome potential bottlenecks of executing a
large number of communicating processes. We are also de-
veloping optimization algorithms for memory sharing, by
using competitive, on-line algorithms to utilize available
remote memory. Another area of research is optimization
of the communication overhead by migrating communicat-
ing processes to common sites, to benefit from fast, shared
memory communication.

After we install the Myrinet LAN [4], we intend to start
several new projects that benefit from its fast communication
speed. One project is to develop a memory sewer that
can swap portions of a large program to “idle” memory in
remote workstations. This mechanisms could benefit from
our process migration mechanism, that is capable to page
across the network. This project is similar to the network
RAM project described in [11. Another project is to develop
a shared memory mechanism based on network RAM and
process migrations.

Finally, we note that a limited (up to 6 processors) ver-
sion of MOSIX, called M06, is available on the Internet:
WWW: http://www.cs.huji.ac.il/mosix. MO6 allows users
of BSD/OS to build a low-cost, distributed memory multi-
computer.

References

T. Anderson, D. Culler, and D. Patterson. A Case for NOW
(Networks of Workstations). IEEE Micro, 15(1):54-64,
February 1995.
A. Barak, S. Guday, and R. Wheeler. The MOSIX Distributed
Operating System, Load Balancing for UNIX. In Lecture
Notes in Computer Science, Vol. 672. Springer-Verlag, 1993.
A. Barak, 0. Laden, and Y. Yarom. The NOW MOSIX and its
Preemptive Process Migration Scheme. Bulletin ofthe IEEE
Technical Commitee on Operating Systems and Application
Environments, 7(2):5-11, Summer 1995.
N. Boden, D. Cohen, R. Felderman, A. Kulawik, C. Seitz,
J.N.Seizovic, and W.-K. Su. Myrinet: A Gigabit-per-Second
Local Area Network. IEEE Micro, 15(1):29-36, February
1995.
R. Butler and E. Lusk. User’s Guide to the p4 Program-
ming System. Technical Report TM-ANL-92/17, Argonne
National Laboratory, October 1992.
J. Casas, D. Clark, R. Konuru, S. Otto, R. Prouty, and
J. Walpole. MPVM: A Migration Transparent Version of
PVM. Computing Systems, 8(2):171-216, Spring 1995.
E Douglis and J. Ousterhout. Transparent Process Miration:
Design Altematives and the Sprite Implementation. Sof’are
-Practice and Experience, 21(8):757-785, August 1991.
A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek,
and V. Sunderam. PVM - Parallel Virtual Machine: A User S.
Guide and Tutorial for Networked Parallel Computing. MIT
Press, Cambridge, MA, 1994.
G. Genity, A. Goscinski, J. Indulska, W. Toomey, and
W. Zhu. Rhodos- A Testbed for Studying Design Issues
in Distributed Operating Systems. In Toward Network Glob-
alization (SlCON 91): 2nd International Conference on Net-
works, pages 268-274, September 1991.
M. Harchol-Balter and A. Downey. Exloiting Process Life-
time Distributions for Dynamic load Balancing. In Proc.
ACM SIGMETRICS, June 1996.
R. Kolstad, T. Sanders, .I. Polk, and M. Karles. BSDI Inter-
net Server (BSD/OS 2.1) Release Notes. Berkeley Software
Design, Inc., Colorado Springs, CO, January 1996.

45

Authorized licensed use limited to: Columbia University. Downloaded on January 22, 2009 at 16:28 from IEEE Xplore. Restrictions apply.

http://www.cs.huji.ac.il/mosix

