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Abs t rac t .  The scalable PC cluster at Hebrew University consists of 48 
Pentium and Pentium-Pro servers that are connected by fast Ethernet 
and the Myrinet LANs. It is running the MOSIX operating system, an 
enhancement of BSD/OS with algorithms for dynamic resource sharing 
that are geared for performance scalability in a scalable computing clus- 
ter. These algorithms use a preemptive process migration mechanism 
for load-balancing and memory-sharing, in order to create a convenient 
multi-user time-sharing execution environment for HPC, particularly for 
applications that are written in PVM or MPI. This paper gives a brief 
overview of MOSIX and its resource sharing algorithms. Then the paper 
presents the performance of these algorithms as well as the performance 
of several large-scale, parallel applications. 

1 I n t r o d u c t i o n  

Scalable Computing Clusters (CC), ranging from a cluster of (homogeneous) 
servers to a Network of (heterogeneous) Workstations (NOW), are rapidly be- 
coming the standard platforms for high performance and large-scale computing. 
The main attractiveness of such systems is that  they are made of affordable, low- 
cost, commodi ty  hardware, e.g. Pentium-Pro based Personal Computers  (PC's),  
and fast LANs e.g. Myrinet [4]. Other advantages are that  these systems are 
scalable, i.e., can be tuned to available budget and needs, and that  they use 
s tandard software components, i.e., UNIX, PVM [6] and the MPI  [7] parallel 
programming environments. Two examples of such systems are the UC Berkeley 
NOW project [1], which uses a cluster of SPARC based workstations connected 
by Myrinet, and NASA's Beowulf [3] "pile of P C ' s ' ,  which connects 16 Pentium- 
Pro PC's  by multiple fast Ethernet boards. 

A major  drawback of many  existing computing clusters is the lack of intelli- 
gent mechanisms for dynamic, network-wide resource sharing, that  can respond 
to resource requirements and availability. Such mechanisms are necessary for 
performance scalability in clusters of servers and to support  a flexible use of 
workstations, since the overall (network-wide) available resources in such sys- 
tems are expected to be much larger than the available resources at any work- 
station or server. The development of such mechanisms is particularly impor tant  
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to support multi-user, time-sharing parallel execution environments, where it is 
necessary to share the resources and at the same time distribute the workload 
dynamically, to utilize the global resources efficiently. Throughout  this paper we 
use the term computing cluster (CC) to refer to a collection of UNIX computers 
(nodes), ranging from a network of workstations to a cluster of servers on local 
area networks. 

One mechanism that can perform dynamic work distribution and resource 
sharing, both efficiently and transparently, is preemptive process migration. This 
mechanism can move a process from one node to another dynamically, for load- 
balancing or memory-sharing, to improve the performance and the overall uti- 
lization of the CC. We use the term "memory-sharing" to describe the use of 
remote memory resources to avoid local paging and thus provide processes with 
the memory resources they require. This parallels load-sharing where the goal is 
to provide a process with the CPU resources it needs. In spite of the advantages of 
process migration, very few operating systems have implemented it for dynamic 
resource sharing. Instead, most existing systems provide explicit, user-controlled 
remote execution and migration, while other systems provide automated remote 
executions, but perform preemptive process migration at the explicit request of 
a user. 

This paper presents the CC version of MOSIX, an enhancement of BSD/OS 
that supports preemptive process migration for load-balancing and memory shar- 
ing. These algorithms at tempt to improve the performance by dynamic distri- 
bution of the workload and the available resources among all the processes. The 
goal is that  the application programs do not have to know the current state 
of the resource usage. Parallel applications can be executed by simply creat- 
ing many processes, just like a single-machine environment. The paper presents 
the performance of these algorithms and the performance of several, large scale 
parallel applications. 

The paper is organized as follows: the next section presents MOSIX and 
its main properties. Section 3 presents the performance of some of the resource 
sharing algorithms of MOSIX. Section 4 presents the performance of several 
parallel applications. Our conclusions are given in Section 5. 

2 W h a t  is M O S I X  

MOSIX [2] is a set of enhancements of BSD/OS for supporting dynamic resource 
sharing in a CC. This section describes the hardware configuration for MOSIX 
and its main software characteristics. 

2.1 T h e  h a r d w a r e  c o n f i g u r a t i o n  

MOSIX is designed to run on Pentium and Pentium-Pro based platforms, includ- 
ing personal computers, file and CPU servers, that are connected by standard 
LANs or fast interconnection networks. Depending on the type of applications 
and the budget, MOSIX configurations may range from a small cluster of PC's 



626 

that  are connected by Ethernet, to a high performance configuration, with a 
large number of Pent ium-Pro based servers that  are connected by a Gigabit /Sec.  
scalable LAN, e.g. Myrinet [4]. 

The main advantage of the above configurations is the use of standard, low- 
cost, off-the-shelf, commodi ty  hardware components. For example, the multi- 
computer  that  we use has 16 Pentium-Pro 200MHz and 32 (high-end) Pentinm 
based servers that  are connected by Fast Ethernet and the Myrinet LANs. At 
a cost of less than $100,000 the above system delivers more than 2 GigaFLOPS 
(sustained), 8GB of main memory  and 50GB of disk space. 

2.2 T h e  M O S I X  o p e r a t i n g  s y s t e m  e n h a n c e m e n t s  

MOSIX is a set of enhancements of BSD/OS with dynamic resource sharing 
algorithms that  are geared for cluster computing. These algorithms are designed 
to respond dynamically to variations, in resource usage among the nodes, by 
migrating processes transparently from one node to another, preemptively, to 
improve the performance. The granularity of the work distribution in MOSIX is 
the UNIX process. Users can run parallel applications on MOSIX by initiating 
multiple processes. Alternatively, MOSIX supports an efficient multi-user, time- 
sharing execution environment. 

In MOSIX, each user interacts with the mult icomputer  via the user's "home" 
node (workstation or server), which is similar to the "home node" of Sprite [5]. 
The system image model is a computing cluster, in which all the user's processes 
seem to run at the home node, and all the processes of each user have the 
execution environment of the user's home node. Processes that  migrate to other 
(remote) nodes use local (in the remote node) resources whenever possible, but 
interact with the user's environment through the user's home node. As long 
as the requirement for resources such as the CPU or main memory,  are below 
certain threshold levels, all the user's processes are confined to the user's home 
node. When these requirements exceed the threshold levels, e.g., the load created 
by one CPU bound process or the size of the local memory, then the process 
migration mechanism migrates one or more processes to other nodes. The overall 
goal is to maximize the performance by efficient utilization of the network-wide 
resources. 

The MOSIX enhancements are implemented in the BSD/OS kernel, without 
changing its interface, and they are completely transparent to the application 
level. Its main characteristics are: 

�9 Probabilistic information dissemination algorithms- that  provide each node 
with sufficient knowledge about available resources in other nodes, without 
polling or further reliance on remote information. Each node sends, at regular 
intervals, information regarding its available resources to a randomly chosen 
subset of nodes. At the same time it maintains a small buffer (window), 
with the most recent arrived information. The use of randomness supports 
scaling, .even distribution of the information and dynamic configuration, e.g. 
overcome node failures. 
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�9 P r e e m p t i v e  process migra t ion  - that  can migrate any user's process, any 
time, to any available node, transparently. The cost of the process migrat ion 
includes a fixed cost, to establish a new process frame in the remote site, and 
an additional cost, proportional to the number of pages copied. In practice, 
only the page table and the dirty pages of the process are copied. 

�9 D y n a m i c  l o a d - b a l a n c i n g -  that  continuously a t tempts  to reduce the load 
differences between pairs of nodes by migrating processes from over-loaded 
nodes to under-loaded nodes. This scheme is decentralized in the sense that  
all of the nodes execute the same algorithms, and that  the reduction of the 
load differences is performed independently by pairs of nodes. Other goals 
of the load-balancing algorithms are to respond to changes in the loads of 
the nodes, the runtime characteristics of the processes, and the number of 
nodes. The load-balancing algorithms prevail as long as there is no extreme 
shortage of resources such as free memory. 

�9 M e m o r y  s h a r i n g -  by a memory depletion prevention algorithm that  is geared 
to place the maximal  number of processes in the "network RAM" across all 
the nodes, to avoid as much as possible processes thrashing or the swapping 
out of processes. The algorithm is triggered when a node starts excessive 
paging due to insufficient free memory. In this case the algorithm overrides 
the load-balancing algorithm and it a t tempts  to migrate a process to a node 
which has sufficient free memory, even if this migration results in an uneven 
load distribution. 

�9 E f f i c i en t  kernel  c o m m u n i c a t i o n  - that  was specifically designed to reduce the 
overhead of the system's  kernel communications, e.g. between the process 
and its home node, when it is executing in a remote site. The new protocol 
is geared for a locally distributed system, e.g.,it does not support  general 
inter-networking such as routing, and it assumes a relatively reliable media. 
The result is a fast, reliable da tagram protocol with low s tar tup latency and 
high throughput.  

�9 Decentra l i zed  control  and a u t o n o m y  - each node is capable of operating as 
an independent system, i.e., it makes all its own control decisions indepen- 
dently, and there is no master-slave relationships between the nodes. This 
organization allows a dynamic configuration, where nodes may join or leave 
the network with minimal disruptions. 

�9 Scal ing cons iderat ions  - that  ensure that  the system runs as well on large 
configurations as it does on small configurations. The main considerations 
include symmetry,  and the use of randomness in the system control algo- 
rithms. Each node bases its decisions on partial knowledge about  the state 
of the other nodes and it does not even a t tempt  to determine the overall 
state of the cluster or any specific node. 

The most  noticeable properties of executing parallel applications on MOSIX 
are the symmet ry  and flexibility of its configuration, and its dynamic resource 
distribution policy. The combined effect of these properties is that  application 
programs do not need to know the current state of the system configuration. 
Users need not recompile their applications due to node or communicat ion fail- 
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ures, nor be concerned about the load of the various processors. Parallel appli- 
cations can simply be executed by creating many processes, just like a single- 
machine system. 

3 P e r f o r m a n c e  o f  t h e  M O S I X  a l g o r i t h m s  

This section presents the performance of the process migration, load-balancing 
and memory sharing algorithms of MOSIX. The execution platforms were two 
computing clusters, with 16 identical Pentium and Pentium-Pro servers that  
were connected by fast Ethernet and the Myrinet LANs respectively. 

3.1 P e r f o r m a n c e  o f  t h e  p roce s s  m i g r a t i o n  m e c h a n i s m  

Process migration is carried out in two stages. The first stage involves estab- 
lishing a connection and negotiations between two nodes and creating a process 
frame in the remote node. In the second stage the active memory of the process 
is transferred. The cost of the negotiations stage is fixed, while the data  transfer 
cost is proportional to the amount of data transfered. 
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Fig. 1. Migration times vs. process size 

The performance of the process migration mechanism between two Pentium- 
Pro 200MHz servers that were connected by Ethernet-100 and the Myritmt LAN, 
using the T C P / I P  protocol are shown in Figure 1. From the figure it can be seen 
that the migration time is a linear function of the process size. It amounts to 
76.8Mb/s for Ethernet-100 and 228.8Mb/s for the Myrinet. The corresponding 
migration latencies (magnified) are 3ms and 2ms respectively. 
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3.2 P e r f o r m a n c e  o f  t h e  l o a d - b a l a n c i n g  a l g o r i t h m s  

We conducted two tests. First, we measured the total execution times of a set of  
identical CPU-bound processes under PVM, with and without the MOSIX load- 
balancing algorithms. This test was executed on a system with a background 
load, which reflects processes of  other users in a typical time-sharing, multi-user 
computing environment. The background load was generated by a set of addi- 
tional CPU-bound processes that were executed in cycles of a random computing 
period followed by an idle (suspend) period. The results of this benchmark are 
shown in Figure 2(a). These results show that the average slow-down of PVM 
vs. MOSIX is over 35%, with as much as 62% slow-down, in the measured range, 
for 20 processes. 

A second benchmark, shown in Figure 2 (b), presents the execution of parallel 
programs with unpredictable execution times, e.g. due to recursion, different 
amount  of processing, etc., which are difficult to pre-schedule. We ran a set of  
CPU-bound processes that were executed for random durations, in the range 0 
- 600 seconds. From the corresponding measurements it follows that the average 
slow-down of PVM vs. MOSIX is over 52%, with as much as 75% slow-down for 
36 processes. 
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Fig. 2. MOSIX vs. PVM: (a) with background load, (b) random execution times 

3.3 P e r f o r m a n c e  o f  t h e  m e m o r y  s h a r i n g  a l g o r i t h m  

This benchmark represents cases where the load of the nodes is balanced, but 
memory  is not being used uniformly. We created a set of processes, with in- 
creasing average sizes, and distributed these processes evenly among the nodes 
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using PVM, such that some nodes run out of fl'ee memory. In this case, process 
migration should be motivated by memory considerations, to prevent excessive 
paging. 
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Fig. 3. Performance of the memory-sharing algorithm 

The benchmark was executed in a load-balancing system with and with- 
out the memory-sharing algorithm. The results (see Figure 3) show that  when 
the total requirement for memory is increased, the execution times of the load- 
balancing algorithm without memory-sharing are sharply increased due to ex- 
cessive paging activities. The corresponding execution times with the memory- 
sharing have a significantly lower growth due to much lower paging activities. 

4 Performance of parallel applications 

This section presents our experience with the execution of several, large scale, 
parallel applications. The executions were carried on a MOSIX cluster with 32 
Pentiums that were connected by fast Ethernet and 16 Pentium-Pro 200MHz 
that  were connected by fast Ethernet and the Myrinet. 

4.1 G l o b a l  se l f  o r g a n i z a t i o n  of  all k n o w n  p r o t e i n  s eq u en ces  

There are many efforts today to study sequences of proteins. Current efforts use 
algorithms for pairwise sequence comparisons, using a small number of sequences 
and "nearest neighbors" methods. Until recently, only few computational stud- 
ies considered all, or many, of the known sequences. This project [9] deals with 
the universe of all protein sequences, by translating the space of these sequences 
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into an Euclidean space. Then a statistical, hierarchical clustering model is con- 
structed. It offers additional insight into the large-scale organization and rep- 
resentation of the space of all protein sequences, and also reveals significant 
biological signatures of protein sequences. 

The clustering algorithm associates each data point with the nearest cen- 
troid, where the centroids are reestimated to minimize the distortion within 
each cluster. This process is repeated until convergence to a (local) minimum of 
the distortion. At each iteration, the cluster of highest aspect ratio is split. The 
algorithm is performed on two randomly chosen subsets of the data, aborting 
every split on which the two processes "disagree". The process terminates when 
all a t tempted splits get aborted. 

The clustering algorithm was executed on a 32-node MOSIX configuration. 
The input data consisted of about 540,000 Points, in 200-dimension Euclidean 
space, that were initially split among several processes. In the execution, each 
process made the association of its (local) data points, and then calculated the 
first two moments (mean and covariance). For synchronization, a "master" pro- 
cess collects the results from all the "slaves", re-estimates the centroids and 
redistributes them. Since the algorithm is computational intensive, with only a 
small amount of communication, the speedup obtained was proportional to the 
number of processors. The total amount of memory was about 1GByte. The 
longest execution time was 20 days, i.e., over 15,000 hours, during which we 
executed a case with 150 clusters. 

Observations: this is a straightforward example of a parallel application that 
can benefit from the multiplicity of resources, e.g. CPU cycles and memory of a 
CC. The main MOSIX advantage is its ability to execute a memory consuming 
application for 20 days, without swapping or excluding other jobs, by using the 
memory sharing algorithms. 

4.2 Q u a n t u m  s imulat ions  of  large molecules  

This project involves the development of novel parallel algorithms for quanti- 
tative simulations of large biological molecules, by computing the multidimen- 
sional, quantum wave-functions of these systems and studying their spectro- 
scopic and dynamical properties. The algorithms use classical quantum mechan- 
ics methods to solve the time-independent and the time-dependent Schr6dinger 
equations for systems of high dimensionality. The method uses as a first ap- 
proximation a separation of variables, so that different degrees of freedom are 
handled by different processes. This is an intensive compute process, which re- 
quires a large amount of CPU time. The method was recently applied to calculate 
the ground-state wave-function and excited states of the protein BPTI.  

The specific application that was executed on MOSIX was parallel molec- 
ular dynamics on chemical systems with over 10,000 degrees of freedom, that 
simulate molecules of the order of complexity of proteins. The algorithm, which 
includes correlation effects (between the different degrees of freedom) was ap- 
plied on Bacteriorhodopsin. Figure 4 shows the performance of this algorithm 
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Fig. 4. Speedup (sp) obtained in a classical molecular dynamics simulation 

and the speedup obtained, using a Pentium-Pro cluster with 16 nodes. The par- 
allel algorithm uses a straight-forward spatial decomposition, with an internal 
mechanism for load-balancing between the different processes by modifications 
to the initial data  decomposition. As the number of partitions increases, the 
communications overhead becomes very significant, since the CPU work of each 
partit ion decreases. 

Observations: an intensive compute and communication bound parallel ap- 
plication can obtain a good speedup, with the increase in the number of nodes. 
In the current case, this speedup is impaired for 16 nodes due to the (relatively 
small) size of the problem. 

4.3 Molecular  Dynamics  s imulat ion 

Molecular Dynamics (MD) simulation has been used extensively as a tool to 
study irradiation damage. We describe two parallelization methods of large scale 
simulations. 

H i g h  e n e r g y  MD:  The first case is a physical system that consists of an 
energetic atom (in the range of 100 key) impacting a surface, where a simulation 
for a large number of time steps and a large number N > 106 of atoms, is needed. 
The key issues are the different time scales involved and the number of particles. 

The simulation applies a spatial decomposition into cubic cells. Most of the 
calculation is local, except the force calculation phase. In this phase each process 
needs data  from all its 26 neighboring processes. Due to the use of non-local 
potentials, data communication between the processes became a major part of 
the execution. Hence, the decomposition at tempted to minimize the surface to 
volume ratio. All communication was implemented using the PVM library. 

The simulations were executed on a 16 Pentium-Pro MOSIX configuration, 
and the obtained results were compared with similar executions on the IBM 
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SP-2. The results of these executions are shown in Figure 5. From the figure it 
follows that  MOSIX outperforms the SP-2 by a factor of 2.6 for 16 nodes. The 
corresponding factors for 4 and 8 nodes are even higher. We suspect that  in these 
last two cases, slower ("thin") nodes were used in the SP-2. Note that  in spite 
of the massive communication, MOSIX obtained .a speedup of 8.4. 
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Fig. 6. MD scalabi]ity in problem size on MOSIX 

Figure 6 shows the scalability in the problem size on MOSIX (using 8 nodes). 
Observe that  the t ime per a tom decreases with the increase in the problem size. 
This is due to a better initial load distribution and reduced, communicat ion 
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overhead per atom. Since the simulation scales well in size, we expect that  a 
large number (over 4 million) of atoms can be simulated on a MOSIX system 
with 32 nodes. 

Observations: a cluster of Pentium-Pro 20OMHz PC's connected by Myrinet 
can outperform the SP-2 for heavy applications such as MD simulations, which 
are both CPU and communication intensive. 

I n t e g r a t i o n  u s i n g  M D :  This problem consists of the statistical analysis of 
the desorption probabili ty of an a tom from a surface due to a nuclear st imulated 
desorption. Prediction of the spatial distribution of a desorbing a tom requires 
simulations over a wide range of physical parameters.  The time needed for each 
simulation varies considerably with the initial parameters.  A single case takes 
about 40 minutes (average) on an "SGI" workstation, resulting in up to a month 
execution t ime for a simulation with 103 different initial conditions. 

The parallelization consists of concurrent execution of a large number of 
independent simulations, using different initial conditions. When some jobs end, 
others are created, as needed, until a sufficiently small variance in the observed 
variable was achieved. The main execution requirement is to keep the system 
load balanced, in spite of the unpredictable execution times and total  number of 
jobs. The MOSIX system enabled to completely disregard this issue and relieved 
the program from all assignment related decisions. 

Observations: The MOSIX load-balancing scheme simplifies the ezecution of 
jobs with unpredictable ezecution parameters, e.g., time and number of processes, 
especially in the presence of other users' jobs. 

5 C o n c l u s i o n s  

This paper presented the performance of the MOSIX parallel system for a clus- 
ter of PC's.  MOSIX supports dynamic resource sharing among the PC's  for 
performance scalability of parallel applications in a multi-user, t ime-sharing en- 
vironment.  The net result is that  users do not have to know the current state of 
the resource usage and the load of the various workstations, or even the system 
configuration. Parallel applications can be executed by simply creating many  
processes, almost like in an SMP. The performance of the CC MOSIX shows a 
good utilization of the resources, relatively good speedups in a scalable configu- 
ration and competit ive results vs. the SP-2. A major  advantage of MOSIX over 
other CC environments is its ability to respond at run-time to unpredictable 
requirements by many users and irregular resource usage, e.g., execution times, 
memory  usage or the number of processes - MOSIX adapts well to all such cases. 

The main outcome of this paper is that  it is possible to build a low-cost, 
scalable mult icomputer  system from commodity  components, such as PC's  and 
PVM, as an alternative to traditional mainframes and MPP's .  With  an intelli- 
gent operating system that  supports global resource sharing, such as MOSIX, 
these mult icomputer  systems offer a convenient, general-purpose environment 
for executing large scale, demanding sequential and parallel applications. 
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The CC MOSIX is fully compatible with BSD/OS [8]. It has been operational 
for over 4 years. It is used for student course work, research of operating systems 
for scalable CC, and the development of parallel applications. A limited (up to 
6 processors) version of MOSIX, called MO6, is available on the Internet for 
experimentation at URL ht tp : / /www,  cs .  huj • ac.  i l /mos•  
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