
Performance of the M O S I X Parallel Sys t em for
a Cluster of PC's

Amnon Barak and Oren La 'adan *

Institute of Computer Science
The Hebrew University of Jerusalem

Jerusalem 91904, Israel

Abs t rac t . The scalable PC cluster at Hebrew University consists of 48
Pentium and Pentium-Pro servers that are connected by fast Ethernet
and the Myrinet LANs. It is running the MOSIX operating system, an
enhancement of BSD/OS with algorithms for dynamic resource sharing
that are geared for performance scalability in a scalable computing clus-
ter. These algorithms use a preemptive process migration mechanism
for load-balancing and memory-sharing, in order to create a convenient
multi-user time-sharing execution environment for HPC, particularly for
applications that are written in PVM or MPI. This paper gives a brief
overview of MOSIX and its resource sharing algorithms. Then the paper
presents the performance of these algorithms as well as the performance
of several large-scale, parallel applications.

1 I n t r o d u c t i o n

Scalable Computing Clusters (CC), ranging from a cluster of (homogeneous)
servers to a Network of (heterogeneous) Workstations (NOW), are rapidly be-
coming the standard platforms for high performance and large-scale computing.
The main attractiveness of such systems is that they are made of affordable, low-
cost, commodi ty hardware, e.g. Pentium-Pro based Personal Computers (PC's),
and fast LANs e.g. Myrinet [4]. Other advantages are that these systems are
scalable, i.e., can be tuned to available budget and needs, and that they use
s tandard software components, i.e., UNIX, PVM [6] and the MPI [7] parallel
programming environments. Two examples of such systems are the UC Berkeley
NOW project [1], which uses a cluster of SPARC based workstations connected
by Myrinet, and NASA's Beowulf [3] "pile of P C ' s ' , which connects 16 Pentium-
Pro PC's by multiple fast Ethernet boards.

A major drawback of many existing computing clusters is the lack of intelli-
gent mechanisms for dynamic, network-wide resource sharing, that can respond
to resource requirements and availability. Such mechanisms are necessary for
performance scalability in clusters of servers and to support a flexible use of
workstations, since the overall (network-wide) available resources in such sys-
tems are expected to be much larger than the available resources at any work-
station or server. The development of such mechanisms is particularly impor tant

* E-mail: {amnon,orenl}@cs.huji.ac.il WWW: http://www.cs.huji.ac.il/mosix

625

to support multi-user, time-sharing parallel execution environments, where it is
necessary to share the resources and at the same time distribute the workload
dynamically, to utilize the global resources efficiently. Throughout this paper we
use the term computing cluster (CC) to refer to a collection of UNIX computers
(nodes), ranging from a network of workstations to a cluster of servers on local
area networks.

One mechanism that can perform dynamic work distribution and resource
sharing, both efficiently and transparently, is preemptive process migration. This
mechanism can move a process from one node to another dynamically, for load-
balancing or memory-sharing, to improve the performance and the overall uti-
lization of the CC. We use the term "memory-sharing" to describe the use of
remote memory resources to avoid local paging and thus provide processes with
the memory resources they require. This parallels load-sharing where the goal is
to provide a process with the CPU resources it needs. In spite of the advantages of
process migration, very few operating systems have implemented it for dynamic
resource sharing. Instead, most existing systems provide explicit, user-controlled
remote execution and migration, while other systems provide automated remote
executions, but perform preemptive process migration at the explicit request of
a user.

This paper presents the CC version of MOSIX, an enhancement of BSD/OS
that supports preemptive process migration for load-balancing and memory shar-
ing. These algorithms at tempt to improve the performance by dynamic distri-
bution of the workload and the available resources among all the processes. The
goal is that the application programs do not have to know the current state
of the resource usage. Parallel applications can be executed by simply creat-
ing many processes, just like a single-machine environment. The paper presents
the performance of these algorithms and the performance of several, large scale
parallel applications.

The paper is organized as follows: the next section presents MOSIX and
its main properties. Section 3 presents the performance of some of the resource
sharing algorithms of MOSIX. Section 4 presents the performance of several
parallel applications. Our conclusions are given in Section 5.

2 W h a t is M O S I X

MOSIX [2] is a set of enhancements of BSD/OS for supporting dynamic resource
sharing in a CC. This section describes the hardware configuration for MOSIX
and its main software characteristics.

2.1 T h e h a r d w a r e c o n f i g u r a t i o n

MOSIX is designed to run on Pentium and Pentium-Pro based platforms, includ-
ing personal computers, file and CPU servers, that are connected by standard
LANs or fast interconnection networks. Depending on the type of applications
and the budget, MOSIX configurations may range from a small cluster of PC's

626

that are connected by Ethernet, to a high performance configuration, with a
large number of Pent ium-Pro based servers that are connected by a Gigabit /Sec.
scalable LAN, e.g. Myrinet [4].

The main advantage of the above configurations is the use of standard, low-
cost, off-the-shelf, commodi ty hardware components. For example, the multi-
computer that we use has 16 Pentium-Pro 200MHz and 32 (high-end) Pentinm
based servers that are connected by Fast Ethernet and the Myrinet LANs. At
a cost of less than $100,000 the above system delivers more than 2 GigaFLOPS
(sustained), 8GB of main memory and 50GB of disk space.

2.2 T h e M O S I X o p e r a t i n g s y s t e m e n h a n c e m e n t s

MOSIX is a set of enhancements of BSD/OS with dynamic resource sharing
algorithms that are geared for cluster computing. These algorithms are designed
to respond dynamically to variations, in resource usage among the nodes, by
migrating processes transparently from one node to another, preemptively, to
improve the performance. The granularity of the work distribution in MOSIX is
the UNIX process. Users can run parallel applications on MOSIX by initiating
multiple processes. Alternatively, MOSIX supports an efficient multi-user, time-
sharing execution environment.

In MOSIX, each user interacts with the mult icomputer via the user's "home"
node (workstation or server), which is similar to the "home node" of Sprite [5].
The system image model is a computing cluster, in which all the user's processes
seem to run at the home node, and all the processes of each user have the
execution environment of the user's home node. Processes that migrate to other
(remote) nodes use local (in the remote node) resources whenever possible, but
interact with the user's environment through the user's home node. As long
as the requirement for resources such as the CPU or main memory, are below
certain threshold levels, all the user's processes are confined to the user's home
node. When these requirements exceed the threshold levels, e.g., the load created
by one CPU bound process or the size of the local memory, then the process
migration mechanism migrates one or more processes to other nodes. The overall
goal is to maximize the performance by efficient utilization of the network-wide
resources.

The MOSIX enhancements are implemented in the BSD/OS kernel, without
changing its interface, and they are completely transparent to the application
level. Its main characteristics are:

�9 Probabilistic information dissemination algorithms- that provide each node
with sufficient knowledge about available resources in other nodes, without
polling or further reliance on remote information. Each node sends, at regular
intervals, information regarding its available resources to a randomly chosen
subset of nodes. At the same time it maintains a small buffer (window),
with the most recent arrived information. The use of randomness supports
scaling, .even distribution of the information and dynamic configuration, e.g.
overcome node failures.

627

�9 P r e e m p t i v e process migra t ion - that can migrate any user's process, any
time, to any available node, transparently. The cost of the process migrat ion
includes a fixed cost, to establish a new process frame in the remote site, and
an additional cost, proportional to the number of pages copied. In practice,
only the page table and the dirty pages of the process are copied.

�9 D y n a m i c l o a d - b a l a n c i n g - that continuously a t tempts to reduce the load
differences between pairs of nodes by migrating processes from over-loaded
nodes to under-loaded nodes. This scheme is decentralized in the sense that
all of the nodes execute the same algorithms, and that the reduction of the
load differences is performed independently by pairs of nodes. Other goals
of the load-balancing algorithms are to respond to changes in the loads of
the nodes, the runtime characteristics of the processes, and the number of
nodes. The load-balancing algorithms prevail as long as there is no extreme
shortage of resources such as free memory.

�9 M e m o r y s h a r i n g - by a memory depletion prevention algorithm that is geared
to place the maximal number of processes in the "network RAM" across all
the nodes, to avoid as much as possible processes thrashing or the swapping
out of processes. The algorithm is triggered when a node starts excessive
paging due to insufficient free memory. In this case the algorithm overrides
the load-balancing algorithm and it a t tempts to migrate a process to a node
which has sufficient free memory, even if this migration results in an uneven
load distribution.

�9 E f f i c i en t kernel c o m m u n i c a t i o n - that was specifically designed to reduce the
overhead of the system's kernel communications, e.g. between the process
and its home node, when it is executing in a remote site. The new protocol
is geared for a locally distributed system, e.g.,it does not support general
inter-networking such as routing, and it assumes a relatively reliable media.
The result is a fast, reliable da tagram protocol with low s tar tup latency and
high throughput.

�9 Decentra l i zed control and a u t o n o m y - each node is capable of operating as
an independent system, i.e., it makes all its own control decisions indepen-
dently, and there is no master-slave relationships between the nodes. This
organization allows a dynamic configuration, where nodes may join or leave
the network with minimal disruptions.

�9 Scal ing cons iderat ions - that ensure that the system runs as well on large
configurations as it does on small configurations. The main considerations
include symmetry, and the use of randomness in the system control algo-
rithms. Each node bases its decisions on partial knowledge about the state
of the other nodes and it does not even a t tempt to determine the overall
state of the cluster or any specific node.

The most noticeable properties of executing parallel applications on MOSIX
are the symmet ry and flexibility of its configuration, and its dynamic resource
distribution policy. The combined effect of these properties is that application
programs do not need to know the current state of the system configuration.
Users need not recompile their applications due to node or communicat ion fail-

6 2 8

ures, nor be concerned about the load of the various processors. Parallel appli-
cations can simply be executed by creating many processes, just like a single-
machine system.

3 P e r f o r m a n c e o f t h e M O S I X a l g o r i t h m s

This section presents the performance of the process migration, load-balancing
and memory sharing algorithms of MOSIX. The execution platforms were two
computing clusters, with 16 identical Pentium and Pentium-Pro servers that
were connected by fast Ethernet and the Myrinet LANs respectively.

3.1 P e r f o r m a n c e o f t h e p roce s s m i g r a t i o n m e c h a n i s m

Process migration is carried out in two stages. The first stage involves estab-
lishing a connection and negotiations between two nodes and creating a process
frame in the remote node. In the second stage the active memory of the process
is transferred. The cost of the negotiations stage is fixed, while the data transfer
cost is proportional to the amount of data transfered.

i

0.9 s" i "" ~

0,8 / . -

I I O.OOL " 'l

0.7 , o oo~ "" ~ ~ 1
0.6 I 0.00", J !

�9 . . \ O.OOJ / 0.5 / , , , " ' " "

" 0 s' ,.,
0.4 x I ,,-"

l j x ' - " 0.3 .-'"'"
100 / J ~

MByte/Sec = 28.6

oA.

", 0 �9 1 2 3 4 5 6 7 8

Process size [MByte]

, =

Ethernet 100 -El--.
Myrinet

f f J

j /
y.Y"

. . " " MByte/Sec = 9.6
f . J "

Fig. 1. Migration times vs. process size

The performance of the process migration mechanism between two Pentium-
Pro 200MHz servers that were connected by Ethernet-100 and the Myritmt LAN,
using the T C P / I P protocol are shown in Figure 1. From the figure it can be seen
that the migration time is a linear function of the process size. It amounts to
76.8Mb/s for Ethernet-100 and 228.8Mb/s for the Myrinet. The corresponding
migration latencies (magnified) are 3ms and 2ms respectively.

629

3.2 P e r f o r m a n c e o f t h e l o a d - b a l a n c i n g a l g o r i t h m s

We conducted two tests. First, we measured the total execution times of a set of
identical CPU-bound processes under PVM, with and without the MOSIX load-
balancing algorithms. This test was executed on a system with a background
load, which reflects processes of other users in a typical time-sharing, multi-user
computing environment. The background load was generated by a set of addi-
tional CPU-bound processes that were executed in cycles of a random computing
period followed by an idle (suspend) period. The results of this benchmark are
shown in Figure 2(a). These results show that the average slow-down of PVM
vs. MOSIX is over 35%, with as much as 62% slow-down, in the measured range,
for 20 processes.

A second benchmark, shown in Figure 2 (b), presents the execution of parallel
programs with unpredictable execution times, e.g. due to recursion, different
amount of processing, etc., which are difficult to pre-schedule. We ran a set of
CPU-bound processes that were executed for random durations, in the range 0
- 600 seconds. From the corresponding measurements it follows that the average
slow-down of PVM vs. MOSIX is over 52%, with as much as 75% slow-down for
36 processes.

1200

1100

tOO0

9O0

800

700

500

a00

PVM + - .
MOSIX

4 8 ,2 ,~ ~ 24 ~, 3'2 ~'6 4'~
(a)

1700

1600

1500

1400

1300

~" 1200

~1100

tom

900

a00

7oo

000

PW + - .
MOSIX + "

/
/

/
/

/
/

' ' ; ;2
20 24 8 36 40 44 48

(b)

Fig. 2. MOSIX vs. PVM: (a) with background load, (b) random execution times

3.3 P e r f o r m a n c e o f t h e m e m o r y s h a r i n g a l g o r i t h m

This benchmark represents cases where the load of the nodes is balanced, but
memory is not being used uniformly. We created a set of processes, with in-
creasing average sizes, and distributed these processes evenly among the nodes

630

using PVM, such that some nodes run out of fl'ee memory. In this case, process
migration should be motivated by memory considerations, to prevent excessive
paging.

280 , , , , , , , , , , ,

With memory sharing e x
270 Without memory sharing x

260

co 250

2 4 0

:=

230

LU

'~ 220 x X

210 r r

200

190
5 6 7 8 9 10 11 12 13 14

Average Process Size (MB)

Fig. 3. Performance of the memory-sharing algorithm

The benchmark was executed in a load-balancing system with and with-
out the memory-sharing algorithm. The results (see Figure 3) show that when
the total requirement for memory is increased, the execution times of the load-
balancing algorithm without memory-sharing are sharply increased due to ex-
cessive paging activities. The corresponding execution times with the memory-
sharing have a significantly lower growth due to much lower paging activities.

4 Performance of parallel applications

This section presents our experience with the execution of several, large scale,
parallel applications. The executions were carried on a MOSIX cluster with 32
Pentiums that were connected by fast Ethernet and 16 Pentium-Pro 200MHz
that were connected by fast Ethernet and the Myrinet.

4.1 G l o b a l se l f o r g a n i z a t i o n of all k n o w n p r o t e i n s eq u en ces

There are many efforts today to study sequences of proteins. Current efforts use
algorithms for pairwise sequence comparisons, using a small number of sequences
and "nearest neighbors" methods. Until recently, only few computational stud-
ies considered all, or many, of the known sequences. This project [9] deals with
the universe of all protein sequences, by translating the space of these sequences

631

into an Euclidean space. Then a statistical, hierarchical clustering model is con-
structed. It offers additional insight into the large-scale organization and rep-
resentation of the space of all protein sequences, and also reveals significant
biological signatures of protein sequences.

The clustering algorithm associates each data point with the nearest cen-
troid, where the centroids are reestimated to minimize the distortion within
each cluster. This process is repeated until convergence to a (local) minimum of
the distortion. At each iteration, the cluster of highest aspect ratio is split. The
algorithm is performed on two randomly chosen subsets of the data, aborting
every split on which the two processes "disagree". The process terminates when
all a t tempted splits get aborted.

The clustering algorithm was executed on a 32-node MOSIX configuration.
The input data consisted of about 540,000 Points, in 200-dimension Euclidean
space, that were initially split among several processes. In the execution, each
process made the association of its (local) data points, and then calculated the
first two moments (mean and covariance). For synchronization, a "master" pro-
cess collects the results from all the "slaves", re-estimates the centroids and
redistributes them. Since the algorithm is computational intensive, with only a
small amount of communication, the speedup obtained was proportional to the
number of processors. The total amount of memory was about 1GByte. The
longest execution time was 20 days, i.e., over 15,000 hours, during which we
executed a case with 150 clusters.

Observations: this is a straightforward example of a parallel application that
can benefit from the multiplicity of resources, e.g. CPU cycles and memory of a
CC. The main MOSIX advantage is its ability to execute a memory consuming
application for 20 days, without swapping or excluding other jobs, by using the
memory sharing algorithms.

4.2 Q u a n t u m s imulat ions of large molecules

This project involves the development of novel parallel algorithms for quanti-
tative simulations of large biological molecules, by computing the multidimen-
sional, quantum wave-functions of these systems and studying their spectro-
scopic and dynamical properties. The algorithms use classical quantum mechan-
ics methods to solve the time-independent and the time-dependent Schr6dinger
equations for systems of high dimensionality. The method uses as a first ap-
proximation a separation of variables, so that different degrees of freedom are
handled by different processes. This is an intensive compute process, which re-
quires a large amount of CPU time. The method was recently applied to calculate
the ground-state wave-function and excited states of the protein BPTI.

The specific application that was executed on MOSIX was parallel molec-
ular dynamics on chemical systems with over 10,000 degrees of freedom, that
simulate molecules of the order of complexity of proteins. The algorithm, which
includes correlation effects (between the different degrees of freedom) was ap-
plied on Bacteriorhodopsin. Figure 4 shows the performance of this algorithm

632

. ' o s , i
800

700 f =1
600

~ " 500

400 ~ , 9
300

200 " ~ 3

100 sp=10.8

I I I I I I I I I I I I T I ~ I

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
No. of nodes

Fig. 4. Speedup (sp) obtained in a classical molecular dynamics simulation

and the speedup obtained, using a Pentium-Pro cluster with 16 nodes. The par-
allel algorithm uses a straight-forward spatial decomposition, with an internal
mechanism for load-balancing between the different processes by modifications
to the initial data decomposition. As the number of partitions increases, the
communications overhead becomes very significant, since the CPU work of each
partit ion decreases.

Observations: an intensive compute and communication bound parallel ap-
plication can obtain a good speedup, with the increase in the number of nodes.
In the current case, this speedup is impaired for 16 nodes due to the (relatively
small) size of the problem.

4.3 Molecular Dynamics s imulat ion

Molecular Dynamics (MD) simulation has been used extensively as a tool to
study irradiation damage. We describe two parallelization methods of large scale
simulations.

H i g h e n e r g y MD: The first case is a physical system that consists of an
energetic atom (in the range of 100 key) impacting a surface, where a simulation
for a large number of time steps and a large number N > 106 of atoms, is needed.
The key issues are the different time scales involved and the number of particles.

The simulation applies a spatial decomposition into cubic cells. Most of the
calculation is local, except the force calculation phase. In this phase each process
needs data from all its 26 neighboring processes. Due to the use of non-local
potentials, data communication between the processes became a major part of
the execution. Hence, the decomposition at tempted to minimize the surface to
volume ratio. All communication was implemented using the PVM library.

The simulations were executed on a 16 Pentium-Pro MOSIX configuration,
and the obtained results were compared with similar executions on the IBM

633

o E

I -

100

8 0

6 0

4 0

2 0

i i i i i

MOStX -4---
SP-2 -e--.

0 I I t I !
0.5 1 2 4 8 16 32

No. of processors (log scale)

Fig. 5. MD performance of MOSIX vs. the SP-2

SP-2. The results of these executions are shown in Figure 5. From the figure it
follows that MOSIX outperforms the SP-2 by a factor of 2.6 for 16 nodes. The
corresponding factors for 4 and 8 nodes are even higher. We suspect that in these
last two cases, slower ("thin") nodes were used in the SP-2. Note that in spite
of the massive communication, MOSIX obtained .a speedup of 8.4.

. i ,

MOSIX ~ - - - 24 -;

22

E
s 1 8

~= 16 108K

256K " ~
14

864K

12

f i i , , , , T I

100000 l e+06

No. of A toms (log scale)

Fig. 6. MD scalabi]ity in problem size on MOSIX

Figure 6 shows the scalability in the problem size on MOSIX (using 8 nodes).
Observe that the t ime per a tom decreases with the increase in the problem size.
This is due to a better initial load distribution and reduced, communicat ion

634

overhead per atom. Since the simulation scales well in size, we expect that a
large number (over 4 million) of atoms can be simulated on a MOSIX system
with 32 nodes.

Observations: a cluster of Pentium-Pro 20OMHz PC's connected by Myrinet
can outperform the SP-2 for heavy applications such as MD simulations, which
are both CPU and communication intensive.

I n t e g r a t i o n u s i n g M D : This problem consists of the statistical analysis of
the desorption probabili ty of an a tom from a surface due to a nuclear st imulated
desorption. Prediction of the spatial distribution of a desorbing a tom requires
simulations over a wide range of physical parameters. The time needed for each
simulation varies considerably with the initial parameters. A single case takes
about 40 minutes (average) on an "SGI" workstation, resulting in up to a month
execution t ime for a simulation with 103 different initial conditions.

The parallelization consists of concurrent execution of a large number of
independent simulations, using different initial conditions. When some jobs end,
others are created, as needed, until a sufficiently small variance in the observed
variable was achieved. The main execution requirement is to keep the system
load balanced, in spite of the unpredictable execution times and total number of
jobs. The MOSIX system enabled to completely disregard this issue and relieved
the program from all assignment related decisions.

Observations: The MOSIX load-balancing scheme simplifies the ezecution of
jobs with unpredictable ezecution parameters, e.g., time and number of processes,
especially in the presence of other users' jobs.

5 C o n c l u s i o n s

This paper presented the performance of the MOSIX parallel system for a clus-
ter of PC's. MOSIX supports dynamic resource sharing among the PC's for
performance scalability of parallel applications in a multi-user, t ime-sharing en-
vironment. The net result is that users do not have to know the current state of
the resource usage and the load of the various workstations, or even the system
configuration. Parallel applications can be executed by simply creating many
processes, almost like in an SMP. The performance of the CC MOSIX shows a
good utilization of the resources, relatively good speedups in a scalable configu-
ration and competit ive results vs. the SP-2. A major advantage of MOSIX over
other CC environments is its ability to respond at run-time to unpredictable
requirements by many users and irregular resource usage, e.g., execution times,
memory usage or the number of processes - MOSIX adapts well to all such cases.

The main outcome of this paper is that it is possible to build a low-cost,
scalable mult icomputer system from commodity components, such as PC's and
PVM, as an alternative to traditional mainframes and MPP's . With an intelli-
gent operating system that supports global resource sharing, such as MOSIX,
these mult icomputer systems offer a convenient, general-purpose environment
for executing large scale, demanding sequential and parallel applications.

635

The CC MOSIX is fully compatible with BSD/OS [8]. It has been operational
for over 4 years. It is used for student course work, research of operating systems
for scalable CC, and the development of parallel applications. A limited (up to
6 processors) version of MOSIX, called MO6, is available on the Internet for
experimentation at URL ht tp : / /www, cs . huj • ac. i l /mos•

Acknowledgments

Special thanks to A. Shiloh for his valuable work. We would also like to thank
Y. Ashkenazy, A. Braverman, E. Fredj, B. Gerber, I. Gilderman, I. Kelson and
G. Yona for their contributions.

This research was supported in part by the Ministry of Defense and the
Ministry of Science.

References

1. T.E. Anderson, D.E. Culler, and D.A. Patterson. A Case for NOW (Networks of
Workstations). IEEE Micro, 15(1):54-64, February 1995.

2. A. Barak, S. Guday, and R.G. Wheeler. The MOSIX Distributed Operating Sys-
tem, Load Balancing for UNIX. In Lecture Notes in Computer Science, Vol. 672.
Springer-Verlag, 1993.

3. D.J. Becker, T. Sterling, D. Savarese, J.E. Dorband, U.A. Ranawak, and C.V.
Packer. Beowulf: A Parallel Workstation for Scientific Computation. In Inter.
Conf. on Parallel Processing, 1995.

4. N.J. Boden, D. Cohen, R.E. Felderman, A.K. Kulawik, C.L. Seitz, J.N.Seizovic,
and W-K. Su. Myrinet: A Gigabit-per-Second Local Area Network. IEEE Micro,
15(1):29 36, February 1995.

5. F. Douglis and J. Ousterhout. Transparent Process Miration: Design Alternatives
and the Sprite Implementation. Software Practice ~ Experience, 21(8):757-785,
August 1991.

6. A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam.
P V M - Parallel Virtual Machine. MIT Press, Cambridge, MA, 1994.

7. W. Gropp, E. Lust, and A.Skjellum. Using MPL MIT Press, Cambridge, MA,
1994.

8. R. Kolstad, T. Sanders, J. Polk, and M. Karles. BSDI Internet Server (B SD /O S
2.1) Release Notes. Berkeley Software Design, Inc., Colorado Springs, CO, January
1996.

9. M. Linial, N. Linial, N. Tishby and G. Yona. Global self organization of all known
protein sequences reveals inherent biological signatures. Molecular Biology, to ap-
pear, 1997.

