
ASSURE: Automatic Software Self-healing Using REscue points

Stelios Sidiroglou, Oren Laadan, Carlos R. Perez, Nicolas Viennot,
Jason Nieh, and Angelos D. Keromytis

Columbia University
{stelios, orenl, carlosrene, nv2195, nieh, angelos}@cs.columbia.edu

Abstract
Software failures in server applications are a significant
problem for preserving system availability. We present AS-
SURE, a system that introduces rescue points that recover
software from unknown faults while maintaining both sys-
tem integrity and availability, by mimicking system behav-
ior under known error conditions. Rescue points are loca-
tions in existing application code for handling a given set of
programmer-anticipated failures, which are automatically
repurposed and tested for safely enabling fault recovery
from a larger class of (unanticipated) faults. When a fault
occurs at an arbitrary location in the program, ASSURE
restores execution to an appropriate rescue point and in-
duces the program to recover execution by virtualizing the
program’s existing error-handling facilities. Rescue points
are identified using fuzzing, implemented using a fast co-
ordinated checkpoint-restart mechanism that handles multi-
process and multi-threaded applications, and, after testing,
are injected into production code using binary patching. We
have implemented an ASSURE Linux prototype that oper-
ates without application source code and without base op-
erating system kernel changes. Our experimental results on
a set of real-world server applications and bugs show that
ASSURE enabled recovery for all of the bugs tested with
fast recovery times, has modest performance overhead, and
provides automatic self-healing orders of magnitude faster
than current human-driven patch deployment methods.

Categories and Subject Descriptors K.6.5 [Security and
Protection]: Invasive Software

General Terms Security, Reliability, Design

Keywords Software Self-healing, Error Recovery, Reli-
able Software, Binary Patching, Checkpoint Restart

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ASPLOS’09, March 7–11, 2009, Washington, DC, USA.
Copyright c© 2009 ACM 978-1-60558-406-5/09/03. . . $5.00

1. Introduction

Software errors and vulnerabilities in server applications
are a significant problem for preserving system integrity
and availability. The accepted wisdom is to use a multitude
of tools, such as diligent software development strategies,
dynamic bug finders and static analysis tools in an attempt to
eliminate as many bugs as possible. However, experience has
shown that it is very hard to achieve bug-free software [18].
As a result, even under the best of circumstances, buggy
software is deployed and developers face a constant and
time-consuming battle of creating and releasing patches fast
enough to fix newly discovered bugs. Patches can take days
if not weeks to create, and it is not uncommon for systems
to continue running unpatched applications long after an
exploit of a bug has become well-known [23].

In the absence of perfect software, many approaches have
been proposed in an effort to tolerate and recover from soft-
ware errors. These approaches have considered various op-
tions for recovering from a fault, including filtering mali-
cious input [8, 16, 31], crashing to prevent system exploita-
tion [10], rebooting or restarting the system or parts of the
system [6], returning arbitrary values to mask faults [25], re-
playing in a changed execution environment [22], or slicing
off faulty application functionality [26, 27].

However, previous approaches suffer from one or more
problems that can limit their effectiveness and utility in
practice. These problems include the inability to deal with
polymorphic input behavior or common application scenar-
ios involving encryption, inability to handle deterministic
bugs, applicability only to memory errors and not other
kinds of bugs, lack of assurances of correct program execu-
tion, inability to work with unmodified application binaries
and requiring application or operating system modifications,
lack of validation in working with more realistic and com-
monly used multi-process or multi-threaded application de-
ployments, significant performance overhead during normal
application execution or recovery, and inability to preserve
system integrity and availability after a fault occurs.

To address these problems, we present ASSURE, a sys-
tem that provides Automatic Software Self-healing Using
REscue points. ASSURE introduces rescue points, loca-

37

tions in existing application code for handling programmer-
anticipated failures which are automatically repurposed and
tested for safely enabling general fault recovery. When a
fault occurs at an arbitrary location in the program, ASSURE
restores execution to the closest rescue point and induces the
program to recover execution by virtualizing and using its
existing error-handling facilities.

Rescue points virtualize error handling by creating a map-
ping between the (potentially infinite) set of errors that could
occur during a program’s execution (e.g., a detected buffer-
overflow attack, or an illegal memory-dereference excep-
tion) and the limited set of errors that can be handled by the
program’s code. Thus, a failure that would cause the pro-
gram to crash is translated into a “return with an error” from
an error-handling function along the execution path in which
the fault occurred. By reusing existing error-handling facili-
ties and automatically testing them before use in production
code, rescue points can reduce the chance of unanticipated
execution paths, thereby making recovery more robust. Res-
cue points do not simply mask errors. Instead, they “tele-
port” the faults to locations that are known or suspected, with
high probability, to handle faults correctly (including correct
program-state cleanup).

ASSURE first identifies candidate rescue points in an ap-
plication offline using fuzzing [15], then implements, tests,
and deploys rescue points online in response to the occur-
rence of faults using an Observe Orient Decide Act (OODA)
feedback loop [2]. During the application’s production use,
ASSURE monitors the application for faults. If a fault is
detected for the first time, ASSURE uses a replica of the
application (a copy of the application and all of its state)
to determine which candidate rescue point can be most ef-
fectively used. The selected candidate rescue point is then
implemented using exception handling and an operating
system checkpoint-restart mechanism that handles multi-
process and multi-threaded applications. ASSURE confirms
that it has repaired the fault by re-running the application
against the event sequence that apparently caused the fail-
ure, as well as against already known good and bad input.
Upon success, ASSURE uses runtime binary injection to
insert the rescue point into the application running on the
production server. When the fault occurs again on the pro-
duction server, the application uses the rescue point to roll
back state to the rescue point, where the program is forced
to return an error, imitating the behavior observed during
fuzzing. The system is designed to operate without human
intervention to minimize reaction time.

We have implemented an ASSURE Linux prototype that
operates without application source code and without base
operating system kernel changes. To demonstrate its effec-
tiveness, we have evaluated our prototype on a wide range of
real-world server applications and bugs. We focus on server
applications because they typically have higher availability
requirements and also tend to have short error-propagation

distances [25] that lend themselves to our approach. Our ex-
perimental results show that ASSURE identified and used
rescue points to successfully recover from all of the bugs
tested. Unlike other approaches, our evaluation validated
ASSURE’s ability to recover in the presence of bugs for
application deployments in typical multi-process and multi-
threaded configurations while running widely used work-
loads for measuring performance. Our performance mea-
surements showed that ASSURE recovered from faults in
just a few milliseconds for all applications and incurred less
than 10% performance overhead during normal execution.
Furthermore, our results show that ASSURE provides auto-
matic and tested self-healing of legacy applications in a few
seconds to minutes depending on the level of testing desired,
orders of magnitude faster than current human-driven patch
deployment methods.

ASSURE provides several key advantages over other ap-
proaches: (1) It operates without human intervention. (2) It
does not require access to or modification of application or
operating system kernel source code. (3) It does not require
additional network infrastructure for deployment. (4) It han-
dles polymorphic input behavior and encrypted traffic. (5)
It goes beyond just handling memory errors and is better at
dealing with deterministic bugs. (6) It works for both multi-
threaded and multi-process applications. (7) It uses applica-
tion error handling semantics and includes a testing phase
to provide greater assurance of correct application execution
in the presence of faults. (8) It incurs modest performance
overhead. The unique end result is automatic self-healing
of software services from what were previously unknown
and unforeseen software failures, maintaining both system
integrity and availability.

This paper presents the design, implementation and eval-
uation of ASSURE. Section 2 discusses related work. Sec-
tion 3 presents the ASSURE system architecture and dis-
cusses in detail the concept of rescue points. Section 4
presents experimental results. Finally, we present some con-
cluding remarks.

2. Related Work
Many approaches have been proposed to tolerate and recover
from software errors. Schemes such as StackGuard [10] and
ASLR [20] focus on protection from code injection attacks
and preventing a system from being exploited due to a bug.
They preserve system integrity by terminating the applica-
tion when a fault occurs, but are unable to maintain system
availability.

Reboot techniques, including whole program restart [29],
software rejuvenation [13], and micro-rebooting [6], at-
tempt to return a system to a clean state before or after
encountering a fault. Whole program restart can take a long
time, resulting in substantial application down-time. Micro-
rebooting can be faster by only restarting parts of the system,
but requires a complete rewrite of applications to compart-

38

mentalize failures. None of these techniques effectively deal
with deterministic bugs, since these may recur post-restart.

Checkpoint-restart techniques [3, 11] can be used in a
manner similar to whole program restart, but can provide
faster restart times since restarts are done from a checkpoint.
When used in this way, these techniques still do not han-
dle deterministic bugs, since these bugs will still occur af-
ter restarting. Other uses of checkpoint-restart in conjunction
with running multiple program versions have also been pro-
posed [3] which may survive deterministic bugs if failures
occur independently. However, they incur prohibitive costs
for most applications in terms of developing, maintaining,
and running multiple application versions at the same time.

Automatic signature generation for network intrusion de-
tection systems [21, 17] defends against vulnerabilities by
filtering inputs to weed out attacks. A key problem is that
such signatures are quite susceptible to false positives, es-
pecially for polymorphic attacks. Furthermore, polymorphic
behavior has been shown to be far too varied to be modeled
effectively by signatures [28].

Vigilante [8] improved on network input filtering through
automated creation of host-based input filters. Host-based
filters offer improved accuracy and higher tolerance for de-
tecting semantically equivalent inputs. Unfortunately, they
require protocol-specific parsers and cannot handle complex
rules, encryption and specific application state. Shield [32]
and VSEF [4] generate vulnerability-specific signatures in-
stead of input-specific signatures. They provide the ability
to handle specific application state and encrypted traffic and
have many fewer false positives than network- or host-based
input filtering. However, the only option available upon de-
tection of a malicious input is to terminate execution.

Rx [22] uses a checkpoint-restart mechanism in con-
junction with mechanisms to change the execution envi-
ronment in an effort to recover from bugs. However, previ-
ous work [7] found that over 86% of application faults are
independent of the operating environment and entirely de-
terministic and repeatable, and that recovery is likely to be
successful only through application-specific or application-
aware techniques. While Rx examines a broader scope for
changing the environment including dropping malicious in-
put requests, dropping requests have been shown to be in-
effective in practice due to polymorphic behavior [28]. Rx
attempts to mask the manifestation of faults to the client,
but needs to employ a protocol-aware application proxy that
must be capable of filtering out information such as time
stamps that would confuse the client program. The use of a
proxy complicates the use of the growing numbers of appli-
cations that employ encryption. Rx requires operating sys-
tem kernel changes, which serves as another impediment
to deployment. Finally, Rx does not address consistency is-
sues in checkpointing and restarting applications involving
multiple processes.

Sweeper [31] combines the Rx checkpoint-restart mech-
anism and proxy with VSEF. If a fault occurs, Sweeper
uses taint analysis and backward slicing to identify the in-
put that led to the failure, generates an input filter to drop
this and similar future requests, then rolls back to a previ-
ous checkpoint and replays the input sans the bad request.
Since Sweeper reduces VSEF to being used for input signa-
ture generation, it suffers from the same input filtering limi-
tations described earlier (polymorphism and encrypted traf-
fic).

Acceptability-oriented computing [9, 24, 25] promotes
the idea that current software development efforts might be
misdirected, based on the observation that certain regions
of a program can be neglected without adversely affecting
the overall availability of the system. Failure-oblivious com-
puting [25] is a speculative recovery technique that builds
on a compiler to insert code to deal with memory-writes
to unallocated memory by virtually expanding the target
buffer. Such a capability aims to provide a more robust fault
response than simply crashing albeit at significant perfor-
mance overhead, ranging from 80% up to 500% for a variety
of different applications.

Selective Transactional EMulation (STEM), as used in
the Reactive Immune System [27], is a speculative recovery
technique by two of the authors that identifies the function in
which a fault occurs, then selectively emulates that function
and potentially others within a larger scope to return error
values in an attempt to recover from the fault. STEM uses
the notion of error virtualization to mean the return of an
heuristic-based error value from a function in which a fault
occurs. This is very different from the notion of rescue point
error virtualization used in ASSURE, which reuses existing
error handling code in applications and returns values based
on profiling those functions to mimic system behavior under
controlled and anticipated error conditions. Unlike STEM,
ASSURE does not require source code, works with multi-
process and multi-thread applications, provides significant
improvements in system performance, and demonstrates bet-
ter fault recovery across a broader range of applications and
vulnerabilities.

3. ASSURE Architecture

ASSURE provides architectural support for application self-
healing in the presence of unanticipated faults in a fully au-
tomated manner. The system continuously monitors the ap-
plication for failures and identifies strategies using rescue
points for reacting to future occurrences of the same or sim-
ilar failures. Once a strategy is selected, ASSURE dynami-
cally modifies the application, using dynamic binary injec-
tion, so that it is able to detect and recover from the same
fault in the future. The objective of our system is to automat-
ically create a temporary fix for a particular problem until a
vendor’s solution is made available.

39

(3) Rescue-point
Analysis (triage)

 Fault Detected (4) Dynamic Patch

TIME

{Vulnerability
Window

(2) Production
System

(5) Patched
Production

System

(1) Profiling:
Prior to deployment

Figure 1: System overview: ASSURE lifecycle

Figure 1 illustrates the high-level operation of ASSURE.
Prior to its deployment, the application is profiled to dis-
cover candidate rescue points. After the profiling completes,
the application is deployed in its production environment.
During normal execution, ASSURE monitors the application
with a variety of light-weight instrumentation mechanisms
that facilitate the detection and reporting of application and
system misbehavior. In addition, the system takes periodic
checkpoints of the application state and maintains an execu-
tion log (including network traffic).

When a fault is detected during execution, the latest ap-
plication checkpoint state along with the log of all the in-
puts since that checkpoint is transferred to a triage system,
a shadow deployment of the application, where the fault is
analyzed. ASSURE then carries out an automated process
whose goal is to identify a suitable rescue point to which
the application can recover execution should that particu-
lar fault re-manifest. During this time, the production sys-
tem remains vulnerable to re-occurrences of the fault, re-
sulting in a vulnerability window, in which the application
may need to resort to full application restarts to recover ser-
vice. While our system may require some downtime for the
analysis phase, Section 4.3 shows that this is in the order of
seconds, and the cost is amortized as it is incurred once per
new fault. Combining our approach with techniques such as
micro-rebooting [6] is a topic of future research.

Once a candidate rescue point is selected, ASSURE con-
firms that it is suitable for deployment by verifying that it
satisfies three criteria: survivability, correctness and perfor-
mance. A selected rescue point provides survivability if error
virtualization at that point enables the application to survive
a recurrence of the fault. A rescue point is correct if it does
not introduce semantic errors, and if the application can ser-
vice future requests correctly. A rescue point is efficient if the
performance implications of protection do not impose signif-
icant run-time overhead. Survivability is verified by replay-
ing the sequence of events that apparently triggered the fault.
Correctness is verified using extensive testing that is tailored
for the specific operation of the application. Efficiency is op-
timized by also using performance as a metric in deciding
which rescue point is more appropriate.

As soon as a suitable rescue point is verified, ASSURE
produces a remediation patch that is dynamically applied
to the software while the application is executing on the
production system. The patch instantiates a rescue point

inside the application to protect the application against the
recurrence of the particular fault. The modified application
will trigger a checkpoint whenever execution reaches the
rescue point, and rolls back its state to that point should
the fault recur. Once execution is rolled back to the rescue
point, error virtualization is used to leverage the existing
error-handling capabilities of the application to handle the
fault gracefully. Instead of filtering particular inputs that can
cause faults, the patch hardens the application against faults
that may occur at a specific program location. The resulting
recovery mechanism is input-agnostic, and thus immune to
risks related to fault/input polymorphism.

3.1 Rescue Point Example

ap_proxy_
ftp_handler()

(4) Error
Virtualization

 (3)Fault Detected
(SIGSEGV)

(5) Restore

(2) Checkpoint(6) Return error
502(HTTP proxy error)

No error

ap_pass_
brigade()

ap_proxy_send
dir_filter()

proxy_run_
scheme_
handler()

(1) Malicious Input

Figure 2: Self-healing using rescue points: Example with real
Apache bug (ASF Bug 40733)

Figure 2 illustrates ASSURE’s self healing on a real bug
in the Apache web server. A description of the bug is given in
Table 1 . The scenario involved the execution of three func-
tions: ap proxy ftp handler(), ap pass brigade() and
ap proxy send dir filter(). Due to bad input, the bug
manifests in ap proxy send dir filter(), and results in
a memory fault (SIGSEGV). ASSURE intercepts the first
occurrence of the fault, identifies ap proxy ftp handler()
as a suitable rescue point, and instruments the Apache server
as follows. Whenever the patched server enters the func-
tion ap proxy ftp handler(), ASSURE takes a check-
point of the server state, and allows the server to pro-
ceed with execution. If the same (or similar) fault oc-
curs in ap proxy send dir filter(), the fault detec-
tion component in the patched server detects the error
and notifies the error virtualization component. The er-
ror virtualization component analyzes the fault informa-
tion and rolls back the server state back to the rescue point
in ap proxy ftp handler(). Instead of allowing execu-
tion to proceed down the same path that caused the fault
to manifest, ASSURE uses error virtualization to force
ap proxy ftp handler() to return with an error value
identified during the application profiling stage, namely 502
(HTTP “Proxy Error”). Using this example, we now describe
in further detail how ASSURE discovers, selects, creates,
tests, and deploys rescue points.

40

3.2 Rescue Point Discovery

To discover candidate rescue points, ASSURE profiles an
application prior to deployment using dynamic analysis
with fuzzing. The intuition is that there exists a set of
programmer-tested application points that are routinely used
to handle expected errors which can be discovered by learn-
ing how an application responds to “bad” input under con-
trolled conditions. For example, we would like to see how a
program normally handles errors when stress-tested by qual-
ity assurance tests. This knowledge is then used in the future
to map previously unseen faults to a set of observed fault
behaviors.

ASSURE instruments applications offline to discover
candidate rescue points by inserting monitoring code at ev-
ery function’s entry and exit points using the run-time in-
jection capabilities of Dyninst [5], a runtime binary injec-
tion tool. The instrumentation records return values, func-
tion parameters, and return types (the latter two are avail-
able only when the binary is not stripped) while the ap-
plication is bombarded with faults (through fault injection)
and fuzzed inputs (e.g., malformed protocol requests). From
these traces, ASSURE extracts function call-graphs along
with the history of return values used at each point in the
graph. We call these graphs the rescue-traces.

ap_proxy_
ftp_handler()

ap_pass_
brigade()

ap_proxy_send
dir_filter()

(2) Record return
values

(502,...) (0,...) (0,..)

(1) "Fuzzing" Input

proxy_run_
scheme_
handler()

Figure 3: Rescue-trace creation

Figure 3 illustrates part of a rescue-trace for the exam-
ple in Section 3.1. It shows a summarized execution trace
that includes three functions: ap proxy ftp handler(),
ap pass brigade() and ap proxy send dir filter(),
as well as the observed error values that are associated with
each function, which are 502, 0, and 0 respectively.

3.3 Fault Detection and Reproduction

ASSURE continuously monitors the execution of the appli-
cation in the production system to detect application failures
and misbehavior, and records sufficient information about a
fault so that it can be reproduced to determine a suitable res-
cue point. To detect failures and misbehavior, ASSURE em-
ploys a variety of fault-detection mechanisms. It is not tied
to any particular fault-detection mechanism, and is compati-
ble with any such mechanism that simply notifies the system
of the occurrence of a fault. In the example in Section 3.1,
the segmentation violation indication (SIGSEGV) was used
as a signal of improper memory handling. Besides standard
operating system error handling (e.g., program termination
due to illegal memory dereferences), ASSURE can use addi-
tional mechanisms for detecting memory errors. There are a

number of available fault detection components that can de-
tect memory errors, for instance ProPolice [10], ASLR [20],
and TaintCheck [16], and some that can detect violations to
security policies [1, 12].

To reproduce a fault, ASSURE uses execution logging
and periodic checkpointing to record and recreate the se-
quence of events that led to the manifestation of the fault. We
only present an overview of the logging mechanism due to
space constraints; a detailed description is beyond the scope
of this paper. The checkpoint mechanism is the same as used
for implementing rescue points as described in Section 3.6.

ASSURE records all inputs (between checkpoints) to ap-
plication processes so that they can replayed for both multi-
core and multi-processor environments. ASSURE accounts
for nondeterministic execution by accurately recording all
forms of interaction between processes and their execu-
tion environment and, in turn, is able to precisely replay
them. Nearly all such interactions involve system calls, that
can be divided into two broad categories: with and with-
out side-effects. System calls without side-effects, such as
getpid and gettimeofday, need not be re-executed. Their
effect can be emulated by intercepting their return value.
In contrast, system calls with side-effects (e.g., brk and
fork) must be replayed for their desired effect to take place.
Among the latter are also system calls such as pipe and
write whose effect may be visible after the replay com-
pletes and the system goes ”live”.

With multiple processes, ASSURE does not aim to re-
peat the exact scheduling order as in the original execution;
rather, it tries to ensure that system calls and other events are
ordered correctly by tracking their dependencies. ASSURE
identifies related system calls (namely, the outcome of one
depends on the execution of the other) and coordinates their
execution using rendezvous points. The order of system calls
is tracked during logging and then enforced during replay.

Periodic checkpointing at the production machine has the
following benefits. First, it provides a snapshot of applica-
tion state which, in conjunction with the execution log, can
re-create the state of the application when the fault occurred.
This is a critical requirement for the analysis step in order to
reproduce the fault and subsequently provide a remedy. Sec-
ond, it places a bound on the size of the execution log that
needs to be maintained; the system only keeps track of the
execution that happened since the last checkpoint. Third, it
minimizes the time it takes to reproduce the fault. The sys-
tem simply needs to replay the execution record since the last
checkpoint. Fast fault reproduction is of vital importance to
ASSURE as it reduces the vulnerability window.

3.4 Rescue Point Selection

The ability to identify, and more importantly, reproduce
faults allows us to select the most appropriate rescue point
for each detected failure. When a fault is detected in a spe-
cific code region for the first time, the call-stack is examined
to derive the sequence of functions that led to the fault. At

41

that point, ASSURE compares the call-stack with the rescue-
trace from the discovery phase to derive common nodes. The
common nodes form the set of candidate rescue points, or
the rescue-graph. If the call-stack is corrupted, as in the case
of a buffer overrun, it is reproduced while replaying the input
that led to the failure.

Once candidate rescue points are identified, ASSURE at-
tempts to determine their return type. If debugging informa-
tion is available, function return types can be extracted di-
rectly from the binary. In the case of stripped binaries, as
is the case with most commercial off-the-shelf (COTS) ap-
plications, ASSURE estimates the actual return type of the
function through a set of heuristics that work on the ob-
served return values found in profiling traces and through
binary analysis . Candidate rescue points are filtered accord-
ing to heuristics that consider both the return type (if avail-
able) and the observed return values. Currently, candidate
rescue points are functions with non-pointer return types, or
functions that return pointers but the observed return value
is NULL. Functions that return pointers require a deeper in-
spection of the data structures to ascertain the values of their
return types beyond the simple case of returning a NULL. Pre-
liminary empirical examination shows that the examined C
programs favor the use of integer return types as failure in-
dicators.

Next, ASSURE examines the return value distribution
that was found at each candidate rescue point. The objective
is to find a value that the error virtualization component can
use to trigger error-handling code. The obvious strategy is
to use the most frequently occurring return value, given that
the profiling runs consist of execution traces that propagate
errors. This is especially true in the absence of source code,
where ASSURE cannot verify how the actual code handles
errors.

(3) Create rescue-graph

Input "Bad" Input

foo()

bar()

other()

Input(1) Malicious
Input

foo()

bar()

bad()

Rescue GraphExecution Graph

(2) Walk stack

Figure 4: Rescue-graph creation

Figure 4 illustrates how candidate rescue points are iden-
tified for a particular fault. When a fault is detected in
ap proxy send dir filter(), the call-stack is examined
to determine the execution path that had lead to the ob-
served failure. This path is compared against the rescue-trace

to determine overlapping functions that form the rescue-
graph. Using the same example from the figure, functions
ap proxy ftp handler() and ap pass brigade() form
the rescue graph for the particular fault instance.

The rescue points in the rescue-trace can be sorted using
different selection strategies. We chose perhaps the simplest:
sort the rescue points by shortest distance to the faulty code
that represents an active function on the call graph. The idea
is that suitable rescue points that reside closer to the fault
will minimize the performance overhead that rescue points
incur (due to checkpointing and monitoring for the specific
fault), since they might avoid critical application paths that
get invoked on each request. Another reason for minimizing
the distance between fault and rescue point becomes appar-
ent when dealing with multi-process/multi-threaded appli-
cations. Namely, a short distance minimizes the amount of
progress non-faulty processes/threads make thus minimiz-
ing the amount of work that will need to be reverted in the
case of a failure. Additionally, it reduces the chance that any
externally visible communication would have occurred dur-
ing this time. We measure rescue depth and rescue-to-fault
distance in Section 4.2.

ASSURE follows this ordering to instantiate and test res-
cue points, seeking one that enables recovery from the given
fault. If the closest rescue point fails the test, ASSURE
chooses the nearest active ancestor and repeats.

3.5 Rescue Point Creation

Having determined a set of candidate rescue points, AS-
SURE can now activate and test rescue points. To activate
a rescue point, ASSURE needs to insert code into the ap-
plication running in the testing environment. This is done
using the same mechanism for deploying the rescue point on
the production server as described in Section 3.7. Using this
mechanism, ASSURE activates a rescue point by inserting
at the function designated as the rescue point a call to int
rescue capture(id,fault) as shown in Figure 5. The
parameter id uniquely identifies a rescue point; fault is a
structure that contains all additional information pertaining
to the rescue point, including the error virtualization code to
be used to force an early return. In our example, this call is
inserted in ap proxy ftp handler().

int rescue_point(int id, fault_t fault) {

int rid = rescue_capture(id, fault);

if (rid < 0)

handle_error(id); /* rescue point error */

else if (rid == 0)

return get_rescue_return_value(fault);

/* all ok */

...

}

Figure 5: Rescue point capture

42

The rescue capture() function is responsible for cap-
turing the state of the application as it executes through
the rescue point by performing a checkpoint. Checkpoints
are kept entirely in memory using standard copy-on-write
semantics and are indexed by their corresponding identi-
fiers. rescue capture() returns the rescue point identifier
upon a successful checkpoint, or zero when it returns fol-
lowing a rollback of the application state. A typical call-
ing sequence is given in the following code snippet. Sim-
ilar to fork() semantics, the return value of the function
rescue capture() directs the execution context.

3.6 Rescue Point Checkpoint/Rollback

To support checkpoint-rollback of cooperative processes,
ASSURE places the applications inside a virtual execution
environment based on Zap [14, 19]. Building on Zap, AS-
SURE leverages the standard interface between applications
and the OS to transparently encapsulate the applications in a
virtual namespace. This is essential to support the ability to
continuously checkpoint, and later roll back multi-process
applications, allowing them to use the same OS resource
names as used before being checkpointed, even if they are
mapped to different underlying OS resources upon rollback.

A rescue point must satisfy two key requirements. First,
it must provide a coordinated and consistent checkpoint of
multiple processes and threads and their execution environ-
ment; this is quite different from just checkpointing a single
process. Second, it must have minimal impact on the ap-
plication performance. To address these requirements, AS-
SURE takes a globally consistent checkpoint across all pro-
cesses (and threads) of the application while they are stopped
so that nothing can change, but then minimizes the type and
cost of operations needed while everything is stopped.

The key issue with multi-process (and multi-threaded)
applications is that checkpoints are always initiated by a pro-
cess as they must occur at designated safe locations. Since
processes share state and execution environment, they must
agree on the state at any point in time. However, when a pro-
cess reaches a rescue point, it will generally have to wait for
a considerable amount of time for the remaining processes to
also reach a suitable location. Instead, ASSURE uses a priv-
ileged process outside the execution environment to perform
the consistent checkpoint of the entire application.

ASSURE stores checkpoints in main memory, eliminat-
ing the need to write the data to disk. It reduces checkpoint
time due to copying memory blocks as well as the amount of
memory required for the checkpoint by leveraging copy-on-
write techniques. Checkpoints are associated with a context
that identifies the corresponding rescue point and process.
Multiple checkpoints can be can coexist for the same res-
cue point or for the same process. The scope of a checkpoint
is valid until execution returns normally or following a roll-
back, at which point the checkpoint is discarded.

Keeping checkpoints entirely in memory allows us to not
only save the state of a resource, but also keep a reference

to it. ASSURE leverages this to preserve selected resources
as is across application rollback, instead of restoring to the
previous state. In particular, ASSURE uses this to eliminate
the need to reset a connection between a client and the ap-
plication upon a rollback, by keeping the underlying socket
as is. This is particularly useful for connection-oriented ser-
vices, and to processes other than the one that experienced
the fault.

3.7 Rescue Point Testing

Once a candidate rescue point has been selected, ASSURE
proceeds to verify the efficacy of the proposed fix, by test-
ing the rescue-enabled version of the application. To accom-
plish this, ASSURE restarts the application from the most
recent checkpoint image available in a separate testing en-
vironment, and then replays the recorded execution log that
led the failure. When the fault occurs and triggers a rollback
to the selected rescue point, its effects on program execution
are examined. If the application crashes, fails to maintain
service availability, or is not semantically equivalent, a new
fix is created using the next available candidate rescue point
and the testing and analysis phase is repeated.

If the fix does not introduce any faults that cause the ap-
plication to crash, the application is examined for semantic
bugs using a set of user-supplied tests. The purpose of these
tests is to increase confidence about the semantic correctness
of the generated fix. For example, an online vendor could
run tests that verify that client orders can be submitted and
processed by the system. Finally, the run-time performance
implications of our fix are examined to ensure acceptable
operation characteristics.

For our initial approach, we are primarily concerned with
failures where there is a one-to-one correspondence between
inputs and failures, and not with those that are caused by
a combination of inputs. Note, however, that many of the
latter types of failures are in fact addressed by our system,
because the last input (and the code leading to a failure)
will be recognized as “problematic” and handled as we have
discussed.

3.8 Rescue Point Deployment

Once we have a rescue point, we want to instantiate it on the
production system without delay. Swift patch deployment is
of foremost importance in “reactive” systems. First, it re-
duces system downtime and subsequently improves system
availability. Second, it allows for the deployment of critical
fixes that could curtail the spread of large-scale epidemics
such as in the case of worms. Previous work has relied on a
traditional software development cycle of making changes to
source code (albeit automatically through source-to-source
transformations), compiling, linking, testing and then instan-
tiating the new version of the application. For our deploy-
ment mechanism we use Dyninst [5] for its low runtime
overhead and its ability to attach and detach from already
running processes. Note that in addition to being used for

43

the final rescue point patch deployment on the production
server, the same runtime injection mechanism is also used to
insert rescue points into the shadow deployment of the ap-
plication during rescue-point testing, and to inject the fault
monitoring mechanism into the production server.

4. Experimental Evaluation
We have implemented an ASSURE prototype system for
Linux. It consists of user-space utilities and loadable kernel
modules for the off-the-shelf Linux 2.6 kernel that provide
the virtual execution environment with checkpoint-restart
and log-replay facilities, and Dyninst 5.2b3 for runtime code
injection. Using this prototype, we evaluate the effectiveness
of ASSURE on real bugs and standard workloads for a num-
ber of popular multi-process and multi-threaded server ap-
plications. For all experiments, the process was fully auto-
mated, with the exception of generating profiling informa-
tion and triggering the bug. Profiling process needs to oc-
cur once per application (or be provided as part of a test-
ing suite). All experiments were conducted on machines
with dual Intel Xeon 3.06 GHz processors and 2.5 GB of
RAM, connected through a 1 Gbps Ethernet connection.
The servers and clients ran on separate machines.

We evaluate the effectiveness of ASSURE in handling
bugs along three axes: survivability, correctness and perfor-
mance. Survivability examines ASSURE’s ability to main-
tain service availability in the presence of a bug-induced
software failure. ASSURE detects failures and automati-
cally initiates the recovery process. Post-recovery, we mon-
itor the server for failures that might have been induced by
our mechanism and verify that the server continues to ser-
vice requests correctly. Since it is possible that the recov-
ery mechanism introduced side-effects, we verify the cor-
rectness of server output following recovery: we not only
examine the ability of the server to provide service, but also
compare server output to predefined test-suites to support
claims of semantic equivalence. Finally, we look at various
performance implications of ASSURE in terms of both full
system overhead at the production server and piecewise ex-
amination of system components.

4.1 Bug Summary

Table 1 lists the bugs and vulnerabilities that we used to
evaluate ASSURE. We used eight bugs for six popular ap-
plications: Apache, named (ISC Bind), MySQL, Squid,
OpenLDAP and PostgreSQL. The bugs range from illegal
memory dereferences to off-by-one errors and buffer over-
flows as indicated by column Bug in Table 1. We trigger bugs
using existing or specially crafted exploit code based on in-
formation derived from online vulnerability databases. We
did not have bugs available for closed-source Linux applica-
tions to evaluate since most popular Linux applications are
open-source. While our examination consists of open-source
applications, they were treated as commercial-off-the-shelf

(COTS) software by stripping binaries of all symbols and
removing access to source code.

4.2 Overall Functionality Results

Table 1 demonstrates the overall effectiveness of running
ASSURE against a set of real-world bugs and vulnerabili-
ties. For each bug, the table shows the affected application,
the type of bug and its reference, and a benchmark used
to verify the correctness and measure the performance. For
each examined bug, ASSURE was able to find a rescue point
that allows the application to survive the induced failure.

In detail, bugs are triggered during the execution of a
benchmark to measure recovery when the application is un-
der load. The application is monitored to examine its ability
to successfully complete the benchmark. If the benchmark
completes, we have a measure of survivability and perfor-
mance. At that point, the application is tested for correctness
either through an examination of the benchmark results (if
they report correctness) or through additional tests that ex-
amine and compare the output to an expected set of results.
For each bug, we report the rescue depth and rescue value:
the distance between the fault and the rescue point and the
error virtualization value used to propagate errors.

Columns depth and value indicate the rescue depth and
rescue value, respectively, for each bug. The average ob-
served rescue depth for the bugs is 2. As previously men-
tioned, we evaluate rescue points for survivability, correct-
ness and performance. In the case of MySQL, ASSURE found
a rescue point at rescue depth 1 that allowed the application
to pass the survivability and correctness tests but it was a res-
cue point at depth 2 that provided better performance char-
acteristics. The reason was that the rescue point at depth 2
allowed the benchmark to complete without triggering ex-
cessive checkpoints. Our testing framework was able to de-
termine this behavior automatically.

A short rescue depth is encouraging because it indicates
that rescue points tend to cluster close to faults, minimizing
the effect they might have on system performance. For multi-
process (or multi-threaded) servers, this also means that the
amount of progress by processes (or threads) other than the
one that experienced the fault is limited, and therefore their
rollback is less likely to cause collateral damage. For in-
stance, a short rescue depth can reduce the chance that any
client-visible communication will have occurred between
checkpoint and rollback. Figure 6 presents the distance be-
tween a checkpoint and a rollback in milliseconds. Specif-
ically, we measure the time between when a checkpoint is
taken and when a subsequent rollback occurs. The error
bars show the average lag time between checkpoint/rollback
command issuing and completion. In detail, they indicate the
average time from checkpoint completion to execution con-
tinuation, and elapsed time from when a rollback begins and
until activity of the old processes ceases. The values shown
in the graph range from 1.8 ms for Apache 1.3 to 26 ms
in the case of Postgres. We argue that for most of the ex-

44

Application Version Bug Reference Depth Value Benchmark
Apache 1.3.31 Buffer overflow CVE-2004-0940 1 NULL httperf-0.8
Apache 2.0.59 NULL dereference ASF Bug 40733 3 502 httperf-0.8
Apache 2.0.54 Off-by-one CVE-2006-3747 2 -1 httperf-0.8

ISC Bind 8.2.2 Input Validation CAN-2002-1220 2 -1 dnsperf 1.0.0.1
MySQL 5.0.20 Buffer overflow CAN-2002-1373 2 1 sql-bench 2.15
Squid 2.4 Input Validation CVE-2005-3258 1 void WebStone 2.5b3

OpenLDAP 2.3.39 Design Error CVE-2008-0658 2 80 DirectoryMark 1.3
PostgreSQL 8.0 Input Validation CVE-2005-0246 1 0 BenchmarkSQL 2.3.2

Table 1: List of real vulnerabilities and bugs used in the evaluation. ASSURE recovered from all bugs; for each bug we show the
rescue-distance and the virtualized error value used.

amined applications, the recorded checkpoint-to-fault times
represents less than one request thus minimizing impact on
progress made by other processes/threads.

The range of return values used by rescue points show a
degree of correlation with previously observed results [27].
Values of 0 and -1 are often used to propagate errors but
there are cases, as in Apache mod ftp bug and openLDAP,
where observed values of 502 and 80, respectively, are more
appropriate values to return.

4.3 Patch Generation Performance

To evaluate the responsiveness of ASSURE in generating a
patch for a newly discovered failure, we measured the total
time required to go from fault-to-patch. In other words, from
when a fault is first detected on the production system to the
dynamic application of the patch.

Figure 7 shows the average times, in seconds, to create
a working, tested patch for each of the bugs. Total denotes
the total time required to create, test and apply a patch.
The total time is broken down into two parts: apply shows
the time it takes to attach to a running process and insert
the rescue-point using ASSURE’s instrumentation, and test
shows the time required to run the survivability, correctness
and performance test, on average, for a successful rescue
point. Note that the time required to generate the rescue
graph for a particular fault is negligible, given that the stack
trace was less than 15 functions deep in all cases.

As shown in Figure 7, the average total patch generation
time varied between 15 and 92 seconds. For a given applica-
tion and a correctness test-suite, the total time was roughly
linear with the rescue depth as tests are repeated for each
potential rescue point. These times are conservative in two
ways. First, our prototype allows the correctness test-suite to
run to completion before moving on to the next rescue point
candidate. This can be optimized by rejecting an unsuitable
rescue point at the time a test fails rather than analyzing re-
sults after completing the test. Second, our prototype serial-
izes the process of rescue point selection and testing. With a
typical rescue depth of at most 3, this can be optimized by
simply testing rescue points in parallel. Other parallelization
can also be done, such as parallel execution of different tests
for a given rescue point.

The breakdown of the total time shows that the survivabil-
ity and correctness testing is the dominant factor in the end-
to-end latency of the patch generation process. For this eval-
uation we used test-suites that stress test the applications in
order to reveal long-term side-effects such as memory leaks.
In practice, organizations deploying ASSURE can choose to
minimize testing so that it encompasses core functionality
and thus reduce the time required to test each rescue-point.
Alternatively, if they are concerned with correctness, more
comprehensive tests can be used, providing a trade-off be-
tween the time to generate a patch and testing coverage.

The time required by ASSURE to create and dynamically
apply a rescue-point patch ranged from 70 ms for Apache
1.3.1 to 120 ms for mysql. The brunt of that cost is loading
and parsing the ASSURE instrumentation library into the
runtime image of the server. The numbers represent great
improvements over the traditional patch, compile, stop and
restart cycle.

Although these results represent an unoptimized imple-
mentation, they show a patch turn-around-time that is orders
of magnitude faster than manually created patches. Accord-
ing to Symantec, the average time between discovery of a
critical memory error and a subsequent patch is 28 days [30].
We should note that ASSURE’s aim is not to replace the
patch-creation process but rather to add an intermediate op-
tion that administrators can use to improve system availabil-
ity while waiting for manually created and thoroughly tested
patches. In fact, ASSURE’s testing process can be used by
patch creators to augment their existing portfolio.

4.4 Recovery Performance

For each bug, we evaluate the fault recovery performance
of ASSURE. Specifically, we measure the time to recover
application state to a rescue point once a fault has been
detected. As in previous experiments, the fault was trig-
gered while the application was busy completing the spec-
ified benchmarks to measure recovery under load.

We compared ASSURE’s recovery time with that of a
whole application restart after a fault, in which we measured
the elapsed time from launching the application until it be-
comes operational and ready to serve requests. Whole appli-
cation restart does not necessarily allow recovery, but it can

45

 0

 5

 10

 15

 20

 25

 30

 35

 40

ap
ac

he
1.

3.
31

ap
ac

he
2.

0.
59

ap
ac

he
2.

0.
54

bi
nd

m
ys

ql

sq
ui

d

op
en

ld
ap

po
st

gr
es

ql

T
im

e
(m

s)

Application

Figure 6: Rescue-point to fault

 0

 20

 40

 60

 80

 100

ap
ac

he
1.

3.
31

ap
ac

he
2.

0.
59

ap
ac

he
2.

0.
54

bi
nd

m
ys

ql

sq
ui

d

op
en

ld
ap

po
st

gr
es

ql

Ti
m

e
(s

)

Application

Total
Apply
Test

Figure 7: Patch generation time

 0

 1

 2

 3

 4

 5

ap
ac

he
1.

3.
31

ap
ac

he
2.

0.
59

ap
ac

he
2.

0.
54

bi
nd

m
ys

ql

sq
ui

d

op
en

ld
ap

po
st

gr
es

ql

Ti
m

e
(s

)

Application

ASSURE
Restart

Figure 8: Recovery time

0

0.2

0.4

0.6

0.8

1

ap
ac

he
1.

3.
31

ap
ac

he
2.

0.
59

ap
ac

he
2.

0.
54

bi
nd

m
ys

ql

sq
ui

d

op
en

ld
ap

po
st

gr
es

ql

No
rm

al
ize

d
pe

rfo
rm

an
ce

Application

ASSURE
ASSURE with Faults

Figure 9: Normalized performance

 0

 10

 20

 30

 40

 50

 60

ap
ac

he
1.

3.
31

ap
ac

he
2.

0.
59

ap
ac

he
2.

0.
54

bi
nd

m
ys

ql

sq
ui

d

op
en

ld
ap

po
st

gr
es

ql

Ti
m

e
(m

s)

Application

46 41 42 3 11 10 10

16

Figure 10: Checkpoint time (# processes)

 0

 20

 40

 60

 80

 100

 120

 140

 160

ap
ac

he
1.

3.
31

ap
ac

he
2.

0.
59

ap
ac

he
2.

0.
54

bi
nd

m
ys

ql

sq
ui

d

op
en

ld
ap

po
st

gr
es

ql

Re
sc

ue
 p

oi
nt

 s
ta

te
 s

ize
 (K

B)

Application
Figure 11: Checkpoint size

reset the server to enable it to serve future requests even if it
does not allow a workload that was running at the time of the
fault to complete. While it does not provide the same level
of survivability as ASSURE, it provides a useful comparison
of recovery time. Note that this comparison is on the con-
servative side, since most servers accumulate state in dedi-
cated caches to significantly improve their performance; our
measurements do not capture the negative effect of whole
program restart on performance due to effectively discarding
that state and caches. To measure realistic application restart
times, we test application restart using real workloads. For
PostgreSQL, we measure the time required to restart the ap-
plication when it is pre-loaded with the Wisconsin dataset.
For OpenLDAP, we use a snapshot of the directory server of
Columbia University’s Computer Science department.

Figure 8 shows the average time required to restore ex-
ecution to a rescue point, or in other words, rollback ex-
ecution. As shown, restart times ranged from 135 ms for
Apache 1.3, to 388 ms for Postgres. Whole application
restart times ranged from 470 ms for bind to 5 seconds for
Squid. These results show that ASSURE’s recovery time
is orders of magnitude faster (4x-23x) than whole applica-
tion restart. This holds true even for applications, such as
Apache, that do not need to rebuild considerable amounts of
application state before they become operational. Note that
whole application restart can take longer after a fault than
starting the application on a clean system due to checks the
application may do as a result of a crash. In the case of Post-
greSQL, a whole restart of the server was even unsuccessful
in enabling the server to serve future requests after a bug.
Because of the bug, the benchmark that was executing in the
background failed to complete gracefully due to data corrup-

tion. The data corruption prevented the server from serving
requests for corrupted portions of the database, so the bench-
mark could not even be re-run after restarting the server. In
contrast, ASSURE allowed the application to successfully
complete the benchmark when the fault occurred.

To evaluate client perceived availability, we examined
the number of client observed errors due to fault recovery.
Specifically, we injected bugs while executing the bench-
mark, and measured the number of dropped connections and
unanswered requests as a portion of the total requests. We
varied fault injection at 10, 20 and 30 second intervals. The
values ranged from 1% to 10%, for a fault every 30 and 10
seconds respectively.

4.5 Patch Overhead

Given ASSURE’s success in finding rescue points that en-
able the system recover execution from the injected faults,
we wanted to examine the performance implications of our
“fixes”. Specifically, for each bug, we examined the effects
of our patches on system performance. We compare the ex-
ecution performance of an unmodified version of the appli-
cation versus the ASSURE generated patch using the pre-
viously described benchmarks. We also measure the perfor-
mance overhead of triggering a failure during the execution
of the benchmark. The results, as normalized performance
overhead, are shown in Figure 9. As shown in the figure,
ASSURE has minimal impact on performance. The values
range from 0% for Squid to 7.6% for OpenLDAP. These re-
sults are expected for two reasons. First, the virtualization
and instrumentation overhead is small, similar to what is re-
ported in previous work [14]. Second, for all examined bugs,
the failures occur in code regions which are not in the main

46

execution path of the application. This allows ASSURE to
not burden the cost of rescue points (checkpoints) unless that
vulnerable code path is taken by the application. For a more
detailed performance analysis of the cost of taking rescue
points, we refer the reader to the next Section.

Also shown in Figure 9, is the performance overhead for
triggering a failure during the execution of the benchmarks.
Again, the overhead is low, ranging from 1% for bind to
8.5% for OpenLDAP. This result is expected given the short
recovery times reported above. It translates to a few requests
not being serviced during the benchmark.

4.6 ASSURE Component Overhead

To obtain a better understanding of the underlying costs of
rescue points, we measure the cost of individual components
that comprise the cost of rescue points for each of the exam-
ined bugs. Specifically, we measure the time required to take
a checkpoint and record its size. As the parameters depend
on application size and number of processes/threads it en-
compasses, we report the average number of processes (in-
cluding threads) for each application executing through the
rescue point.

Figure 10 shows the average time required to complete
a rescue point (checkpoint) for each of the examined bugs.
Specifically, it shows the application downtime during which
the application is unresponsive. The results show rescue
point downtime ranged from 7 ms for Squid to roughly
50 ms, in the worst case, for PostgreSQL. Most values
ranged between 10 ms and 20 ms which represent a modest
downtime when one considers that ASSURE checkpoints
multiple processes. Above each bar, we also show the aver-
age number of processes/threads checkpointed.

Figure 11 indicates the average memory requirements per
rescue point. The size of a rescue point is directly corre-
lated with the number of processes and memory footprint
of the application. As expected, the results represent a range
in value that commensurate with the size of the application.
The checkpoint sizes ranged from 12 KB for bind to 130
KB for MySQL. These values represent the state changes be-
tween checkpoints. Our copy-on-write mechanism allows us
to avoid saving full application state. The full application
state sizes ranged from 20 MB for bind to 116 MB for
Postgres. Since ASSURE only requires the latest check-
point to initiate recovery, the rescue point space require-
ments are manageable.

5. Conclusions
ASSURE introduces rescue points, a new software self-
healing technique for detecting, tolerating and recovering
from software faults in server applications. Rescue points are
locations identified in the existing application code where er-
ror handling is performed with respect to a given set of fore-
seen (by the programmer) failures. We use existing quality
assurance testing techniques to generate known bad inputs to
an application, in order to identify candidate rescue points.

On detecting a fault for the first time, ASSURE uses a replica
(shadow) of the application to determine what rescue points
can be used most effectively to recover future program exe-
cution. Once ASSURE verifies that it has produced a fix that
repairs the fault, it dynamically patches the running produc-
tion application to self-checkpoint at the rescue point. If the
fault occurs again, the ASSURE rolls back the application
to the checkpoint, and uses the application’s own built-in
error-handling code to recover from the fault and correctly
clean up internal and external state.

We have implemented ASSURE and demonstrated its ef-
fectiveness on several server applications, including web,
database, domain name, and proxy servers. Our experimen-
tal results with both real-world bugs and synthetic fault in-
jections show that our technique can be used to recover exe-
cution in most examined cases with modest operational over-
head. Using an unoptimized prototype, the total automatic
software healing process takes just a couple minutes, or-
ders of magnitude faster than current human patch deploy-
ment methods. Furthermore, no application source code is
required. The end result is automatic healing of software ser-
vices from what were previously unknown (and unforeseen)
software failures.

6. Acknowledgements
Our shepherd, Rebecca Isaacs, provided helpful comments
on earlier drafts of this paper. This work was supported in
part by NSF ITR grant CNS-0426623, AFOSR MURI grant
FA9550-07-1-0527 and DTO grant FA8750-06-2-0221.

References
[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-

Flow Integrity. In Proceedings of the 12th ACM Conference on
Computer and Communications Security (CCS 2005), pages
340–353, Sept. 2005.

[2] J. Boyd. Patterns of Conflict. Unpublished Briefing, http:
//www.d-n-i.net/boyd/pdf/poc.pdf, Dec. 1986.

[3] T. C. Bressoud and F. B. Schneider. Hypervisor-Based Fault
Tolerance. In Proceedings of the 15th ACM Symposium on
Operating Systems Principles (SOSP 1995), pages 1–11, Dec.
1995.

[4] D. Brumley, H. Wang, S. Jha, and D. Song. Creating Vulner-
ability Signatures Using Weakest Preconditions. In Proceed-
ings of the 20th IEEE Computer Security Foundations Sympo-
sium, pages 311–325, July 2007.

[5] B. Buck and J. K. Hollingsworth. An API For Runtime
Code Patching. International Journal of High Performance
Computing Applications, 14(4):317–329, Nov. 2000.

[6] G. Candea and A. Fox. Crash-Only Software. In Proceed-
ings of the 9th Workshop on Hot Topics in Operating Systems
(HotOS IX), pages 12–20, May 2003.

[7] S. Chandra. An Evaluation of the Recovery-Related Properties
of Software Faults. PhD thesis, University of Michigan, Sept.
2000.

47

http://www.d-n-i.net/boyd/pdf/poc.pdf
http://www.d-n-i.net/boyd/pdf/poc.pdf

[8] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou,
L. Zhang, and P. Barham. Vigilante: End-To-End Contain-
ment of Internet Worms. In Proceedings of the 20th ACM Sym-
posium on Operating Systems Principles (SOSP 2005), pages
133–147, Dec. 2005.

[9] B. Demsky and M. Rinard. Automatic Detection and Re-
pair of Errors In Data Structures. In Proceedings of the 18th

Annual ACM SIGPLAN Conference on Object-Oriented Pro-
graming, Systems, Languages, and Applications (OOPSLA
2003), pages 78–95, Oct. 2003.

[10] J. Etoh. GCC Extension for Protecting Ppplications
from Stack-smashing Attacks. http://www.trl.ibm.com/
projects/security/ssp/.

[11] S. T. King, G. W. Dunlap, and P. M. Chen. Debugging Op-
erating Systems With Time-Traveling Virtual Machines. In
Proceedings of the 2005 USENIX Annual Technical Confer-
ence (USENIX 2005), pages 1–15, Apr. 2005.

[12] V. Kiriansky, D. Bruening, and S. P. Amarasinghe. Secure Ex-
ecution Via Program Shepherding. In Proceedings of the 11th

USENIX Security Symposium, pages 191–206, Aug. 2002.

[13] N. Kolettis and N. D. Fulton. Software Rejuvenation: Analy-
sis, Module and Applications. In Proceedings of the 25th In-
ternational Symposium on Fault-Tolerant Computing (FTCS-
25), pages 381–395, June 1995.

[14] O. Laadan and J. Nieh. Transparent Checkpoint-Restart of
Multiple Processes on Commodity Operating Systems. In
Proceedings of the 2007 USENIX Annual Technical Confer-
ence (USENIX 2007), pages 323–336, June 2007.

[15] B. P. Miller, L. Fredriksen, and B. So. An Empirical Study
of the Reliability of UNIX Utilities. Communications of the
ACM, 33(12):32–44, Dec. 1990.

[16] J. Newsome, D. Brumley, and D. Song. Vulnerability–Specific
Execution Filtering for Exploit Prevention on Commodity
Software. In Proceedings of the 13th Annual Symposium on
Network and Distributed System Security (NDSS 2006), pages
1–15, Feb. 2006.

[17] M. Norton and D. Roelker. Snort 2.0 Protocol Flow Analyzer.
Sourcefire White Paper, Apr. 2004.

[18] National Vulnerability Database. http://nvd.nist.gov/
statistics.cfm, April 2006.

[19] S. Osman, D. Subhraveti, G. Su, and J. Nieh. The Design
and Implementation of Zap: A System For Migrating Com-
puting Environments. In Proceedings of the 5th Symposium on
Operating Systems Design and Implementation (OSDI 2002),
pages 361–376, Dec. 2002.

[20] PaX Team. Address Space Layout Randomization, Mar. 2003.
http://pax.grsecurity.net/docs/aslr.txt.

[21] V. Paxson. Bro: A System For Detecting Network Intruders In
Real-Time. Computer Networks, 31(23-24):2435–2463, Dec.
1999.

[22] F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou. Rx: Treating
Bugs As Allergies—A Safe Method To Survive Software Fail-
ures. In Proceedings of the 20th ACM Symposium on Oper-
ating Systems Principles (SOSP 2005), pages 235–248, Oct.
2005.

[23] E. Rescorla. Security Holes... Who Cares? In Proceedings
of the 12th USENIX Security Symposium, pages 6–20, Aug.
2003.

[24] M. Rinard. Acceptability-Oriented Computing. In Compan-
ion of the 18th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA 2003), pages 221–239, Oct. 2003.

[25] M. Rinard, C. Cadar, D. Dumitran, D. M. Roy, T. Leu, and
J. William S. Beebee. Enhancing Server Availability and Se-
curity Through Failure-Oblivious Computing. In Proceedings
of the 6th Symposium on Operating Systems Design and Im-
plementation (OSDI 2004), pages 303–316, Dec. 2004.

[26] S. Sidiroglou, Y. Giovanidis, and A. Keromytis. A Dynamic
Mechanism For Recovery From Buffer Overflow Attacks. In
Proceedings of the 8th Information Security Conference (ISC
2005), pages 1–15, Sept. 2005.

[27] S. Sidiroglou, M. E. Locasto, S. W. Boyd, and A. D.
Keromytis. Building A Reactive Immune System For Soft-
ware Services. In Proceedings of the 2005 USENIX Annual
Technical Conference (USENIX 2005), pages 149–161, Apr.
2005.

[28] Y. Song, M. E. Locasto, A. Stavrou, A. D. Keromytis, and
S. J. Stolfo. On the Infeasibility of Modeling Polymorphic
Shellcode. In Proceedings of the 14th ACM Conference on
Computer and Communications Security (CCS 2007), pages
541–551, Oct. 2007.

[29] M. Sullivan and R. Chillarege. Software Defects and Their
Impact on System Availability—A Study of Field Failures In
Operating Systems. In Proceedings of the 21st International
Symposium on Fault-Tolerant Computing (FTCS-21), pages
2–9, June 1991.

[30] Symantec. Internet Security Threat Report. http://www.
symantec.com/enterprise/threatreport/index.jsp.

[31] J. Tucek, J. Newsome, S. Lu, C. Huang, S. Xanthos, D. Brum-
ley, Y. Zhou, and D. Song. Sweeper: A Lightweight End-To-
End System For Defending Against Fast Worms. In Proceed-
ings of the 2nd European Conference on Computer Systems
(EuroSys 2007), pages 115–128, Mar. 2007.

[32] H. J. Wang, C. Guo, D. R. Simon, and A. Zugenmaier. Shield:
Vulnerability-Driven Network Filters For Preventing Known
Vulnerability Exploits. In Proceedings of the 2004 Confer-
ence on Applications, Technologies, Architectures, and Proto-
cols for Computer Communications (SIGCOMM 2004), pages
193–204, Aug. 2004.

48

http://www.trl.ibm.com/projects/security/ssp/
http://www.trl.ibm.com/projects/security/ssp/
http://nvd.nist.gov/statistics.cfm
http://nvd.nist.gov/statistics.cfm
http://pax.grsecurity.net/docs/aslr.txt
http://www.symantec.com/enterprise/threatreport/index.jsp
http://www.symantec.com/enterprise/threatreport/index.jsp

	Introduction
	Related Work
	ASSURE Architecture
	Rescue Point Example
	Rescue Point Discovery
	Fault Detection and Reproduction
	Rescue Point Selection
	Rescue Point Creation
	Rescue Point Checkpoint/Rollback
	Rescue Point Testing
	Rescue Point Deployment

	Experimental Evaluation
	Bug Summary
	Overall Functionality Results
	Patch Generation Performance
	Recovery Performance
	Patch Overhead
	ASSURE Component Overhead

	Conclusions
	Acknowledgements
	References

