
An Introduction to
Burst-Mode Controllers

and the MINIMALIST CAD Package
(Release v2.0)

Steven M. Nowick
Columbia University

(nowick@cs.columbia.edu)

November 24, 2007

2

MINIMALIST: Funding Acknowledgments

v2.0 Release (NEW):

This work was supported by NSF ITR Award No. NSF-CCR-0086036.

v0.9 and v1.0-v1.2 Releases (1994-2001):

This work was supported by NSF Award Nos. NSF-CCR-99-88241,

NSF-MIP-95-01880 and NSF-MIP-9308810; a research grant from IBM

Corporation; and an Alfred P. Sloan Research Fellowship.

3

The MINIMALIST v2.0 Package: Introduction

MINIMALIST: developed at Columbia University [1994-]
• extensible “burst-mode” synthesis package
• integrates synthesis, testability and verification tools

Synthesis flow for individual asynchronous controllers:

• Includes several optimization tools:
– State Minimization
– CHASM: optimal state assignment
– 2-Level Hazard-Free Logic Minimization: exact/heuristic

– Multi-level logic optimizer tool (“MLO”): includes performance-oriented decomposition

– Decomposing large specifications (“bm_decomp”)

• Other practical features:
– Automated scripts, manual command-line interface

– Verilog back-end + auto insertion of initialization circuitry (“pla2verilog”)

– Top-to-bottom verifier (“bms-verify”)

– “GC-Min”: mapping to generalized C-elements

– Graphical display (“bms2ps”: specifications; “pla2nand”: implementations)

4

The MINIMALIST v2.0 Package: Overview

BM
SPEC

MINIMALIST Tool Flow:

STATE
MINIMIZATION
(“min-states”)

OPTIMAL STATE ASSIGNMENT
(“assign-states” [CHASM])

MULTI-LEVEL HAZARD-FREE LOGIC OPTIMIZATION:
Supports 3 features:

 performance-oriented optimization, gate fan-in limits, negative logic
(“MLO” tool: Verilog output)

SYNTHESIS-
 FOR-

TESTABILITY
(2-level,

multi-level)

TIMING ANALYSIS

= future
 additions

COMBINATIONAL/
SEQUENTIAL VERIFIER

 (checks for hazards,
functionality)

(“bms-verify”)

VERILOG BACK-END +
INSERT INITIZALIZATION

CIRCUITRY
(“PLA2Verilog”:
Verilog output)

XBM
SPEC

(implemented,
not

yet included)

Generalized C-Element BASED MAPPING
 (“gC-Min”)

DISPLAY BM SPEC
(“bms2ps”)

2-LEVEL HAZARD-FREE LOGIC MINIMIZATION:
3 optimal algorithms [exact/heuristic]

(“min-logic” [hfmin, espresso-HF, IMPYMIN])

SPEC DECOMPOSITION
(“bm_decomp”)

DISPLAY 2-LEVEL IMPLTN.
(“plot_nand”)

5

The MINIMALIST v2.0 Package:
New Features (highlights)

 Multi-Level Optimizer (MLO) Tool: Comprehensive Package

• Stand-alone back-end translator, from two-level (.sol/.pla) to multi-level (.v)

• Key features: can “mix-and-match”
– performance-oriented multi-level logic decomposition:

reduces critical input-to-output paths (auto/manual modes)

– gate fan-in restriction:
user can specify fan-in limits to gates

– target negative logic gates:
map only to negative logic gates

• Verilog translator: produces multi-level Verilog output (.v file)

• Runs directly in Linux shell (outside of Minimalist)

• Current restriction:
– cannot run after PLA2Verilog (so cannot include initialization circuitry in multi-level output)

See separate “MLO” package:
tutorial, examples, documentation, etc.

6

The MINIMALIST v2.0 Package:
New Features (highlights, cont.)

 bm_decomp: decomposition of Burst-Mode specifications
• Stand-alone front-end translator

– Input: a single (monolothic) BM specification (.bms file)

– Output:

- a set of several interacting BM specifications, implementing the same behavior

- some auxiliary hardware indicated (must be manually inserted):

input latches + latch controllers, output generators

• Potential benefits: especially for large controllers

– Runtime: (often) much faster to synthesize smaller decomposed controllers

– Low Power: (potentially) only one smaller controller active at a time

– Timing Assumptions: smaller next-state logic ==> narrower fundamental mode window

• Runs directly in Linux shell (outside of Minimalist)

See separate “bm_decomp” package:
tutorial, examples, documentation, etc.

7

The MINIMALIST v2.0 Package:
New Features (highlights, cont.)

 PLA2Verilog: comprehensive Verilog back-end

• Verilog back-end translator:
– translates Minimalist output (2-level circuit [PLA file]) to Verilog

• Automatic insertion of initialization circuitry (hazard-free)

 bms-verify: top-to-bottom verification tool

• Compares original BM specification directly against final 2-level implementation
– Sequential + combinational verification:

- exhaustively simulates entire BM spec, and checks against 2-level logic impltn.

– Checks for: functional correctness, hazard-freedom

 bms2ps: graphical display of BM specifications

• Translates BM specification (.bms file) to Postscript graphics (.ps file)

• Runs directly in Linux shell (outside of Minimalist)

• Much improved quality over (non-supported) earlier “plot_qt” tool

8

MINIMALIST Developers
Principal Architects: [1994-present]

– Robert M. Fuhrer: system designer & primary implementer
– Steven M. Nowick: project leader
– Tiberiu Chelcea: coordinating v2.0 updates

Documentation:
–Overview Chapter (includes a good readable introduction to Minimalist,

see section on “burst-mode controllers”):
 Luciano Lavagno and Steven M. Nowick,
 “Asynchronous Control Circuits”, chapter 10 of

 ”Logic Synthesis and Verification”,
 (editors S. Hassoun and T. Sasao),
 Kluwer Academic Publishers, Boston, MA

–Book: Robert M. Fuhrer and Steven M. Nowick,
”Sequential Optimization of Asynchronous
 and Synchronous Finite-State Machines:
 Algorithms and Tools”,
 Kluwer Academic Publishers,
 Boston, MA (2001), ISBN 0-7923-7425-8.

–PhD Thesis: Robert M. Fuhrer, <same title as book>,
 Columbia University, Dept. of Computer Science, May 1999.

9

Other Contributors

Current and Former PhD Students:
– Melinda Agyekum:
 “bm_decomp” Tool [v2.0 feature]: decomposes BM specifications.

A standalone front-end tool, which takes a single BM
controller specification and decomposes it into
set of equivalent interacting BM specifications.
These interacting controllers can then be synthesized
using Minimalist (some added auxiliary hardware required).

 [see separate tutorial + docs]

– Tiberiu Chelcea:
 “pla2nand”: two-level circuit display
 “pla2verilog” [v2.0 feature]: Verilog backend for 2-level logic,

also performs automatic insertion of initialization logic

– Michael Theobald: advanced 2-level minimization: espresso-HF, IMPYMIN

– Luis Plana: state minimization w/fedback outputs (an initial contributor)

10

Other Contributors

Current MS Students:

–Walter Dearing:

Multi-Level Optimizer (“MLO”) Tool [v2.0 feature]:

MLO is a standalone back-end tool which takes a 2-level circuit

produced by Minimalist and maps to multi-level Verilog output.

Features: supports …

 (i) performance-driven multi-level logic optimization (“CEO”),

 (ii) gate fan-in limitations, and

 (iii) negative logic gates

[see separate tutorial + docs]

11

Other Contributors

Former Undergraduates:

– Charles O’Donnell:
 “bms-verify” [v2.0 feature]: complete BM spec-to-implementation

verification check

 “minxbm”: XBM support (completed, in preparation for future release)

– Alexander Shapiro: gC-min, gC-CHASM, phase optimization

– Tao Wu: espresso-HF (contributor)

12

MINIMALIST: Download Site

Minimalist is part of the “CaSCADE” Release of Async CAD tools

Accessible on the Web from:
http://www1.cs.columbia.edu/~nowick/asyncdownload

Currently, one version: Linux*

*NOTE: the v2.0 Minimalist release only supports Linux,
earlier versions for SPARC Solaris have not been
updated and are not fully supported

Includes:
complete tutorial (text + PDF slides)
benchmark examples
other documentation

13

Outline

PART I: Technical Overview

 The MINIMALIST CAD Package: Introduction

 Optimization Algorithms

• 2-Level Hazard-Free Logic Minimization

• Optimal State Assignment

 New MINIMALIST Features

 User-Selectable Modes

 Results, Evaluation and Conclusions

PART II: Tutorial

 Design Examples + Hands-On Tutorial

14

The MINIMALIST Package:
Earlier Features (highlights)

Other Features:

 Graphical Interfaces:

• displays:
– state-machine specification
– circuit implementation

• menu-based input: (… currently under development)

 Extensible Package:

• easily accommodates new “plug-in” tools
• “MinShell”: interactive user shell
• provides: on-line help, command-completion, ...
• class library for burst-mode manipulation
• C++ implementation, ~45,000 lines of code

15

The MINIMALIST Package:
Earlier Features (highlights, cont.)

Unlike most other asynchronous packages, MINIMALIST offers designers flexibility:

 Fully-automated synthesis using scripts:

• Target speed, area, runtime
– e.g. ‘minimalist-speed-suite’, ‘minimalist-area’, etc.

• Options: produces one vs. multiple implementations (user selects best one)

 Advanced operation: custom synthesis with command-line interface (“MinShell”):

• Allows advanced users to custom-select each synthesis step
– targeted machine style (fedback outputs, no fedback outputs)

– logic implementation style (how much sharing of logic between outputs)

– cost functions

– varying encoding lengths (in state assignment)

– output “phase optimization” (inverted or non-inverted outputs)

– alternative heuristics for steps:

skipping state minimization step, CRF-only state encoding (avoid optimal algorithms), etc.

16

The MINIMALIST Package

Includes some highly-optimized existing (non-asynchronous!) CAD tools to
solve compute-intensive sub-problems:

• dichot: exact dichotomy solver [Saldanha 91]

• NOVA: simulated annealing -heuristic dichotomy solver
[Villa 89]

• espresso (Berkeley SIS): prime implicant generation

• Scherzo: unate/binate covering [Coudert 94]

17

“Burst-Mode” Controllers

Synthesis style for individual asynchronous FSM’s:

• Mealy-type
• allows:

– multiple-input changes
– concurrent behavior

• target technology: normal synchronous cell libraries

• optimization algorithms: comprehensive set

 Brief History:...
• Based on informal approach at HP Labs:

– Davis, Coates, Stevens [1986-, and earlier]

• Formalized and constrained at Stanford: Nowick/Dill [91]

– Finalize formal Burst-Mode specifications

– Nowick/Dill first to develop a correct synthesis method

18

Burst-Mode: Implementation Style

“Huffman Machine”: async machine, no explicit latches

Hazard-Free
Combinational

Network

inputs outputs

state

(several
 bits)

A

B

C

X

Y

Z

19

Burst-Mode: Implementation Style

Burst-Mode Behavior: inputs in a user-specified ’input
burst’ arrive, in any order (glitch-free)

Hazard-Free
Combinational

Network

inputs outputs

state

(several
 bits)

A+

B

C

X

Y

Z

20

Burst-Mode: Implementation Style

Burst-Mode Behavior: inputs in a user-specified ‘input
burst’ arrive, in any order

Hazard-Free
Combinational

Network

inputs outputs

state

(several
 bits)

A+

B

C-

X

Y

Z

21

Burst-Mode: Implementation Style

Burst-Mode Behavior: once ‘input burst’ is complete,
machine generates a (glitch-free) ‘output burst’ …

Hazard-Free
Combinational

Network

inputs outputs

state

(several
 bits)

A

B

C

X

Y-

Z+

input burst output burst

22

Burst-Mode: Implementation Style

 … and (sometimes!) a concurrent (and glitch-free)
state change to a new state….

Hazard-Free
Combinational

Network

inputs outputs

state

(several
 bits)

A

B

C

X

Y

Z

input burst output burst

state change

23

Burst-Mode Specifications
How to specify “burst-mode” behavior?:

Hazard-Free
Combinational

Network

inputs
outputs

state

(several
 bits)

A

B

C

X

Y

Z

input burst output burst

A+ C-/
Y- Z+

1

current state

input burst/
 output burst 2

next state

24

Note:
 -input bursts: must be non-empty
 (at least 1 input per burst)

 -output bursts: may be empty
 (0 or more outputs per burst)

Burst-Mode Specifications

Example: Burst-Mode (BM) Specification:

- Inputs in specified “input burst” can
 arrive in any order and at any time

- After all inputs arrive, generate
“output burst”

0

1

3

2

4

5

A+ C+/
Z-

C-/
Z+

C+/
Y+

A-/
Y-

A+ B+/
Y+ Z-

B- C+/
Z+

C-/
--

Initial Values:
ABC = 000

YZ = 01

25

Burst-Mode Specifications

“Burst-Mode” (BM) Specs: 2 Basic Requirements
– requirements introduced by Nowick/Dill [ICCD’91,ICCAD’91]

– … guarantee hazard-free synthesis!

1. “maximal set property”: in each specification state,
 no input burst can be a subset of any other input burst

2. “unique entry point”: each specification state must be
 entered at a ‘single point’

26

Burst-Mode Specifications
1. “maximal set property”: in each specification state,

no input burst can be a subset of another input burst

…meaning is ambiguous: what to do when only input A+ arrives?:
 - wait for C+? or output Y+ Z-??

0

1
2

A+ C+/
Z-

A+/
 Y+ Z-

0

1
2

A+ C+/
Z-

A+ B+/
Y+ Z-

illegal: {A+} ⊆ {A+C+} legal

27

Burst-Mode Specifications
2. “unique entry point”: each specification state must be

entered at a ‘single point’ (guarantees hazard-free synthesis)

0

1
2

4

A+/
Z+

B+/
Y+

C+/
Y+

D+/
Z+Entering State 4:

- from State 1: ABCD = 1100
(YZ=11)

- from State 2: ABCD = 0011
(YZ=11)

illegal: 2 different input/output values
when entering state 4

0

1
2

4

A+/
Z+

B+/
Y+

C+/
Y+

D+/
Z+

5

legal:
Solution = split state 4

28

Burst-Mode Specifications
2. “unique entry point” (cont.):

Entering State 4:
 - from State 3: ABC = 101

 (YZ=11)
 - from State 2: ABC = 101

 (YZ=11)
 … so, “unique entry point”
 property is satisfied.

this is legal:
state 4 -- entered with

 the same input/output values
on both ‘incoming arcs’

0

1

3

2

4

5

A+ C+/
Z-

C-/
Z+

C+/
Y+

A-/
Y-

A+ B+/
Y+ Z-

B- C+/
Z+

C-/
--

State 0: Initial Values
ABC = 000

YZ = 01

Another Example:

29

Burst-Mode Specifications
Final observation:

Burst-Mode specs must explicitly
indicate all “expected events”

Missing input burst:
 means “cannot occur”!

0

1

3

2

4

5

A+ C+/
Z-

C-/
Z+

C+/
Y+

A-/
Y-

A+ B+/
Y+ Z-

B- C+/
Z+

C-/
--

State 0: Initial Values
ABC = 000

YZ = 01

EXAMPLE: in State #0…
 - this specification indicates
 (implicitly) that input burst B+C+
 should never occur
 … since this event is not specified!

30

Burst-Mode Specifications

“Extended Burst-Mode” (XBM):
[Yun/Dill ICCAD-93/95]

1. “directed don’t cares” (Rin*):
 allow concurrent inputs & outputs
2. “conditionals” (<Cnd>):
 allow “sampling” of level signals

Handles glitchy inputs,
 mixed sync/async inputs, etc.

0

1

2

3

4

5

6

ok+ Rin*/
 FRout+

FAin+ Rin*/
 FRout-

FAin- Rin+/
 Aout+

Rin* FAin+/
 FRout-

<Cnd+> Rin-/
 Aout- FRout+

<Cnd-> Rin-/
 Aout-

ok- Rin*/
 --

Rin+ FAin-/
Aout+

Additional Features:

(… not yet supported by MINIMALIST,
 expected in future releases)

31

One-Sided Timing Requirements

#1. Fedback State Change: must not arrive at inputs until
previous input burst has been fully processed …

– add: 1-sided delay to feedback path

– usually negligible delay: often no extra delay needed

Hazard-Free
Combinational

Network

inputs outputs

state

A

B

C

X

Y

Z

delay

32

One-Sided Timing Requirements (cont.)

#2. Next Input Burst: must not arrive until machine has
stabilized from previous input+state change …

• often satisfied: environment usually “slow enough”

• if not: add small delays to outputs

Hazard-Free
Combinational

Network

inputs outputs

state

A

B

C

X

Y

Z

delay

33

One-Sided Timing Requirements (cont.)

#2. Next Input Burst (cont.): must not arrive until entire
machine has stabilized …

“Generalized Fundamental Mode”: after each input burst arrives, a machine
 ‘hold time requirement’ must be satisfied, before environment can apply the next input burst.

 … similar to notion of ‘hold-time’ for a latch or flip-flop, but now extended to an

entire small asynchronous controller.

34

An Example: “PE-SEND-IFC” Controller (HP Labs)

Inputs:
req-send
treq
rd-iq
adbld-out
ack-pkt

Outputs:
tack
peack
adbld

0

1

2

7

3

4

5

6

8

9

10

req-send+ treq+ rd-iq+/
adbld+

adbld-out+/
peack+

rd-iq-/
peack- adbld-
 tack+

adbld-out- treq-
rd-id+/ adbld+

adbld-out+/
peack+

rd-iq-/ peack-
adbld- tack-

adbld-out- treq+ ack-pkt+/
 peack+ tack+

ack-pkt- treq-/
peack- tack-

treq-/
tack-

treq+/
tack+

ack-pkt+/
peack- tack-

adbld-out-
treq- ack-pkt+/

peack+

req-send-/
--

 adbld-out-
 treq+ rd-iq+/
 adbld+

From HP Labs
 “Mayfly” Project:
B.Coates, A.Davis, K.Stevens,
 “The Post Office Experience: Designing a
 Large Asynchronous Chip”,
 INTEGRATION: the VLSI Journal, vol. 15:3,
 pp. 341-66 (Oct. 1993)

35

An Example (cont.)

Examples:

Design-Space Exploration
using MINIMALIST:

optimizing for area vs. speed

36

Some Technical Details:
Optimization Algorithms

 A large set of CAD synthesis, optimization and verification

algorithms and tools have been developed:

• 2-Level Hazard-Free Logic Minimization (“min-logic”: several modes)

• Optimal State Assignment (“CHASM”)

• Multi-Level Logic Optimization (“MLO”)

• Controller Decomposition (“bm_decomp”)

• Inserting Initialization Circuitry (“pla2verilog”)

• Verification: functionality/hazard-freedom (“bms-verify”)

37

2-Level Hazard-Free Logic Minimization:
An Example

_ 1 1 _

1 1 _ 0

1 1 _ _

1 0 0 0

_ 1 1 _

1 1 _ 0

1 1 _ _

1 0 0 0

Non-hazard-free:
 min cost = 3 products

Hazard-free:
 min cost = 3 products

38

2-Level Hazard-Free Logic Minimization

Have developed 4 hazard-free logic minimizers:

• Basic Method: first exact solver for this problem
– S.M. Nowick/D.L. Dill:

 (a) ICCAD-92 (IEEE International Conference on Computer-Aided Design),

 (b) IEEE Trans. on Computer-Aided Design, vol. 14:8, pp.986-997 (Aug. 95)

• HFMIN: binary and symbolic exact minimizer
– R.M. Fuhrer/S.M. Nowick, in ICCAD-95.

• Espresso-HF: fast heuristic minimizer

• IMPYMIN: fast exact minimizer
– M. Theobald/S.M. Nowick, IEEE Trans. on Computer-Aided Design, vol.

17:11, pp.1130-1147 (Nov. 98)

39

2-Level Hazard-Free Logic Minimization

HFMIN:

Unlike original (Nowick/Dill [‘92]) algorithm:

• handles both binary and symbolic (‘multi-valued’) inputs

Used in industry and academia:
• academia: in 3D (UCSD), ACK (Utah) and UCLOCK tools

• Intel: used for async instruction-length decoder

• HP Labs (Stetson project: infrared communications chip)

• AMD (SCSI controller)

40

2-Level Hazard-Free Logic Minimization

IMPYMIN:

Fast algorithm for exact minimization:

• introduces novel method for generating DHF-primes:

– re-formulates as a synchronous prime generation problem

• uses compact “implicit” data structures: BDDs/ZBDDs

• calls highly-optimized existing synchronous CAD tools

– Scherzo [Coudert]

41

IMPYMIN vs. HFMIN: Results

I/O #C HFMIN IMPYMIN

cache 20/23 97 impossible 301

pscsi 16/11 77 1656 105

sd 18/22 34 172 52

Stetson1 32/33 60 >72000 813

Stetson2 18/22 37 151 49

(in seconds)(#prods)

42

2-Level Hazard-Free Logic Minimization

ESPRESSO-HF:

Fast heuristic minimization algorithm:

• based loosely on synchronous “ESPRESSO” algorithm

• solves all existing async benchmarks

• up to 32 inputs/33 outputs: < 2 minutes

• typical runtime: < 3 seconds

For large examples, usually within 3% of exact solution

43

[Fuhrer/Lin/Nowick, ICCAD-95]

Overview:

• First general/systematic “optimal state encoding” algorithm

for asynchronous state machines

• Based on an “input encoding model”

• Modifies synchronous “KISS” algorithm [DeMicheli ‘85] to

insure:

- critical race-free encoding

- minimum-cost hazard-free logic

CHASM: Optimal State Assignment

44

CHASM: Optimal State Assignment

Special Feature: “Output-Targeted” State Assignment

Observation:
• output logic often determines latency in an async FSM

Goal:
• pick state assignment which yields best output logic
• … while still insuring “correct” next-state logic (critical race-free)

CHASM produces exact (i.e. optimal) solution for this problem

45

Asynchronous FSMs and Critical Paths

Observation: output logic often critical for async FSM latency

input output

state

output logic

critical path is often input-to-output

46

MINIMALIST v2.0: New Features

Several useful features added to MINIMALIST in release v2.0:

1. Multi-Level Optimizer (“MLO”): multi-level logic optimization (w/Verilog output)

- see separate “MLO” tutorial (Minimalist download site)

2. “bm_decomp”: decomposition of large BM specifications

- see separate “bm-decomp” tutorial + docs (Minimalist download site)

3. “pla2verilog”: Verilog back-end (2-level) + inserts initialization circuitry

4. “bms2ps”: graphical display of BM specifications (creates Postscript)

5. “bms-verify”: top-to-bottom verifier, checks BM spec against final implementation

- for #3-5, see part II of this Minimalist tutorial (demo part)

47

Other Advanced MINIMALIST Features

Several other advanced features previously added to MINIMALIST:

From Earlier Releases:

1. Technology Mapping: to “generalized C-elements’’

2. Phase Optimization

48

Other Advanced MINIMALIST Features
#1. gC-Based Technology Mapping

Target = “Generalized C-element”:
async sequential component implementing “set” (n-stack) and “reset” (p-stack) conditions

New exact hazard-free gC logic minimizer: “gC-min”
 [Alexander Shapiro/S. Nowick ‘00]

reset =
 p-stack

set =
 n-stack

49

1 1 1 0

1 1 _ _

1 0 0 _

1 1 1 1

Other Advanced MINIMALIST Features
#1. gC-Based Technology

 Mapping: an Example
 (hazard-free synthesis)

reset =
 p-stack

set =
 n-stack

AB
CD 00 01 11 10

 00

 01

 11

 10

A’
C’

Boolean function +
specified input transitions

A’
B’
A’
D’
A
B

B

D
C

A

C’
B’

D’

C
D’

A

A

D’
C

A’
C’

(a) 2-level:

(b) gC:

50

Other Advanced MINIMALIST Features

#2. Phase Optimization [Alexander Shapiro, S. Nowick ‘00]

Goal: for each output and next-state function x...
• implement both x and x’

• select best result = “phase optimization”

– if x’ selected: add output inverter

Now included in several MINIMALIST steps:
• logic minimization: both 2-level and gC-min

• optimal state assignment:

– CHASM: target state assignment to selected phase choices

51

D

Other Advanced MINIMALIST Features

#2. Phase Optimization:
A’
C’
A’
B’
A’
D’
A
B
D’

C
D’

A

1 1 1 0

1 1 _ _

1 0 0 _

1 1 1 1

AB
CD 00 01 11 10

 00

 01

 11

 10

Boolean function +
specified input transitions

f:
f

f’

A
B’
C’

B
C f

Add inverter:

(a) Without phase optzn.:

(b) With phase optzn.:

52

User-Selectable Modes

MINIMALIST provides several options for
user “design-space exploration”:

• machine style

• logic implementation style

• cost function

• state assignment style

53

User-Selectable Modes
Many choices to allow user “design space exploration”:

#1. Machine Style: “fedback outputs” vs. none

Hazard-Free
Combinational

Network

input output

state

(a) No Fedback Outputs: benefit = sometimes smaller output loads
 (lower latency)

54

User-Selectable Modes

#1. Machine Style (cont.)

Hazard-Free
Combinational

Network

input output

state

(b) Fedback Outputs: benefit = sometimes less area/fewer state bits

55

User-Selectable Modes

#2. Logic Implementation Styles: 3 Choices

(a) “Multi-Output”:
• share products across all outputs + next-state

– goal: area

(b) “Single-Output”:
• no shared products: implement each function separately

– goal: performance

(c) “Output-Disjoint”:
• share products only: (i) among outputs, and (ii) among next-state

– goal: balanced

56

User-Selectable Modes

#2. Logic Styles:

(a) “Multi-Output”:

share products between
 outputs + next-state

w

z

y1

y0

outputs

next-state
benefit:
 - area (sometimes)

57

User-Selectable Modes

#2. Logic Styles:

(b) “Single-Output”:

do not share products!

w

z

y1

y0

outputs

next-state

benefit:
 - speed (sometimes)

58

User-Selectable Modes

#2. Logic Styles:

(c) “Output-Disjoint”:

share products only:
 -among outputs
 -among next-state

benefit:
 -balanced approach
 (speed/area -- sometimes)

algorithmic feature:
- the opt. state assignment
 method can ensure
 optimal sharing of products
 among primary outputs

w

z

y1

y0

outputs

next-state

59

User-Selectable Modes
#3. Cost Function:
What to minimize…?:
 (a) # products

 (b) # literals

 (c) # “primary I/O literals”: on critical input-to-output paths

Motivation of (c): lower latency...
• primary inputs/primary outputs: (often) form the critical path

• state changes: (often) non-critical, occur in background mode

60

DERIVING MULTI-LEVEL CIRCUIT:
 apply logic decomposition to speed up primary

input-to-output path (3 “critical” literals)

b

y1
y0

#3. Logic Cost Function (cont.): (c) “Primary I/O Literals”
User-Selectable Modes

a

y0
y1

present-state
 (non-critical)

primary inputs
 (critical)

4 literals

EXAMPLE:

Initial 2-Level Circuit

2-LEVEL CIRCUIT:
1st Option

b
a

3 critical input-to-output literals

After Multi-Level Decomposition:
 “extract out” all present-state literals
 to improve machine latency

61

#3. Logic Cost Function (cont.): (c) “Primary I/O Literals”
User-Selectable Modes

5 literals

EXAMPLE (cont.):

… has faster
 “critical” path!

y0
a

y1

y3
y2

present-state
 (non-critical)

primary input
 (critical)

y0

a

y1
y3
y2

2 critical input-to-output literals

2-LEVEL CIRCUIT:
2nd Option

…has more literals (5) than 1st option,
yet yields better multi-level circuit!

DERIVING MULTI-LEVEL CIRCUIT:
apply logic decomposition to speed up primary input-

to-output path (only 2 “critical” literals!)

Initial 2-Level Circuit:

After Multi-Level Decomposition:
 “extract out” all present-state literals
 to improve machine latency

62

#3. Logic Cost Function (cont.): (c) “Primary I/O Literals”
User-Selectable Modes

Conclusion: Pick 2-Level Circuit “Option #2”
> it has more literals,
> ...yet results in a faster multi-level circuit

(after multi-level logic decomposition)

Cost Function “Primary Input/Output Literals”…:
>produces 2-level circuit with fewest (primary) input literals

for each primary output

>next: apply multi-level logic decomposition (automatically with “MLO”, or manual):

 - factor out “present-state literals” (non-critical)

>result: multi-level circuit with optimized (critical) primary input-to-output paths

63

User-Selectable Modes
#4. State Assignment Style: Several Options

(a) Critical Race-Free (basic):
• no optimization

(b) Optimal (CHASM): exact solution
• solve all optimality constraints

(c) Optimal (CHASM): “fixed-length” encoding
• “heuristic mode”
• partially solve optimality constraints (fewer state bits)

(d) Optimal (CHASM): “output-only” mode
• outputs: exact min-cost solution
• next-state: ignore/just insure they are critical race-free

64

MINIMALIST: Experimental Results
(from earlier release v1.2)

 MINIMALIST3D

Performance
(single-output)

Area
(multi-output)

Design i/s/o Prods lits olits FBO prods olits FBO prods lits

Pscsi-isend 4/9/3 31 105 44 31 38 Yes 18 67

Scsi-isend-bm 5/10/4 26 87 59 Yes 23 56 Yes 17 63

Scsi-tsend-bm 5/11/4 28 92 67 24 48 19 75

It-control 5/10/7 21 73 56 Yes 19 56 Yes 13 54

Sc-control 13/33/14 122 512 301 Yes 93 275 Yes 3 267

Sd-control 8/27/12 50 217 155 Yes 43 98 Yes 28 125

Stetson-p1 13/33/14 87 371 209 Yes 61 179 Yes 45 199

Stetson-p2 8/25/12 46 194 148 Yes 45 130 Yes 30 140

Oscsi 10/45/5 129 529 187 Yes 89 185 Yes 65 334

Performance: avg. reduction of 11% (up to 37%) in output literals.

Area: avg. reduction of 33% (up to 48%) in total literals.

65

 Evaluation and Summary
Some Characteristics, and Potential Advantages,

 of Burst-Mode Circuits:

1. Simple Timing Requirements:

• Combinational Logic: highly robust
– “forward” logic path: always hazard-free, regardless of gate/wire delays

+ no timing assumptions (to process one “input burst” through comb. logic)

+ no “isochronic forks” required

» hazard-free regardless of gate or wire delays

• Sequential Operation:
– must satisfy simple one-sided timing requirements

66

 Evaluation and Summary

2. Provides “Complete” Synthesis Path: always succeeds

• Given: any legal burst-mode specification (BM/XBM)

• Apply:

– (constrained) state minimization

– (critical race-free) state assignment

– (hazard-free) 2-level logic minimization

• Result: always guaranteed hazard-free “gate-level circuit”:
 2-level/multi-level implementation

– no backtracking/iteration ever required

67

 Evaluation and Summary

3. Hazard-Free Logic Decomposition:

Wide range of safe “hazard-non-increasing” transformations:
• associative law

– not generally safe for ‘speed-independent’ (QDI) circuits!

• DeMorgan’s law, and many other algebraic transformations

• technology mapping: simple to ensure correctness

Unlike speed-independent circuits, no need for:
• “acknowledgment forks”, state-holding elements within combinational

logic, etc.

68

 Evaluation and Summary

3. Hazard-Free Logic Decomposition (cont.):

Example: Associative Law

– in burst-mode circuits, never introduces hazards

D

B
C

B

D
C

(This transform may introduce hazards in “speed-independent” or “QDI”
circuits.)

69

 Evaluation and Summary

4. Optimal Synthesis Algorithms:

• Several “provably-optimal” algorithms (e.g. CHASM)

• Incorporates/exploits several highly-optimized synchronous CAD tools

for sub-steps (Scherzo, espresso, dichot, etc.)

70

 Evaluation and Summary

5. Generalized Fundamental-Mode Operation:

• BM Target: designing controllers with low latency (i.e. input-to-output response time)

• Tradeoff: must allow machine to “settle” (i.e. hold-time) between input events,

before next input can be applied

• In practice, this timing assumption often satisfied:

– fundamental mode timing “window”: usually very small settling time

+ typical BM controllers are small: only 2-3 gates “deep” in logic

+ “settling time”: usually much less than time for environment to send new inputs

– industrial experiences: NASA Goddard (2006-7), HP Labs (“Stetson” 94), etc.
+ … confirm practicality of handling these timing constraints for many applications

• If cannot be satisfied: can always add extra delay to primary outputs
– will allow machine to settle before outputs are sent to environment

71

Conclusions
“Burst-Mode” Asynchronous Controllers:

• used effectively in several experimental industrial designs:
– Recent (2006-2007): NASA Goddard Space Flight Center
– Earlier: Intel, AMD, HP Labs

New “MINIMALIST” Asynchronous CAD Package:
• CHASM: optimal state assignment
• HFMIN, IMPYMIN, espresso-HF: hazard-free 2-level logic min
• gC-Min: gC-based tech-map

• Verifier: combinational + sequential (hazards, functionality)
• Verilog output, graphic interfaces

Overall Goals:
• providing many user options: “design space exploration”
• globally-optimal algorithms

