bm_decomp ;

An Introduction and Tutorial
An Extension to the MINIMALIST CAD Package

Melinda Agyekum Steven Nowick
Columbia University
{melinda, nowick}@cs.columbia.edu}

November 15, 2007

This work was partially supported by NSF ITR Award No.
NSF-CCR-0086036.

bm_decomp Developers

Principal Architects: [2006-present]

—Melinda Y. Agyekum: system designer & primary implementer
—Steven M. Nowick: project advisor

Documentation:
—Publication: Melinda Y. Agyekum and Steven M. Nowick,

In Proc. of the 13th IEEE
International Symposium on Asynchronous Circuits

and Systems (ASYNC) , pages 129-142, March 12-14,
2007, Univ. of California, Berkeley (Berkeley,

California, USA).

—Presentation Slides: Melinda Y. Agyekum and Steven M. Nowick
Presented at ASYNC 2007

bm_decomp: Download Site

Accessible on the Web from:
www1.cs.columbia.edu/~nowick/asynctools

Version: Linux

Includes:
complete tutorial
benchmark examples
other documentation

Supporting Document

BM_DECOMP is an extension of the MINIMALIST CAD tool package.
To download MINIMALIST, see:

www1l.cs.columbia.edu/~nowick/asynctools

MINIMALIST tool documentation:

—Book: Robert M. Fuhrer and Steven M. Nowick,
"Sequential Optimization of Asynchronous
and Synchronous Finite-State Machines:
Algorithms and Tools”,

Kluwer Academic Publishers,
Boston, MA (2001), ISBN 0-7923-7425-8.

—PhD Thesis: Robert M. Fuhrer, <same title as book>,
Columbia University, Dept. of Computer Science,
May 1999.

Contributions

bm_decomp:

e Automated decomposition tool

— Decomposes a single Burst-Mode (BM) controller specification into
multiple Burst-Mode controller specifications

— Together the decomposed BM controllers maintain the same behavior
as the original

e Inter-controller communication protocol
— Allows the decomposed controllers to communicate with each other

e Small amount of additional hardware required

— Primary Input Latches
> Used to filter unwanted inputs

— Latch Enable Logic

> Used to selectively enable the primary input latches

— Primary Output Generators
» Used to generate primary outputs

Motivation

Primary Goals:

e Synthesizability
— Provide a means to synthesize larger controllers

e Runtime
— Improve runtime of CAD tool (esp. for large controllers)

Secondary Goals:

e Smaller Next-State Complexity
— Simplify BM fundamental mode timing constraint

e Potential Reduction in Power Consumption
— Only a single controller is active at any given time

More Detailed Contributions

Method for Decomposition
 For Burst-Mode:

4 Major Parts

- Decomposition algorithm

- Controller micro-architecture

- Inter-controller communication protocol

- Auxiliary hardware
Optimizations to eliminate or simplify hardware

- Method for Extended Burst-Mode (XBM)

CAD Tool Implementation
- For Both BM & XBM

Outline

PART I: Technical Overview

Quick Review: Burst-Mode Controllers

Decomposition Method
— Micro-Architecture
— Communication Protocol
— Hardware Implementation

bm_decomp: Basic Tool Features

PART II: Tutorial
Design Examples + Hands-On Tutorial

PART I: Technical Overview

m Quick Review: Burst-Mode Controllers -«

— Micro-Architecture
— Communication Protocol
— Hardware Implementation

Quick Review: “"Burst-Mode"” Controllers

Synthesis style for individual asynchronous FSM’s:

o Mealy-type
o allows:
— multiple-input changes
— concurrent behavior
e target technology: normal synchronous cell libraries

e optimization algorithms: comprehensive set

m Brief History:...

e Based on informal approach at HP Labs:
— Davis, Coates, Stevens [1986-, and earlier]

e Formalized and constrained at Stanford: Nowick/Dill [91]

— Nowick/Dill first to develop a correct synthesis method 10

Quick Review: "Burst-Mode” Implementation

Burst-Mode Controllers

e A Huffman-Style asynchronous state machine

e Consists of:
— Primary inputs
— Primary outputs
— Fed-back state

e State is stored in the fed-back loops

Combinational
Logic
s1

oo

Quick Review: “"Burst-Mode” Specifications

Example: Burst-Mode (BM) Specification:

- Inputs in specified can A+ Ct/
arrive in any order and at any time z-/

- After all inputs arrive, generate

Note:
-input bursts: must be non-empty
(at least 1 input per burst)

-output bursts: may be empty
(0 or more outputs per burst)

C-/
Z

0
A
7Y+

!

Quick Review: “"Burst-Mode” Specifications

1. "maximal set property”: in each specification state,
no input burst can be a subset of another input burst

A+ C+/)
7- /
<

P

{A+} C {A+C+}

...ambiguous: what to do when only input A+ arrives?:
- wait for C+? or output Y+ Z-?7?

Quick Review: “"Burst-Mode” Specifications

2. "unique entry point”: each specification state must be
entered at a ‘single point’ (guarantees hazard-free synthesis)

Entering State 4:
- from State 1: ABCD=

- from State 2: ABCD=

2 different input/output values
when entering state 4

/+
y

®
/4,
O
I

legal: »
solution=split state 4

Quick Review: Example “PE-SEND-IFC"” (HP Labs)

Inputs: Outputs:
req-send tack
req-send-/

treq peack) req-send+ treq+ rd-1q+/
rd-iq adbld adbld+
adbld-out
ack-pkt | adbld-out+/
peack+

adbld-out- rd-1q-/
treq ack-pkt+/ | peack- adbld-
peack+ tack+

| ack pkt+/ adbld-out- treq-

From HP Labs peack- tack- rd-id+/ adbld+

“Mayfly” Project:
B.Coates, A.Davis, K.Stevens,
"The Post Office Experience: Designing a | €~/ { treq+/ adbld-out+/ adbld-out-
Large Asynchronous Chip”, tack- ¥ tack+ peackt treq+ rd-iq+/
INTEGRATION: the VLSI Journal, vol. @ _ adbld+
15:3, pp. 341-66 (Oct. 1993) rd-iq-/ peack-
ack-pkt- treq-/ adbld- tack-
peack- tack-

adbld-out- treq+ ack-pkt+/
peack+ tack+

Quick Review: Ex. “"PE-SEND-IFC" contd.

Design-Space Exploration

using MINIMALIST:
optimizing for area vs. speed

TfuTuUuuuddd

iOTTu&wuu%Tuwuﬁduuuud$££

o R
I
S
I_/
{ > — .
L7 ‘—)D P
ack
N b pe %
ack_pkt :l) = = L [»
cbid_out i L w2 adk_pht "D—
i)] -, - O
9 I 1
5 —, — > s o i
treq 1 T — 1 | bl
T — ;,j 40 treq | E’E{D
req_send] s ' ndr - D‘_E) a
& req sel j, ; ’-;

PE_SEND IFC-FL

PE_SEND_IFC-Fs

PART I: Technical Overview

Burst-Mode Controllers

m Decomposition Method <4
— Micro-Architecture
— Communication Protocol
— Hardware Implementation

Decomposition Method: Micro-Architecture

m Parts of the Micro-Architecture

e A set of decomposed controllers
— Includes input latches and latch enable hardware
e Primary output generators
e Point-to-point communication through handshake channels

Decomposition Method: Micro-Architecture

: Decomposed Controllers and i Primary Output
. Inter-Controller Communication Channels : Generators

Primary: ain
Inputs | : BM
1 Top-level Sl Cntrl A . ;
2l Controller (Parent) Intermediate Ato_zout Output
: Outputs . B_to_zout | Generator
bin | Signals | C_to_zout| zout

A to zout

ACK1a REQ1 ACK1b

Primary

' ain : Outputs
§ o VBB to_zout bin BM Tl
IN Cntrl B ain Cntrl C C_to_yout : :
' ' Generator :
yout

REQ2 ACK2

D _to yout
CntrI D

Decomposed Controllers and Communication Protocol

m Three Types of Controllers

e Parent Controller
— Activates children controllers by issuing a REQ
— Becomes activated by a parent controller by responding with ACK

e Leaf Controller

— Becomes activated by a parent controller by responding with ACK
— Cannot activate other controllers

e Top-Level Controller
— A specialized parent controller that is initialized at system start-up
— Does not have a parent controller

Parents and children communicate through 4-phase handshaking protocol

Decomposed Controllers: Input Latch Hardware

Decomposed Controller

Activation
v v Channel
Latch

Primary | Enable | Filtered

Input | Input

Generic Input =5e BM
Latch Structure

Primary Input Latches

e Transparent D-latches
— Control when primary inputs can safely be received

e By default all primary inputs are blocked

Latch Enable Hardware: controlled by “activation channel”

e Handles two scenarios:
— “Controller as a leaf” =» has permitting unit
— “Controller as a parent” = has permitting and prohibiting units

Decomposed Controllers: Input Latch Hardware

“Controller as a Leaf”

Idea:
e Latch permitting unit used to control the input latch
e Inputs are permitted when leaf gets activation from parent

Entry Pt.

| Zout+ _Permi?ting
— Unit

Bin+ | Zout-

BM Specification Latch Structure
Fragment for input

Decomposed Controllers: Input Latch Hardware
“Controller as a Parent”

Idea:
e Latch permitting and prohibiting unit used to control input latch
e “"Parent” gets latch prohibited when control passed to child
e Latch re-enabled when child completes allowing inputs to be permitted

Generic Input Latch Structure

Permitting

Primary Filtered
Input ’ Input

Overview of Hardware Imp.: Output Generator

m Primary Output Generators
e Needed for generating and producing correct output values
e Created for each primary output
— Inputs

« A signal from each controller that asserts the corresponding
output

— Outputs
« Produced by a single XOR or XNOR gate

« “"Reduction-in-Strength” optimizations are applied so the logic
gate can be AND, OR, NOR, or Single Wire

Overview of Hardware Imp.: Output Generator

Block View

Decomposed
BM Controllers

BM
Can be XOR, XNOR,
CntrlA .
AND, OR, or a single
Output .
wire

Logic 4)

BM _
CntrlB CntrlB_To_Output Primary Primary output

Output Output
Logic Generator

CntrlA_To_Output

BM

CntrlD

Output | CntriD_To_Output
Logic

Output generator is determined by the
initial output value of the decomposed
controllers and the original BM controller.

25

PART I: Technical Overview

Burst-Mode Controllers

— Micro-Architecture
— Communication Protocol
— Hardware Implementation

m bm_decomp: Basic Tool Features <=

bm_decomp: Basic Tool Features

m Basic Mode
e Input:
1. An Original BM Controller (one .bms file)
> A single BM controller specification
e QOutput:
1. Decomposed Controllers (multiple .bms files)

» Multiple decomposed BM specifications

2. Auxiliary Hardware Details (one .auxhw file)
> List for each controller:
e All inputs (primary inputs + communication channels)
e Latch enable logic for each primary input
e Optimizations for primary input latches
> List for each primary output generator
e Implementation details (using reduction in strength)

«xa ONCE completed, user can synthesize decomposed specs with Minimalist

bm_decomp: Basic Tool Features

m Extended Mode

e First: runs bm_decomp (i.e., as in basic mode)

e Second: automatically calls Minimalist to synthesize decomposed
specs

— Provides an interactive menu which allows users to synthesize
resulting decomposed specs automatically using Minimalist

m Additional Feature
e Help Menu

— Includes basic help menu which provides assistance on using the tool

PART II: Tutorial

Design Examples + Hands-On Tutorial

« Example 1: HP-IR

= A. Marshall, B. Coates, and P. Siegel, "Designing an Asynchronous
Communications Chip”, IEEE Design & Test of Computers, vol. 11:2,
pp. 8-21 (1994).

» Example 2: RF-Control

e A. Marshall, B. Coates, and P. Siegel. "Designing an Asynchronous
Communications chip”. IEEE Design and Test of Computers, 11(2):8.
21, 1994.

« Example 3: PSCSI-TSEND

e S. M. Nowick, K. Y. Yun, and D. L. Dill. * Practical Asynchronous
Controller Design.” 1EEE International Conference on Computer
Design (Oct. 1992).

Example #1: “HP-IR" (HP Labs)

Inputs: Outputs:
intitreq iteventreq

itevent2ticks ctrincreq SEE figs. 10, 11, pp. 17-18:

ctrincack A.Marshall, B.Coates, P.Siegel,

“"Designing an Asynchronous

. Communications Chip”,

intitreq-/ o IEEE Design&Test of Computers,
iteventreq- intitreq+/ vol. 11:2, pp. 8-21 (1994)

/ iteventreq+

||?t|treq +/ itevent2ticks+/
iteventreq+ -
ctrincreq+
iteventreq+

intitreq+/
iteventreq+

itevent2ticks- itevent2ticks-
ctrincack-/ ctrincack+/ intitreq-/ Initial values: in
iteventreq+ ctrincreq- ctrincreq- state #0, all inputs
14

& outputs are 0

Example #1: “HP-IR" (HP Labs)

Running BM_DECOMP: the Simple Approach

Step #0. Ge

tting Started ...

(a) go to the root directory (‘bm_decomp’) of the bm_decomp

tool;
> m

then create a new subdirectory:
kdir test-demo

(b) go to it, then create a new subdirectory, and go to it:

> CC
> Mm

test-demo
kdir ex1

> CC

ex1

(c) copy BM spec into the ‘test-demo/ex1’ subdirectory:
> cp ../..[tutorial/HP-IR/hp-ir.boms .

Example #1: "HP-IR" (HP Labs)

Running BM_DECOMP: the Simple Approach

Step #1. Show BM Specification
Look at "BMS” text file:
>more hp-ir.oms

Example #1: "HP-IR" (HP Labs)

Running BM_DECOMP: the Simple Approach

Step #2a. Display Help Menu:

> bm_decomp help

NOTE: This demo assumes you have set up your PATH variable so
that you can call ‘bm_decomp’ directly. (See README file)

Step #2b. Run BM_DECOMP:
> bm_decomp hp-ir.oms

Step #2c. Skip automatic synthesis of decomposed controllers
using Minimalist (just decompose the original spec):
When prompted:

"Would you like to synthesize your bm_decomp results with Minimalist(Y/N)?”

> N

Example #1: "HP-IR" (HP Labs)
Running BM_DECOMP: the Simple Approach

Step #3. Display It:

(a) Text: Results Summary
> [see displayed text output]

(b) decomposed BM Specs
> more hp-ir_Master.bms [for top-level Master]
> more hp-ir_MachineX.bms [where X is a number]

(c) Auxiliary Hardware Details
> more hp-ir.auxhw

Example #1: "HP-IR" (HP Labs)
BM_DECOMP Results

‘3 BM Machines: 1 Top-Level Master & 2 Controllers

(Top-Level) (Leaf)

Example #1: "HP-IR" (HP Labs)

‘3 BM Machines: 1 Top-Level Master & 2 Leaf Controllers ‘

intitreq-/
iteventreq-

intitreq+/
iteventreq+

Leaf Controller

‘ Top-Level Controller ‘

intitreq+/
iteventreq+

itevent2ticks+/
ctrincreq+
iteventreq+

)) itevent2ticks-
itevent2ticks- j intitreq-/

ctrincack+/
ctrincreq-

_ intitreq+/
ctrincack-/ ° iteventreq+

iteventreq+

ctrincreq-

‘ Leaf Controller ‘ 36

Example #1: "HP-IR" (HP Labs)

‘ 1 Symbolic Communication Channel (between parent and leaf controllers) ‘

Channel 1

intitreq-/
iteventreq-

intitreq+/
iteventreq+

Leaf

Controller

‘ Top-Level Controller ‘

intitreq+/
iteventreq+

| eaf
Controller

itevent2ticks+/
ctrincreq+
iteventreq+

_) itevent2ticks-
itevent2ticks- intitreq-/
ctrincack+/ ctrincreq-

ctrincreq-
° intitreq+/
iteventregﬁ

ctrincack-/
iteventreq+

Example #1: "HP-IR” (HP Labs)

‘ Additional Communication Transitions (for symbolic channel) ‘

Top-Level Controller ‘

intitreq+/

iteventreq+
(\ Leaf

Controller

intitreq-/

iteventreq-
|tevent2t|cks+ /
ctrincreq+
iteventreq+
intitreq+/ Channel 1

iteventreq+

itevent2ticks-
|tevent2t|cks- |nt|treq /
ctrincack+/ ctrmcreq-

Leaf ctrincreq-

Controller ctrincack-/ '“?;eri“.,ir’e
iteventreq+ %’5

Example #1: "HP-IR" (hp-ir.auxhw)

Auxiliary File Generated by BM _DECOMP (BM Machines)

The results of bm_decomp are as follows:
Original BM Controller: hp-ir.bms

of Decomp. BM Controllers: 3

Names of Decomp. BM Controllers: hp-ir_Master.bms
hp-ir_Machinel.bms
hp-ir_Machine2.bms

[text omitted....See hp-ir.auxhw for key on interpreting the output]

Master Machine

Primary Input 1: IntITReq
LATCH REQUIRED: YES

LATCH ENABLE LOGIC:
Permitting Unit: Does not exist
Prohibiting Unit: ReqgZero' AckOneToZero' AckThreeToZero'
Master_enable = ReqgZero' AckOneToZero' AckThreeToZero'

Example #1: "HP-IR" (hp-ir.auxhw)

Auxiliary File Generated by BM _DECOMP (BM Machines)

Machine 1

Primary Input 1: IntITReq

LATCH REQUIRED: YES

LATCH ENABLE LOGIC:
Permitting Unit: (AckOneToZero + RegZero)
Prohibiting Unit: Does not exist
Machinel_enable = (AckOneToZero + RegZero)

Machine 2

Primary Input 1: IntITReq

LATCH REQUIRED : YES
Permitting Unit: AckTwoToZero
Prohibiting Unit: Does not exist
Machine2_enable = AckTwoToZero

Primary Input 2: ITEvent2Ticks
LATCH REQUIRED: NO

Example #1: "HP-IR" (hp-ir.auxhw)

Auxiliary File Generated by BM _DECOMP (BM Machines)

Machine 2 (cont’d)

Primary Input 3: CtrIncAck
LATCH REQUIRED: NO

Example #1: "HP-IR" (hp-ir.auxhw)

‘ Auxiliary File Generated by BM DECOMP (Output Generators) ‘

Primary Output Generators

m Primary Output 1 = ITEventReq

e (Generator : AND3 gate (Inputs from Machines Master, 1, 2)
e Inputs: MasterTolTEventReq, OneTolTEventReq, TwoToITEventReq

m Primary Output 2 = CtrIncReq

e Generator : Single Wire (Input from Machine 2)
e Inputs: TwoToCtrIncReq

Example #1: HP-IR Micro-Architecture

Decomposed Controllers . Primary Output

Top-level Generators
Controller

IntITReq E Master Master to_|

TEventReq Master to_|

TEventReq

q (Parent) Intermediate
Outputs

ITEverEltZTicks Signals ' Machine1_to_

ITEventReq

' ITEventReq

AckOneToZero REQO AckTwoToZero Machine2_to
Citrl nc/:\ck ITEventReq

Machine RiEuUCmER Machine LEEULEZ RN
el = ITEventReq ITEventReq

CtrincReq CtrincReq
IntITReq E

ITEvent2Ticks

i IntITReq

CtrincAck Latch and
! Enable

Example #1: HP-IR Latch and Enable Details

Master MaCh | ne Activation Channel
AckOneToZero’ AckTwoToZero!

(from machine 1)

(from machine 2)
RegZero’ |
IV e E - (from master)

Master _enable
IntITReq| Q IntITReq_i

(to BM machine)

Machine 1 Activation Channel

RegZero AckOneToZero

(from master) ’ ‘ (from machine 1)

IntITReq E N—7
'Machine1_enable

IntTReq [y~ IntiTReq_|

(to BM machine)

Example #1: HP-IR Latch and Enable Details

Machine 2

Activation Channel

AckTwoToZero
IntITReq E ' (from machine 2)

Machine2_enable

IntITReq D Q IntITReq_i

(to BM machine)

Example #2: RF-Control

(input and output transitions have been omitted
to show structural decomposition See later slide
for input/output bursts for transitions)

s A

Example #2: RF-Control
Running BM DECOMP

Step #0. Getting Started ...

(a) go back into "bm_decomp/test-demo” directory:
>cd ..
(b) create a new subdirectory, and go to it:

> mkdir ex2
> cd ex2

(c) copy BM spec into the ‘test-demo/ex2’ subdirectory:
> cp ../..[tutorial/RF-CONTROL/rf-control.bms .

Example #2: RF-Control

Step #1. Show BM Specification
(a) Look at "BMS” text file:
>more rf-control.bms

[... continued on right
column ==> |

Example #2: RF-Control
Running BM_DECOMP

Step #2a. Run BM_DECOMP:
> bm_decomp rf-control.bms
Step #2b. Automatically synthesize specs using Minimalist-basic:
(a). When prompted:

"Would you like to synthesize your bm_decomp results with Minimalist(Y/N)?”

>Y
(b). When prompted:

“Please select a mode to synthesize the decomposed specs:”

> 1

NOTE: See menu of options when running the tool; option
1 means running “Minimalist-basic” script

Example #2: RF-Control
Ruhning BM_DECOMP

Step #3. Display It:

(a) Text: Results Summary
> [see displayed text output]
(b) decomposed BM Specs

> more rf-control_Master.bms [for top-level Master]
> more rf-control_MachineX.bms [where X is a number]

(c) Auxiliary Hardware Details
> more rf-control.auxhw

When done: compare your results with specs found in...
.../bm_decomp/tutorial/RF-CONTROL/results/

Example #2: RF-Control

3 BM Machines: 1 Top-Level Master & 2 Leaf Controllers ‘

(input and output transitions have been
omitted to show structural decomposition) Top-Level

Controller

| eaf
Controller

| eaf
Controller

Example #2: RF-Control

1 Symbolic Communication Channel (between parent and leaf controllers) ‘

(input and output transitions have been

omitted to show structural decomposition) Top-LeveI

Controller

| eaf
Controller

ACK2

| eaf
Controller

Channel 1

Example #2: RF-Control

Additional Communication Transitions (for symbolic channel) ‘

(input and output transitions have been

omitted to show structural decomposition) Top-LeveI

Controller

Leaf

Controller

| eaf
Controller

Channel 1

Example #2: RF-Control (rf-control.auxhw)

Auxiliary File Generated by BM _DECOMP (BM Machines)

The results of bm_decomp are as follows:
Original BM Controller: rf-control.bms

of Decomp. BM Controllers: 3

Names of Decomp. BM Controllers: rf-control_Master.bms
rf-control_Machinel.bms
rf-control_Machine2.bms

Master Machine

Primary Input 1: RFFrameReq

LATCH REQUIRED: YES

LATCH ENABLE LOGIC:
Permitting Unit: Does not exist
Prohibiting Unit: ReqgZero' AckOneToZero' AckTwoToZero'
Master_enable = ReqgZero' AckOneToZero' AckTwoToZero'

Example #2: RF-Control (rf-control.auxhw
Auxiliary File Generated by BM DECOMP (BM Machines)

Master Machine (cont'd)

Primary Input 2: SOFEventOK

LATCH REQUIRED: YES

LATCH ENABLE LOGIC:
Permitting Unit: Does not exist
Prohibiting Unit: ReqZero' AckOneToZero' AckTwoToZero'
Master_enable = ReqZero' AckOneToZero' AckTwoToZero'

Machine 1

Primary Input 1: RFFrameReq
LATCH REQUIRED: YES
LATCH ENABLE LOGIC:
Permitting Unit: AckOneToZero
Prohibiting Unit: Does not exist
Machinel_enable = AckOneToZero

Example #2: RF-Control (rf-control.auxhw
Auxiliary File Generated by BM DECOMP (BM Machines)

Machine 1 (cont’d)

Primary Input 2: SOFEventOK
LATCH REQUIRED: YES
LATCH ENABLE LOGIC:
Permitting Unit: AckOneToZero
Prohibiting Unit: Does not exist
Machinel enable = AckOneToZero

Primary Input 3: EOFEventOK
LATCH REQUIRED: NO

Primary Input 4: SCEoTSAck
LATCH REQUIRED: YES
LATCH ENABLE LOGIC:
Permitting Unit: AckOneToZero
Prohibiting Unit: Does not exist
Machinel_enable = AckOneToZero

Example #2: RF-Control (rf-control.auxhw)

Auxiliary File Generated by BM _DECOMP (BM Machines)

Machine 1 (cont’d)

Primary Input 5: HIFCommitAck
LATCH REQUIRED: NO

Machine 2

Primary Input 1: CtrEoTSAck
LATCH REQUIRED: NO

Primary Input 2: SCEOTSAck
LATCH REQUIRED: YES
Permitting Unit: AckTwoToZero
Prohibiting Unit: Does not exist
Machine2_enable = AckTwoToZero

Example #2: RF-Control (rf-control.auxhw)

Auxiliary File Generated by BM DECOMP (Output Generators) ‘

Primary Output Generators

m Primary Output 1 = ITEventReqg

e (Generator: Single Wire (Input from Machine Master)
e Inputs: MasterToControlResetAck

m Primary Output 2 = RFFrameAck

e (Generator : Single Wire (Input from Machine 1)
e Inputs: OneToRFFrameAck

m Primary Output 3 = IntSDReq

e Generator : AND3 gate (Inputs from Machines Master, 1, 2)
e Inputs: MasterToIntSDReq, OneToIlntSDReq, TwoToIntSDReq

Example #2: RF-Control (rf-control.auxhw)

Auxiliary File Generated by BM DECOMP (Output Generators) ‘

Primary Output Generators

m Primary Output 4 = SCE0TSReq

e (Generator : OR2 gate (Inputs from Machines 1, 2)
e Inputs: OneToSCEoTSReq, TwoToSCEOTSReq

m Primary Output 5 = HIFCommitReq

e (Generator : Single Wire (Input from Machine 1)
e Inputs: OneToHIFCommitReq

Example #3: pscsi-tsend

(input and output transitions have been
omitted to show structural decomposition.
See later slide for input/output bursts for

transitions)

Example #3: pscsi-tsend

Running BM_DECOMP
Step #0. Getting Started ...

(a) go back into "bm_decomp/test-demo” directory:
>cd ..
(b) create a new subdirectory, and go to it:

> mkdir ex3
> cd ex3

(c) copy BM spec into the ‘test-demo/ex3’ subdirectory:
> cp ../..[tutorial/PSCSI-TSEND/pscsi-tsend.bms .

Example #3: pscsi-tsend
Running BM_DECOMP

Step #1. Show BM Specification
(a) Look at "BMS” text file:
>more pscsi-tsend.bms

[... continued on right column ==>]

Example #3: pscsi-tsend
Running BM_DECOMP

Step #2a. Run BM_DECOMP:
> bm_decomp pscsi-tsend.bms
Step #2b. Synthesize specs using Minimalist-area with fedback
(a). When prompted:

"Would you like to synthesize your bm_decomp results with Minimalist(Y/N)?”

>Y
(b). When prompted:

“Please select a mode to synthesize the decomposed specs:”

> 4

(c). When prompted:
“Enter run-type -- multi-output or output-disjoint:”

> multi-output

Example #3: pscsi-tsend
Running BM_DECOMP

Step #3. Display It:

(a) Text: Results Summary
> [see displayed text output]
(b) decomposed BM Specs

> more pscsi-tsend_Master.bms for top-level Master]
> more pscsi-tsend_MachineX.bms [where x is a number]

(¢c) Auxiliary Hardware Details
> more pscsi-tsend.auxhw

When done: compare your results with specs found in...
.../bm_decomp/tutorial/PSCSI-TSEND/results/

Example #3: pscsi-tsend

‘ 3 BM Machines: 1 Top-Level Master, 1 Parent, 2 Leaf Controllers ‘

(input and output transitions have been
omitted to show structural decomposition)

Parent

Controller

-

Top-Level

Controller

!
@

| eaf
Controller

| eaf
Controller

s

b

Example #3: pscsi-tsend

‘ 2 Symbolic Communication Channels (between parents & leaf controllers) ‘

(input and output transitions have been
omitted to show structural decomposition) Top-Level

Controller Leaf
Controller

Parent
Controller Channel 1

| eaf
Controller

Example #3: pscsi-tsend

‘ Additional Communication Transitions (for symbolic channels) ‘

(input and output transitions have been
omitted to show structural decomposition) Top-Level

Controller

Parent
Controller Channel 1

L eaf

@ Controller

$
Y

| eaf
Controller

Example #3: pscsi-tsend (pscsi-tsend.auxhw)
Auxiliary File Generated by BM _DECOMP (BM Machines)

The results of bm_decomp are as follows:
Original BM Controller: pscsi-tsend.bms

of Decomp. BM Controllers: Z

Names of Decomp. BM Controllers: pscsi-tsend_Master.bms
pscsi-tsend_Machinel.bms
pscsi-tsend_Machine2.bms
pscsi-tsend_Machine3.bms

Master Machine
Primary Input 1: StartDMASend
LATCH REQUIRED: YES

LATCH ENABLE LOGIC:
Permitting Unit: Does not exist
Prohibiting Unit: ReqgZero' AckOneToZero' AckThreeToZero'
Master_enable = ReqgZero' AckOneToZero' AckThreeToZero'

Example #3: pscsi-tsend (pscsi-tsend.auxhw
Auxiliary File Generated by BM DECOMP (BM Machines)

Machine 1

Primary Input 1: StartDMASend
LATCH REQUIRED: YES

LATCH ENABLE LOGIC:

Permitting Unit: AckOneToZero
Prohibiting Unit: Does Not Exist
Machinel enable = AckOneToZero

Primary Input 2: DWAckLastN
LATCH REQUIRED: YES

LATCH ENABLE LOGIC:
Permitting Unit: AckOneToZero + RegZero
Prohibiting Unit: Does Not Exist
Machinel_enable = AckOneToZero + RegZero

Primary Input 3: AckInN
LATCH REQUIRED: YES

LATCH ENABLE LOGIC:
Permitting Unit: AckOneToZero
Prohibiting Unit: Does Not Exist
Machinel_enable = AckOneToZero

Example #3: pscsi-tsend (pscsi-tsend.auxhw
Auxiliary File Generated by BM DECOMP (BM Machines)

Machine 2

Primary Input 1: DWAckNormN
LATCH REQUIRED: NO

Primary Input 2: AckInN
LATCH REQUIRED: YES

LATCH ENABLE LOGIC:
Permitting Unit: AckTwoToThree + ReqOne
Prohibiting Unit: Does Not Exist
Machine2_enable = AckTwoToThree + ReqOne

Machine 3

Primary Input 1: StartDMASend
LATCH REQUIRED: YES

LATCH ENABLE LOGIC:
Permitting Unit: AckThreeToZero
Prohibiting Unit: (ReqOne + GlobalAckThree)'
Machine3_enable = (AckThreeToZero) (RegOne + GlobalAckThree)'

Example #3: pscsi-tsend (pscsi-tsend.auxhw)
Auxiliary File Generated by BM _DECOMP (BM Machines)

Machine 3 (cont’d)

Primary Input 2: DWAckLastN
LATCH REQUIRED: YES

LATCH ENABLE LOGIC:
Permitting Unit: AckThreeToZero
Prohibiting Unit: GlobalAckThree'
Machine3_enable = (AckThreeToZero) (GlobalAckThree')

Primary Input 3: DWAckNormN
LATCH REQUIRED: NO

Primary Input 4: AckInN

LATCH REQUIRED: YES
LATCH ENABLE LOGIC:
Permitting Unit: AckThreeToZero
Prohibiting Unit: GlobalAckThree'
Machine3_enable = (AckThreeToZero) (GlobalAckThree')

Example #3: pscsi-tsend (pscsi-tsend.auxhw)

Auxiliary File Generated by BM DECOMP (Output Generators) ‘

Primary Output Generators

m Primary Output 1 = EndDMAInt

e Generator: AND3 gate (Inputs from Machines Master, 1, 3)
e Inputs: MasterToEndDMAInt, OneToEndDMAInt, ThreeToEndDMAInt

m Primary Output 2 = DRQ
e (Generator : AND4 gate (Inputs from Machines Master, 1, 2, 3)
e Inputs: MasterToDRQ, OneToDRQ, TwoToDRQ, ThreeToDRQ

m Primary Output 3 = RegOutN

o Generator: XNOR3 gate (Inputs from Machines 1, 2, 3)
e Inputs: OneToReqOutN, TwoToReqOutN, ThreeToReqOutN

Conclusions

bm_decomp CAD tool

e An extension of MINIMALIST
e Decomposition technique for BM and XBM controllers
e Inter-controller communication protocol
e Additional hardware
— Optimizations proposed to remove & reduce hardware

