
An Introduction to the
DES (Discrete Event System) Analyzer:

A Performance Analysis and
Timing Verification Tool

for Concurrent Digital Systems

Peggy B. McGee Steven M. Nowick

{pmcgee,nowick}@cs.columbia.edu

Department of Computer Science Columbia University

This work was partially supported by NSF ITR Award No. NSF-CCR-0086036, an Initiatives in Science
and Engineering (ISE) grant from the Office of the Executive Vice President for Research of Columbia
University, and a subcontract to Boeing under the DARPA CLASS program

1/53

Developers and documentation

� Developers (2005 - present)
• Peggy B. McGee: design and implementation

• Steven M. Nowick: project management

� Documentation
• Peggy B. McGee, Steven M. Nowick and E.G. Coffman Jr.,

“Efficient Performance Analysis of Asynchronous Systems Based on
Periodicity,"
in Proceedings of the 3rd IEEE/ACM/IFIP International Conference
on Hardware/Software Codesign and System Synthesis
(CODES+ISSS ’05), pages 225-230, Sept. 2005.

• Peggy B. McGee and Steven M. Nowick,
“An Efficient Algorithm for Time Separation of Events in Concurrent
Systems,"
in Proceedings of the 2007 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD ’07), Nov. 2007.

2/53

Download site

� Accessible on the web from:
http://www1.cs.columbia.edu/∼nowick/asynctools

� Package includes:

• Tool binaries
� Currently, Linux version only

• Introduction and tutorial slides (this document)
• Benchmark examples
• Other documentation

� Tool setup instructions (README)
� Related conference publications
� Related conference presentation slides

3/53

Outline

� The DES Analyzer:
• Introduction
• Tool flow overview

� Background on modeling

� Overview of analysis methods

� Tool features

� Tutorial: Design examples and hands-on tutorial
• Using des-tse: Time separation of events (TSE) analysis

� Example 1a: FIFO ring
� Example 1b: Micropipeline

• Using des-perf: Performance analysis
� Example 2: Micropipeline

� Conclusions

4/53

The DES Analyzer:

Introduction & tool flow overview

5/53

The DES Analyzer: Goals and Applications

� Overall goal:
• A CAD package for analyzing the timing behavior of digital

concurrent systems
� Asynchronous systems
� Mixed-timing systems, e.g. GALS

� Applications
• Performance analysis

� Finds average-case system latency and throughput
� Finds worst and best-case system latency and throughput

• Timing verification
� Identifies violations of system-level timing constraints

• Optimization
� Finds system performance bottlenecks
� Identifies impossible ordering of events

• Increases don’t-care space for synthesis

6/53

The DES Analyzer: Scope

� Scope:

• Assumes repetitive systems
� System interacts with environment continuously

• Assumes systems modeled with concurrent graphs
� Currently supports marked graphs, a sub-class of Petri nets

• Handles two types of delay models
� Bounded delays = lower and upper bounds (for des-tse)

• special case: Fixed delays = single delay number
� Exponential distributions (for des-perf)

• Currently only handles choice-free systems
� Support for systems with choice planned in future releases

7/53

The DES Analyzer: Tool package

� Two analysis tools under the package:
1. des-tse

= T ime Separation of Events analysis
• For bounded-delay systems = min/max delay bounds
• Special case: fixed-delay systems = single delay number

� Applications:
• Timing verification
• Best- and worst-case performance analysis
• Average-case performance analysis

� for fixed-delay systems only

2. des-perf
= Perf ormance analysis
• For stochastic-delay systems (exponential distributions)

� Applications:
• Average-case performance analysis

8/53

The DES Analyzer: Tool flow overview

Input Specification
(Timed Marked Graph)

DES Analyzer

des-tse des-perf

Graphical
Display of

Input
Specification

Average-case
performance metrics

Max or Min TSE
(Also average TSE for
fixed-delay systems)

9/53

Background on modeling

10/53

Background on modeling: Marked graphs

a b c d

[Commoner, Holt, Even and Pnueli, Journal of Comput. Syst. Sci, ’71]

11/53

Background on modeling: Marked graphs

a b c d

[Commoner, Holt, Even and Pnueli, Journal of Comput. Syst. Sci, ’71]

node: an event in the system

11/53

Background on modeling: Marked graphs

a b c d

[Commoner, Holt, Even and Pnueli, Journal of Comput. Syst. Sci, ’71]

node: an event in the system

edge: captures a pre-condition to an event

11/53

Background on modeling: Marked graphs

a b c d

[Commoner, Holt, Even and Pnueli, Journal of Comput. Syst. Sci, ’71]

node: an event in the system

edge: captures a pre-condition to an event

token: pre-condition is satisfied

11/53

Background on modeling: Marked graphs

a b c d

[Commoner, Holt, Even and Pnueli, Journal of Comput. Syst. Sci, ’71]

node: an event in the system

edge: captures a pre-condition to an event

token: pre-condition is satisfied

enabling of node:
a token on each input edge

not enabled

enabled

11/53

Background on modeling: Marked graphs

a b c d

[Commoner, Holt, Even and Pnueli, Journal of Comput. Syst. Sci, ’71]

node: an event in the system

edge: captures a pre-condition to an event

token: pre-condition is satisfied

firing of node: occurrence of an event
� a token deposited onto each output edge

11/53

Background on modeling: Timed marked graphs

Timed marked graphs =
An extension of marked graphs to include timing information

Each edge or node in the marked graph assigned a delay

� Types of delay models:
• Probabilistic distribution, e.g. exponential distribution
• Bounded delay = lower and upper bounds

� Special case: fixed delay = single delay number

12/53

Background on modeling: Timed marked graphs

For the DES Analyzer:

a b c d

[1,2] [1,3] [1,2]

[2,2][1,2][1,2]

For des-tse:

Bounded delays on edges

a b c d

λ = 5 λ = 2 λ = 2 λ = 5

For des-perf

Exponentially-distributed
delays on nodes
(λ = Mean of delay distribution)

13/53

Overview of analysis methods

14/53

des-tse: TSE analysis overview

Key concept: Capture exact timing behavior of system
for timing verification

a b c d

[1,2] [1,3] [1,2]

[2,2][1,2][1,2]

Example: Find maximum TSE between two
consecutive firings of nodes b and d

15/53

des-tse: TSE analysis overview

� Evaluates entire time evolution of system analytically
• System operates in two phases: “ramp-up” and “steady state”

• Tool considers timing behavior in both phases

� For fixed-delay systems
• Critical cycles drive asymptotic timing behavior

• Critical paths = longest paths from critical cycle to each node
� Determine relative firing time of system events
� Find TSE from relative firing time of events

� For bounded-delay systems
• Re-cast as two fixed-delay problems

• Solve individually and combine results

For details, see accompanying ICCAD’07
� Conference publication
� Presentation slides

16/53

des-perf: Performance analysis overview

Key concept: Derive asymptotic timing behavior of system
using Markovian analysis

a b c d

λ = 5 λ = 2 λ = 2 λ = 5
λ = Mean delay at
node (assumes
exponential
distribution)

Given timed marked graph:
� Gives asymptotic state distribution

• Can be further processed to give performance metrics
• Example: average delay(d,b) = 4.8 time units

17/53

des-perf: Performance analysis overview

� Evaluates asymptotic timing behavior of system analytically
• Gives average performance metrics of system at steady-state

� System state transition dynamics captured in a Markov chain
• Markov transition probabilities derived from delay distributions

� Efficient method based on periodic properties of system for:

• Constructing the Markov chain
• Solving the Markov chain

For details, see accompanying CODES’05
� Conference publication
� Presentation slides

18/53

Tool features

19/53

Tool features: Command line input

� Commands to run the tools:
> des-tse [input_filename] [options]
> des-perf [input_filename] [options]

Input file format and tool options same for des-tse and des-perf

� Input file =
• Text description of timed marked graph

� Outputs
• Analysis results

� Printed onto the standard output
� Can be piped to a text file for further analysis

• (Optional) graphical display of input specification

20/53

Tool features: Tool options

� “-o output_filename"
• Optional feature: displaying input specification

� Given input specification, generates a graphical display
• Graphical display described in text format
• Viewable in a third-party tool: dotty

� Viewer can be downloaded from the AT&T website
http://www.research.att.com

� “-no_processing"
• Overrides tool default by performing no analysis

� Useful when used together with the “-o" option
• For generating graphical display only

� “-help”
• Prints “help” information of the commands

21/53

Tool features: Input format

� Format of input specification = text file

� Each line in input text file prefixed with an identifier:
• #

� The rest of the line is ignored by tool front-end
� Used for comments

• .node_list
� Declares list of all nodes in the marked graph

example: .node_list a b c d
� Must be the first line in the input files

• Excluding comments

22/53

Tool features: Input format (cont’d)

� Each line in input text file prefixed with an identifier (cont’d)
• .edge:

� Specifies an edge
� for des-perf: followed by input and output nodes of edge

Example: .edge a b
� For des-tse: followed by input and output nodes of edge

• Plus three additional arguments:
• Lower delay bound
• Upper delay bound
• 1 (if there is a token on the edge), or 0 (otherwise)

Example: .edge a b 3.5 5.2 1

23/53

Tool features: Input format (cont’d)

� Each line in input text file prefixed with an identifier (cont’d)
• .init

� Used in des-tse only
� Specifies the firing time of enabled nodes at initialization

Example: .init a 0
• .check

� Used in des-tse only
� Specifies two nodes to check TSE for

Example: .check a b
� Alternatively, specifies all nodes

Example: .check all
• .node

� Used in des-perf only
� Specifies the mean of the delay distribution of a node

Example: .node a 3.5

24/53

Tutorials

0. Getting started

1. TSE analysis with des-tse
Example 1a: FIFO ring
Example 1b: Micropipeline

2. Performance analysis with des-perf
Example 2: Micropipeline

25/53

Tutorial 0: Getting started

26/53

Tutorial 0: Getting started

Step 1: Making sure the tool is set up
� Make sure the tool and path for the DES Analyzer are set up:

• Follow the instructions from the README file

� Test the set-up by running the tool with the “-help” option:
> des-tse -help

or
> des-perf -help

You should see the following output display:
Usage: des-tse [input_file] [-o output_file] [-no_processing]

input_file Filename of input marked graph specification.

-o output_file Graphical display option.
Converts input specification to ".dot" format for display
with the dotty viewer and writes to output filename.

-no_processing Option to perform no analysis. When used with the
"-o" option, prints graphical display only.

27/53

Tutorial 0: Getting started

Step 2: Setting up the dotty viewer (Optional)

� Check if “dotty” is already installed in your environment:
> which dotty

� If the tool is not found in your path, download the tool from:
http://www.research.att.com

� Follow the instruction from the tool website to setup the tool.

28/53

Tutorial 0: Getting started

Step 3: Copying tutorial files
� Make a new directory for running the tutorials:

For example:
> mkdir DES

� Go to it:
> cd DES

� Create a subdirectory for each of the two tutorials:
> mkdir tutorial1
> mkdir tutorial2

� Copy the example input files to the tutorial directories:
> cp $DES_HOME/examples/des-tse/micropipeline.txt tutorial1/.
> cp $DES_HOME/examples/des-tse/fifo_ring_run1.txt tutorial1/.
> cp $DES_HOME/examples/des-tse/fifo_ring_run2.txt tutorial1/.
> cp $DES_HOME/examples/des-perf/micropipeline.txt tutorial2/.

$DES_HOME = location of the downloaded DES Analyzer CAD Package

29/53

Tutorial 1: TSE analysis with des-tse

Example 1a: FIFO ring

30/53

Tutorial 1: TSE analysis with des-tse
- Example 1a: FIFO ring

� In this tutorial we shall learn how to:

• Step 1: Specify a marked graph input for the des-tse tool

• Step 2: Display the input specification graphically

• Step 3: Run TSE analysis

• Step 4: Specify initial conditions of the system
� and learn how initial conditions affect TSE results

• Step 5: Perform different TSE queries on the system

31/53

Tutorial 1: TSE analysis with des-tse
- Example 1a: FIFO ring

FIFO ring: marked graph model [McGee et al., ICCAD’07]

This example has fixed delay on all edges
(e.g. [1,1] = fixed-delay of 1)

a b

cd

[1,1]

[1,1]

[1,1]

[1
,1

]

[3,3]

[3
,3

]

[3,3]

[3,3]

32/53

Tutorial 1: TSE analysis with des-tse
- Example 1a: FIFO ring

Step 1: Specifying the marked graph input
� Go to the ‘tutorial1’ directory created in Step 0

� Take a look at the file fifo_ring_run1.txt

list of nodes in graph
.node_list a b c d

edge specification: .edge <input node> <output node> <min delay> <max delay> <has token?>
.edge a b 1 1 1
.edge b a 3 3 0
.edge b c 1 1 0
.edge c b 3 3 1
.edge c d 1 1 1
.edge d c 3 3 0
.edge d a 1 1 0
.edge a d 3 3 1

initial firing time of enabled nodes
.init b 0
.init d 0

TSE pairs to check
.check b d

33/53

Tutorial 1: TSE analysis with des-tse
- Example 1a: FIFO ring

Step 2: Displaying the input specification
� Generate a graphical output:

> des-tse fifo_ring_run1.txt -o fifo_ring.dot -no_processing

� Display it:
> dotty fifo_ring.dot
A window should pop up to display the following:

a

b[1.0, 1.0]

d[3.0, 3.0]

[3.0, 3.0]

c
[1.0, 1.0]

[1.0, 1.0]

[3.0, 3.0]
[3.0, 3.0]

[1.0, 1.0]

34/53

Tutorial 1: TSE analysis with des-tse
- Example 1a: FIFO ring

Step 3: Running TSE analysis
� Run the tool:

> des-tse fifo_ring_run1.txt

� Look at the output:

Event pair Max TSE Min TSE

(b,d) 6.0 0.0

� The result table shows the maximum and minimum

• TSE between all consecutive firings of events b and d

� From initialization to steady-state

35/53

Tutorial 1: TSE analysis with des-tse
- Example 1a: FIFO ring

Step 4: Specifying different initial conditions
� Take a look at both files:

fifo_ring_run1.txt
fifo_ring_run2.txt

� The two files specify the same design
� with same initial marking = placement of tokens

� but different initial firing times of enabled nodes

� tokens can have different “lag” times at initialization
= time before it contributes to the firing of nodes

� node fires only when all input tokens arrive
→ initial firing time of node = Max. of lag times of input tokens

� user specifes actual firing time of enabled nodes at initialization
• system time starts at t = 0

36/53

Tutorial 1: TSE analysis with des-tse
- Example 1a: FIFO ring

Step 4: Specifying different initial conditions
� Note the difference between the two specifications:

nodes b and d
fire at the
same time
(at t = 0)

node d fires at t = 2
node b fires at t = 0

System time t = 0 at startup

...
initial firing time of
enabled nodes
.init b 0
.init d 0
...

Run 1

...
initial firing time of
enabled nodes
.init b 0
.init d 2
...

Run 2

37/53

Tutorial 1: TSE analysis with des-tse
- Example 1a: FIFO ring

Step 4: Specifying different initial conditions
� Run des-tse on both files and note the difference in results:

> des-tse fifo_ring_run1.txt
> des-tse fifo_ring_run2.txt

� Result of Run 1:
Event pair Max TSE Min TSE

(b,d) 6.0 0.0

� Result of Run 2:
Event pair Max TSE Min TSE

(b,d) 2.0 2.0

Note the significant difference in TSE results:
caused by different initial conditions

38/53

Tutorial 1: TSE analysis with des-tse
- Example 1a: FIFO ring

Step 5: Performing different TSE queries

� Modify input files to perform TSE queries on different event pairs

� Two options:
1. Use ”.check all” to query TSE for all event pairs
2. Use multiple ”.check” lines

Modify with option 1

Modify with option 2

...
TSE pairs to check
.check b d
...

Original specification

...
TSE pairs to check
.check all
...

...
TSE pairs to check
.check a a
.check a b
.check b c
...

39/53

Tutorial 1: TSE analysis with des-tse
- Example 1a: FIFO ring

Step 5: Performing different TSE queries
� Try out different options, run des-tse and observe results

� Example output from using “.check all” with fifo_ring_run2.txt:
Event pair Max TSE Min TSE

(a,a) 8.0 4.0
(a,b) 5.0 1.0
(a,c) 2.0 2.0
(a,d) 3.0 3.0
(b,a) 3.0 3.0
(b,b) 8.0 4.0
(b,c) 5.0 1.0
(b,d) 2.0 2.0
(c,a) 2.0 2.0
(c,b) 3.0 3.0
(c,c) 8.0 4.0
(c,d) 5.0 1.0
(d,a) 5.0 1.0
(d,b) 2.0 2.0
(d,c) 3.0 3.0
(d,d) 8.0 4.0

40/53

Tutorial 1: TSE analysis with des-tse

Example 1b: Micropipeline

41/53

Tutorial 1: TSE analysis with des-tse
- Example 1b: Micropipeline

� In this tutorial we shall:
• Look at a bounded-delay system
• Run TSE analysis using the same steps as in Tutorial 1

42/53

Tutorial 1: TSE analysis with des-tse
- Example 1b: Micropipeline

Micropipeline design [Sutherland, Comm. of the ACM, ’89]
C

1

C
2

C
3

D
1

D
2

D
3

R(IN)

A(IN)

A(OUT)

R(OUT)

Circuit diagram

IN OUT

D1

C1 D2

C2 D3

C3

Marked graph model
(Delays not shown)

43/53

Tutorial 1: TSE analysis with des-tse
- Example 1b: Micropipeline

Step 1: Specifying the marked graph input
� Go to the tutorial1 directory created in Step 0:

> cd tutorial1

� Look at the DES input specification file:
> less micropipeline.txt

list of nodes in graph
.node_list in c1 d1 c2 d2 c3 d3 out

edge specifications
.edge in c1 5 10 1
.edge c1 d1 1 1 0
.edge d1 in 4 5 0
.edge c2 d2 1 1 0
.edge d2 c1 4 8 1
.edge c3 d3 1 1 0
.edge d3 out 4 5 0
.edge out c3 5 10 1

initial firing time of enabled nodes
.init c1 0

TSE pairs to check
.check in out

44/53

Tutorial 1: TSE analysis with des-tse
- Example 1b: Micropipeline

Step 2: Displaying the input specification
� Generate graphical output:

> des-tse micropipeline.txt -o micropipeline.dot -no_processing

� Display it:

> dotty micropipeline.dot

A window should pop up to display the following:

in

c1[5.0, 10.0]

d1

[1.0, 1.0]

[4.0, 5.0] c2
[4.0, 5.0]

d2[1.0, 1.0]

[4.0, 8.0]
c3

[4.0, 8.0]

d3
[1.0, 1.0]

[4.0, 8.0]
out[4.0, 5.0]

[5.0, 10.0]

45/53

Tutorial 1: TSE analysis with des-tse
- Example 1b: Micropipeline

Step 3: Running TSE analysis
� Run the tool:

> des-tse micropipeline.txt

� Look at the output:
Event pair Max TSE Min TSE

(in,out) 13.0 10.0

Step 4: Specifying different initial conditions
� Modify the initial conditions in input file as in Tutorial 1

� Run des-tse and observe results

Step 5: Performing different TSE queries

� Modify the TSE query section in input file as in Tutorial 1

� Run des-tse and observe results

46/53

Tutorial 2: Performance analysis with des-perf

Example 2: Micropipeline

47/53

Tutorial 2: Performance analysis with des-perf
- Example 2: Micropipeline

� In this tutorial we shall learn how to:

• Step 1: Specify a marked graph input for the des-perf tool

• Step 2: Display the input specification graphically

• Step 3: Run performance analysis

48/53

Tutorial 2: Performance analysis with des-perf
- Example 2: Micropipeline

Step 1: Specifying the marked graph input
� Go to the tutorial2 directory created in Step 0:

> cd tutorial2

� Look at the input specification file:
> less micropipeline.txt

list of nodes in graph
.nodes IN C1 D1 C2 D2 C3 D3 OUT

edge list:
.edge <input node> <output node>
.edge IN C1
.edge C1 D1
.edge D1 IN
.edge C2 D2
.edge D2 C1
.edge C3 D3
.edge D3 OUT
.edge OUT C3

node list:
.node <mean delay>
.node IN 10
.node C1 1
.node D1 5
.node C2 1
.node D2 5
.node C3 51
.node D3 5
.node OUT 10

49/53

Tutorial 2: Performance analysis with des-perf
- Example 2: Micropipeline

Step 2: Displaying the input specification
� Generate a graphical output:

> des-perf micropipeline.txt -o micropipeline.dot -no_processing

� Display it:

> dotty micropipeline.dot

A window should pop up to display the following:

 in (10.0)

 c1 (1.0)

 d1 (5.0) c2 (1.0)

 d2 (5.0) c3 (1.0)

 d3 (5.0)

 out (10.0)

50/53

Tutorial 2: Performance analysis with des-perf
- Example 2: Micropipeline

Step 3: Run des-perf
� Run the tool:

> des-perf micropipeline.txt

� Look at the output:

SYMBOLIC STATE TABLE
———————————-
0 | 56 41 01
1 | 45 23 20 67
2 | 75 45 12
3 | 63 67 41 20
4 | 63 67 41 01
5 | 56 12
6 | 23 01 45 67
7 | 75 45 23 20
8 | 63 75 41 20
9 | 63 67 12
.....
.....

STATIONARY STATE DISTRIBUTION
—————————————————-
0 | 2.872948e-01
1 | 2.127045e-01
2 | 2.872949e-01
3 | 2.127045e-01
4 | 1.542347e-01
5 | 4.788247e-01
6 | 1.063522e-01
7 | 1.542347e-01
8 | 1.063522e-01
9 | 3.796258e-01
.....
.....

51/53

Tutorial 2: Performance analysis with des-perf
- Example 2: Micropipeline

Step 3: Run des-perf
� Two sections in the results table

• Symbolic state table
� State = a marking in the marked graph

= placement of tokens on graph edges
� Output representation:

• Column 1: symbolic state
• Column 2: edges with tokens in the state

• Stationary state distribution
� Output representation:

• Column 1: symbolic state
• Column 2: asymptotic probability of state

� Results can be further processed to give other useful results:
• Average latency, throughput, etc.

52/53

Conclusions

� Two analysis tools under the DES Analyzer CAD package
• des-tse

• des-perf

� Used in the design flow for concurrent digital systems for

• Verifying timing correctness

• Measuring system performance

• Getting feedback on performance bottlenecks for optimization

53/53

