An Introduction to the
DES (Discrete Event System) Analyzer :
A Performance Analysis and

Timing Verification Tool
for Concurrent Digital Systems

Peggy B. McGee Steven M. Nowick
{pmcgee,nowick}@cs.columbia.edu

Department of Computer Science Columbia University

This work was partially supported by NSF ITR Award No. NSF-CCR-0086036, an Initiatives in Science
and Engineering (ISE) grant from the Office of the Executive Vice President for Research of Columbia
University, and a subcontract to Boeing under the DARPA CLASS program

()
1/53

Developers and documentation

» Developers (2005 - present)
e Peggy B. McGee: design and implementation

e Steven M. Nowick: project management

» Documentation

e Peggy B. McGee, Steven M. Nowick and E.G. Coffman Jr.,
“Efficient Performance Analysis of Asynchronous Systems Based on
Periodicity,"
in Proceedings of the 3rd IEEE/ACM/IFIP International Conference
on Hardware/Software Codesign and System Synthesis
(CODES+ISSS '05), pages 225-230, Sept. 2005.

e Peggy B. McGee and Steven M. Nowick,
“An Efficient Algorithm for Time Separation of Events in Concurrent
Systems,"
in Proceedings of the 2007 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD ’'07), Nov. 2007.

()
2/53

Download site

» Accessible on the web from:
http://www1.cs.columbia.edu/~nowick/asynctools

» Package includes:
e Tool binaries
» Currently, Linux version only
¢ |ntroduction and tutorial slides (this document)
e Benchmark examples

e Other documentation
» Tool setup instructions (README)
» Related conference publications
» Related conference presentation slides

()
3/53

Outline

» The DES Analyzer:
e |ntroduction
e Tool flow overview

Background on modeling
Overview of analysis methods

Tool features

v v vy

Tutorial: Design examples and hands-on tutorial

e Using des-tse: Time separation of events (TSE) analysis
» Example 1la: FIFO ring
» Example 1b: Micropipeline

e Using des-perf: Performance analysis
» Example 2: Micropipeline

» Conclusions

()
4/53

Introduction & tool flow overview

(]
5/53

The DES Analyzer: Goals and Applications

» Overall goal:

e A CAD package for analyzing the timing behavior of digital
concurrent systems
» Asynchronous systems
» Mixed-timing systems, e.g. GALS

» Applications

¢ Performance analysis

» Finds average-case system latency and throughput

» Finds worst and best-case system latency and throughput
e Timing verification

» |dentifies violations of system-level timing constraints
e Optimization

» Finds system performance bottlenecks

» |dentifies impossible ordering of events

® |ncreases don’t-care space for synthesis

()
6/53

The DES Analyzer: Scope

» Scope:

e Assumes repetitive systems
» System interacts with environment continuously

e Assumes systems modeled with concurrent graphs
» Currently supports marked graphs, a sub-class of Petri nets

e Handles two types of delay models

» Bounded delays = lower and upper bounds (for des-tse)
¢ special case: Fixed delays = single delay number

» EXxponential distributions (for des-perf)

e Currently only handles choice-free systems
» Support for systems with choice planned in future releases

()
7/53

The DES Analyzer: Tool package

» Two analysis tools under the package:

1. des-tse
= Time Separation of Events analysis
¢ For bounded-delay systems = min/max delay bounds

e Special case: fixed-delay systems = single delay number
» Applications:
¢ Timing verification
e Best- and worst-case performance analysis
e Average-case performance analysis
» for fixed-delay systems only

2. des-perf
= Performance analysis
e [or stochastic-delay systems (exponential distributions)
» Applications:
e Average-case performance analysis

()
8/53

The DES Analyzer: Tool flow overview

Input Specification
(Timed Marked Graph)

Graphical DES Analyzer
Display of

Input des-tse des-perf

Specification

Max or Min TSE
(Also average TSE for
fixed-delay systems)

Average-case
performance metrics

()
9/53

(]
10/53

Background on modeling: Marked graphs

[Commoner, Holt, Even and Pnueli, Journal of Comput. Syst. Sci, '71]

(]
11/53

Background on modeling: Marked graphs

\/\/

node: an eventin the system

[Commoner, Holt, Even and Pnuell, Journal of Comput. Syst. Sci, '71]

[o
11/53

Background on modeling: Marked graphs

edge: captures a pre-condition to an event

node: an eventin the system

[Commoner, Holt, Even and Pnueli, Journal of Comput. Syst. Sci, '71]

[o
11/53

Background on modeling: Marked graphs

edge: captures a pre-condition to an event

token: pre-condition is satisfied

node: an event in the system

[Commoner, Holt, Even and Pnueli, Journal of Comput. Syst. Sci, '71]

[o
11/53

Background on modeling: Marked graphs

edge: captures a pre-condition to an event

token: pre-condition is satisfied

not enabled

enabling of node:

a token on each input edge

node: an event in the system

[Commoner, Holt, Even and Pnueli, Journal of Comput. Syst. Sci, '71]

[o
11/53

Background on modeling: Marked graphs

edge: captures a pre-condition to an event

token: pre-condition is satisfied

firing of node: occurrence of an event
» a token deposited onto each output edge

node: an event in the system

[Commoner, Holt, Even and Pnueli, Journal of Comput. Syst. Sci, '71]

[o
11/53

Background on modeling: Timed marked graphs

Timed marked graphs =
An extension of marked graphs to include timing information

Each edge or node in the marked graph assigned a delay

» Types of delay models:
e Probabilistic distribution, e.g. exponential distribution

e Bounded delay = lower and upper bounds
» Special case: fixed delay = single delay number

[o
12/53

Background on modeling: Timed marked graphs

For the DES Analyzer:

For des-tse: For des-perf
[1,2] [1,3] [1,2] A=5 A=2 A=2 A=5
R W ;/‘&g/‘mg/\é
N e~ N N e~

1,2] [1,2] [2,2]

Bounded delays on edges Exponentially-distributed

delays on nodes

(A = Mean of delay distribution)

[o
13/53

(]
14/53

des-tse: TSE analysis overview

Key concept: Capture exact timing behavior of system
for timing verification

[1,2] [1,3] [1,2]

(o) el (o)

[1.2] [1.2] |

Example: Find maximum TSE between two

consecutive firings of nodes b and d

[o
15/53

des-tse: TSE analysis overview

» Evaluates entire time evolution of system analytically
e System operates in two phases: “ramp-up” and “steady state”
* Tool considers timing behavior in both phases

» For fixed-delay systems
e Critical cycles drive asymptotic timing behavior

e Critical paths = longest paths from critical cycle to each node

» Determine relative firing time of system events
» Find TSE from relative firing time of events

» For bounded-delay systems
® Re-cast as two fixed-delay problems
e Solve individually and combine results

For details, see accompanying ICCAD’07

» Conference publication
» Presentation slides

o
16/53

des-perf: Performance analysis overview

Key concept: Derive asymptotic timing behavior of system
using Markovian analysis

A = Mean delay at
node (assumes

exponential
distribution)

Given timed marked graph:

» Gives asymptotic state distribution
e Can be further processed to give performance metrics
e Example: average delay(d,b) = 4.8 time units

[o
17/53

des-perf: Performance analysis overview

» Evaluates asymptotic timing behavior of system analytically
* Gives average performance metrics of system at steady-state

» System state transition dynamics captured in a Markov chain
e Markov transition probabilities derived from delay distributions

» Efficient method based on periodic properties of system for:

e Constructing the Markov chain
e Solving the Markov chain

For details, see accompanying CODES’05

» Conference publication
» Presentation slides

[o
18/53

(]
19/53

Tool features: Command line input

» Commands to run the tools:
> des-tse [input_filename] [options]
> des-perf [input_filename] [options]
Input file format and tool options same for des-tse and des-perf

» Input file =
e Text description of timed marked graph

» Outputs
e Analysis results

» Printed onto the standard output
» Can be piped to a text file for further analysis

e (Optional) graphical display of input specification

[o
20/53

Tool features: Tool options

» “-0 output_filename"
e Optional feature: displaying input specification
» Given input specification, generates a graphical display

e Graphical display described in text format
e Viewable in a third-party tool: dotty
» Viewer can be downloaded from the AT&T website
http://www.research.att.com

» “-no_processing"
e Overrides tool default by performing no analysis
» Useful when used together with the “-0" option
e [or generating graphical display only
> “-help”
* Prints “help” information of the commands

[o
21/53

Tool features: Input format
» Format of input specification = text file

» Each line in input text file prefixed with an identifier:
-
» The rest of the line is ignored by tool front-end
» Used for comments
e node list

» Declares list of all nodes in the marked graph
example: .node listabcd

» Must be the first line in the input files
e Excluding comments

[o
22/53

Tool features: Input format (cont’d)

» Each line in input text file prefixed with an identifier (cont’'d)
e .edge:
» Specifies an edge

» for des-perf: followed by input and output nodes of edge
Example: .edge a b

» For des-tse: followed by input and output nodes of edge

e Plus three additional arguments:
e | ower delay bound
e Upper delay bound
e 1 (if there is a token on the edge), or O (otherwise)

Example: .edgea b 3.55.21

[o
23/53

Tool features: Input format (cont’d)

» Each line in input text file prefixed with an identifier (cont’'d)

Anit

» Used in des-tse only

» Specifies the firing time of enabled nodes at initialization
Example: .inita 0

.check

» Used in des-tse only

» Specifies two nodes to check TSE for
Example: .check a b

» Alternatively, specifies all nodes
Example: .check all

.node

» Used in des-perf only

» Specifies the mean of the delay distribution of a node
Example: .node a 3.5

[o
24/53

1. TSE analysis with des-tse
Example 1la: FIFO ring

Example 1b: Micropipeline

2. Performance analysis with des-perf
Example 2: Micropipeline

(]
25/53

(]
26/53

Tutorial 0: Getting started

Step 1. Making sure the tool is set up

» Make sure the tool and path for the DES Analyzer are set up:
e Follow the instructions from the README file

» Test the set-up by running the tool with the “-help” option:
> des-tse -help
or
> des-perf -help

You should see the following output display:
Usage: des-tse [input file] [-o0 output file] [-no_processing]

I nput _file Fi | ename of input marked graph specification.

-0 output _file G aphi cal display option.
Converts input specification to ".dot" format for display

with the dotty viewer and wites to output fil enane.

-no_processing Option to performno anal ysis. Wen used with the
"-0" option, prints graphical display only.

[[[[[[[[o
27153

Tutorial 0: Getting started
Step 2: Setting up the dotty viewer (Optional)

» Check if “dotty” is already installed in your environment:
> which dotty

» |f the tool is not found in your path, download the tool from:
http://www.research.att.com

» Follow the instruction from the tool website to setup the tool.

[o
28/53

Tutorial 0: Getting started

Step 3: Copying tutorial files

» Make a new directory for running the tutorials:
For example:
> mkdir DES

» Gotoit;
> cd DES

» Create a subdirectory for each of the two tutorials:
> mkdir tutoriall
> mkdir tutorial2

» Copy the example input files to the tutorial directories:
> cp $DES_HOME/examples/des-tse/micropipeline.txt tutoriall/.
> cp $DES_HOME/examples/des-tse/fifo_ring_runl.txt tutoriall/.
> cp $DES HOME/examples/des-tse/fifo_ring_run2.txt tutoriall/.
> cp $DES HOME/examples/des-perf/micropipeline.txt tutorial2/.

$DES HOME = location of the downloaded DES Analyzer CAD Package

o
29/53

Example 1a: FIFO ring

(]
30/53

Tutorial 1. TSE analysis with des-tse
- Example 1la: FIFO ring

» In this tutorial we shall learn how to:
e Step 1: Specify a marked graph input for the des-tse tool
e Step 2: Display the input specification graphically
e Step 3: Run TSE analysis

e Step 4: Specify initial conditions of the system
» and learn how initial conditions affect TSE results

e Step 5: Perform different TSE queries on the system

[o
31/53

Tutorial 1. TSE analysis with des-tse
- Example l1a: FIFO ring

FIFO ring: marked graph model [McGee et al., ICCAD’07]

[1,1]

[3,3]

[3.3]

[1.1]

This example has fixed delay on all edges
(e.g. [1,1] = fixed-delay of 1)

[o
32/53

Tutorial 1. TSE analysis with des-tse
- Example 1la: FIFO ring

Step 1. Specifying the marked graph input
» Go to the ‘tutoriall’ directory created in Step O

» Take a look at the file fifo_ring_runl.txt

list of nodes in graph
.node _listabcd

edge specification: .edge <input node> <output node> <min delay> <max delay> <has token?>
.edgeablll
.edgeba330
.edgebcl110
.edgechb331
.edgecd111
.edgedc330
.edgedallo
.edgead331

initial firing time of enabled nodes
initb 0

initd O

TSE pairs to check

.check b d

o
33/53

Tutorial 1. TSE analysis with des-tse
- Example 1la: FIFO ring

Step 2: Displaying the input specification

» Generate a graphical output:
> des-tse fifo_ring_runl.txt -o fifo_ring.dot -no_processing

» Display it:
> dotty fifo_ring.dot
A window should pop up to display the following:

[3.0, 3.0]

[1.0, 1.0]

[o
34/53

Tutorial 1. TSE analysis with des-tse
- Example 1la: FIFO ring

Step 3: Running TSE analysis

» Run the tool:
> des-tse fifo_ring_runl.txt

» Look at the output:

Event pair Max TSE Mn TSE

» The result table shows the maximum and minimum

e TSE between all consecutive firings of events b and d
» From initialization to steady-state

[o
35/53

Tutorial 1. TSE analysis with des-tse
- Example 1la: FIFO ring

Step 4. Specifying different initial conditions
» Take a look at both files:

fifo_ring_runl.txt
fifo_ring_run2.txt

» The two files specify the same design
» with same initial marking = placement of tokens

» but different initial firing times of enabled nodes

» tokens can have different “lag” times at initialization
= time before it contributes to the firing of nodes

» node fires only when all input tokens arrive
— Initial firing time of node = Max. of lag times of input tokens

» user specifes actual firing time of enabled nodes at initialization
® system time starts at¢ = 0

o
36/53

Tutorial 1. TSE analysis with des-tse
- Example l1a: FIFO ring

Step 4. Specifying different initial conditions

» Note the difference between the two specifications:

nodes b and d

fire at the

initial firing time of S(Zrtnte_t'rg)e # initial firing time of
enabled nodes L # enabled nodes
intbo_—— | inith 0

nitd O anitd 2

node b firesatt = 0
t =2

Run 1 node d fires at Run 2

System time ¢ = 0 at startup

[o
37/53

Tutorial 1. TSE analysis with des-tse
- Example l1a: FIFO ring

Step 4. Specifying different initial conditions

» Run des-tse on both files and note the difference in results:

> des-tse fifo_ring_runl.txt
> des-tse fifo_ring_run2.txt

» Result of Run 1:
Event pair Max TSE Mn TSE

» Result of Run 2:
Event pair Max TSE Mn TSE

Note the significant difference in TSE results:
caused by different initial conditions

[o
38/53

Tutorial 1. TSE analysis with des-tse
- Example 1la: FIFO ring

Step 5: Performing different TSE queries

» Modify input files to perform TSE queries on different event pairs

» Two options:
1. Use ".check all” to query TSE for all event pairs
2. Use multiple ".check” lines

TSE pairs to check
.check all

TSE pairs to check

.check b d
TSE pairs to check
.check a a
.checkab
Original specification .check b c
° ° ° ° ° °

[o
39/53

Tutorial 1. TSE analysis with des-tse
- Example 1la: FIFO ring

Step 5: Performing different TSE queries
» Try out different options, run des-tse and observe results

» Example output from using “.check all” with fifo_ring_run2.txt:
Event pair Max TSE Mn TSE

(a, a) 8.0 4.0
(a, b) 5.0 1.0
(a, c) 2.0 2.0
(a, d) 3.0 3.0
(b, a) 3.0 3.0
(b, b) 8.0 4.0
(b, c) 5.0 1.0
(b, d) 2.0 2.0
(c,a) 2.0 2.0
(c, b) 3.0 3.0
(c,c) 8.0 4.0
(c,d) 5.0 1.0
(d, a) 5.0 1.0
(d, b) 2.0 2.0
(d, c) 3.0 3.0
(d, d) 8.0 4.0

o
40/53

Example 1b: Micropipeline

(]
41/53

Tutorial 1. TSE analysis with des-tse
- Example 1b: Micropipeline

» In this tutorial we shall:
e Look at a bounded-delay system
e Run TSE analysis using the same steps as in Tutorial 1

[o
42/53

Tutorial 1. TSE analysis with des-tse
- Example 1b: Micropipeline

Micropipeline design [Sutherland, Comm. of the ACM, '89]

R(IN) A(OUT)
FON
e = Cl D2 C3
O 81 O
IN OouT

)@ L K /
A(IN) R(OUT) Dl\JCZWDB

Circuit diagram Marked graph model

(Delays not shown)

[o
43/53

Tutorial 1. TSE analysis with des-tse
- Example 1b: Micropipeline
Step 1. Specifying the marked graph input

» Go to the tutoriall directory created in Step O:
> cd tutoriall

» Look at the DES input specification file:
> |less micropipeline.txt

list of nodes in graph # initial firing time of enabled nodes
.node_listin cl d1 c2 d2 c3 d3 out initcl 0

edge specifications # TSE pairs to check
.edgeincl5101 .check in out

.edgecldl110
.edgedlin450
.edgec2d2110
.edged2c1481
.edgec3d3110
.edged3out450
.edgeoutc35101

o
44/53

Tutorial 1. TSE analysis with des-tse
- Example 1b: Micropipeline

Step 2: Displaying the input specification
» Generate graphical output:

> des-tse micropipeline.txt -o micropipeline.dot -no_processing

» Display it:
> dotty micropipeline.dot

A window should pop up to display the following:

[4.0, 8.0]

. 40, 80 _ [50100
[1.0, 1.0] @] @ [10, 1.0]
[40, 50] @ [40, 80 @

[o
45/53

Tutorial 1. TSE analysis with des-tse

- Example 1b: Micropipeline

Step 3: Running TSE analysis

» Run the tool:
> des-tse micropipeline.txt

» Look at the output:
Event pair Max TSE Mn TSE

Step 4. Specifying different initial conditions

» Modify the initial conditions in input file as in Tutorial 1

» Run des-tse and observe results

Step 5: Performing different TSE queries

» Modify the TSE query section in input file as in Tutorial 1

» Run des-tse and observe results

[o
46/53

Example 2: Micropipeline

(]
47/53

Tutorial 2: Performance analysis with des-perf
- Example 2: Micropipeline

» In this tutorial we shall learn how to:
e Step 1: Specify a marked graph input for the des-perf tool
e Step 2: Display the input specification graphically

e Step 3: Run performance analysis

[o
48/53

Tutorial 2: Performance analysis with des-perf
- Example 2: Micropipeline

Step 1. Specifying the marked graph input

> cd tutorial2

> |less micropipeline.txt

list of nodes in graph
.nodes IN C1 D1 C2 D2 C3 D3 OUT

edge list:

.edge <input node> <output node>
.edge IN C1

.edge C1D1

.edge D1 IN

.edge C2 D2

.edge D2 C1

.edge C3 D3

.edge D3 OUT

.edge OUT C3

» Go to the tutorial2 directory created in Step O:

» Look at the input specification file:

node list:

.node <mean delay>
.node IN 10

.node C11

.node D15

.node C2 1

.node D2 5

.node C3 51

.node D3 5

.node OUT 10

o
49/53

Tutorial 2: Performance analysis with des-perf
- Example 2: Micropipeline

Step 2: Displaying the input specification
» Generate a graphical output:

> des-perf micropipeline.txt -o micropipeline.dot -no_processing

» Display it:
> dotty micropipeline.dot

A window should pop up to display the following:

c1 (1.0) @H

[o
50/53

Tutorial 2: Performance analysis with des-perf
- Example 2: Micropipeline
Step 3: Run des-perf

» Run the tool:
> des-perf micropipeline.txt

» Look at the output:

SYMBOLIC STATE TABLE STATIONARY STATE DISTRIBUTION
0564101 0| 2.872948e-01
1|45 23 20 67 1| 2.127045e-01
2| 75 45 12 2 | 2.872949e-01
3|63 67 4120 3| 2.127045e-01
4163674101 4| 1.542347e-01
5|56 12 5 | 4.788247e-01
6 | 23 01 45 67 6 | 1.063522e-01
7| 75 45 23 20 7 | 1.542347e-01
8| 63 75 41 20 8 | 1.063522e-01
96367 12 9 | 3.796258e-01
[] [] [] [] [] []

o
51/53

Tutorial 2: Performance analysis with des-perf
- Example 2: Micropipeline

Step 3: Run des-perf

» Two sections in the results table
e Symbolic state table
» State = a marking in the marked graph
= placement of tokens on graph edges

» Output representation:
e Column 1: symbolic state

e Column 2: edges with tokens in the state

e Stationary state distribution
» Output representation:
e Column 1: symbolic state

e Column 2: asymptotic probability of state

» Results can be further processed to give other useful results:
e Average latency, throughput, etc.

[o
52/53

Conclusions

» Two analysis tools under the DES Analyzer CAD package
e des-tse

e des-perf

» Used in the design flow for concurrent digital systems for
e \erifying timing correctness

e Measuring system performance

e Getting feedback on performance bottlenecks for optimization

[o
53/53

