
Measurements of a Distributed File System

Mary G. Baker, John H. Hartmart, Michael D, Kupfer, Ken W. Shirriff, and John K. Ousterhout

Computer Science Division
Electrical Engineering and Computer Sciences
University of California, Berkeley, CA 94720

Abstract

We analyzed the user-level file access patterns and caching
behavior of the Sprite distributed file system. The first part
of our analysis repeated a study done in 1985 of the BSD
UNIX file system. We found that file throughput has
increased by a factor of 20 to an average of 8 Kbytes per
second per active user over 10-minute intervals, and that
the use of process migration for load sharing increased
burst rates by another factor of six. Also, many more very
large (multi-megabyte) files are in use today than in 1985.
The second part of our analysis measured the behavior of

Sprite’s main-memory file caches. Client-level caches
average about 7 Mbytes in size (about one-quarter to one-

third of main memory) and filter out about 50% of the
traffic between clients and servers. 3570 of the remaining

server traffic is caused by paging, even on workstations
with large memories. We found that client cache con-
sistencey is needed to prevent stale data errors, but that it is
not invoked often enough to degrade overall system perfor-
mance.

1. Introduction
In 1985 a group of researchers at the University of

California at Berkeley performed a trace-driven analysis of
the UNIX 4.2 BSD file system [11]. That study, which we
call “the BSD study,” showed that average file access

rates were only a few hundred bytes per second per user for
engineering and office applications, and that many files had
lifetimes of only a few seconds. It atso reinforced
commonly-held beliefs that file accesses tend to be sequen-
tial, and that most file accesses are to short files but the
majority of bytes transferred belong to long files. Lastly, it

used simulations to predict that main-memory tile caches of
a few megabytes could substantially reduce disk 1/0 (and

The work describd here was supported in part by the National Sci.

ence Foundation under grant CCR-8!XXXY29,tbe National Aeronautics and
Space Adrninistration and the Defense Advanced Research Projects Agen-
cy under contract NAG2-591, and an IBM Graduate Fellowship Award.

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwisa, or to republish, requires a fee

and/or specific permission.

~ 1991 ACM 0-89791 -447 -3/911000910198 . ..S1 .50

server traftic in a networked environment). The results of
this study have been used to justify several network file
system designs over the last six years.

In this paper we repeat the analysis of the BSD study

and report additional measurements of file caching in a dis-
tributed file system. Two factors motivated us to make the
new measurements. First, computing environments have
changed dramatically over the last six years, from rela-
tively slow time-shared machines (VAX- 11/780s in the
BSD study) to today’s much faster personal workstations.
Second, several network-oriented operating systems and
tile systems have been developed during the last decade,

e.g. AFS [4], Amoeba [7], Echo [3], Locus [141, NFS [16],
Sprite [9], and V [1]; they provide transparent network file
systems and, in some cases, the ability for a single user to
harness many workstations to work on a single task. Given
these changes in computers and the way they are used, we
hoped to learn how tile system access patterns have
changed, and what the important factors are in designing
file systems for the future.

We made our measurements on a collection of about
40 1O-MIPS workstations all running the Sprite operating

system [9, 12]. Four of the workstations served as file
servers, and the rest were diskless clients. Our results are
presented in two groups. The first group of results parallels
the analysis of the BSD study. We found that file
throughput per user has increased substantially (by at least
a factor of 20) and has also become more bursty. Our
measurements agree with the BSD study that the vast
majority of file accesses are to smalt files; however, large
files have become an order of magnitude larger, so that
they account for an increasing fraction of bytes transfemed.

Many of the changes in our measurements can be explained
by these large files. In most other respects our measure-
ments match those of the BSD study file accesses are
largely sequential, files are typically open for only a frac-

tion of a second, and file lifetimes are shorL

Our second set of results analyzes the main-memory
tile caches in the Sprite system. Sprite’s file caches change
size dynamically in response to the needs of the file and
virtual memory systems we found substantial cache size
variations over time on clients that had an average cache

size of about 7 Mbytes out of an average of 24 Mbytes of
main memory. About 60% of all data bytes read by

198

applications are retrieved from client caches without con-
tacting tile servers. Sprite’s 30-second delayed-write pol-
icy allows about 1O$ZOof newly-written bytes to be deleted

or overwritten without being written back from the client
cache to the server.

Sprite guarantees the consistency of data cached on
different clients. We found that many users would be
affected if Sprite’s consistency guarantees were weaker,
but write-sharing occurs infrequently enough that the over-
heads of implementing consistency have little impact on
average system performance. We compared Sprite’s con-
sistency implementation with two other approaches and
found that even the best approach, a token-based mechan-
ism, does not significantly reduce the consistency over-
heads for our workload.

Sprite allows users to take advantage of many works-
tations simultaneously by migrating processes onto idle
machines. Process migration increased the burst rates of
file throughput by a factor of six in comparison to overall
file throughput. Fortunately, we found that process migra-
tion does not reduce the effectiveness of file caches.
Migrated processes actually had higher cache hit ratios than
non-migrated processes, and process migration also had lit-
tle impact on the cache consistency mechanism.

The rest of the paper is structured as follows: Sec-

tion 2 describes the system that was measured and its work-
load, and Section 3 describes how we collected data. Sec-
tion 4 contains the measurements that repeat the BSD study
and Section 5 presents our measurements of Sprite caches.
Section 6 is a summary.

2. The System Under Study
The system we measured is a cluster of about 40

SPARCstation 1, Sun 3, DECstation 3100, and DECstation
5000 workstations, all diskless and most with 24 to 32
Mbytes of memory. Each of these workstations has about

ten times the compute power of the VAX timesharing sys-
tems used in the BSD study. The cluster is served by four
file servers, with most traffic handled by a single Sun 4 file
server with 128 Mbytes of main memory. About 30 users
do all of their day-to-day computing on this cluster and
another 40 people use the system occasionally.

The users fall into four groups of roughly the same

size operating system researchers, architecture researchers
working on the design and simulation of new I/O subsys-
tems, a group of students and faculty working on VLSI cir-
cuit design and parallel processing, and a collection of mis-
cellaneous other people including administrators and
graphics researchers. The makeup of this user community
is similar to the user community measured in the BSD
study. Common applications are interactive editors of vari-
ous types, program development and debugging, electronic
mail, document production, and simulation.

All of the workstations in the cluster run the Sprite

network operating system. The Sprite kernel’s facilities are
almost identical to those of UNIX, and most of the

applications running on the cluster are standard UNIX
applications. Sprite has two features that made it a particu-

larly interesting candidate for measurement its network tile
system [17] and process migration [2]. Sprite’s network
file system provides a single-system image: there is a single

shared file hierarchy with no local disks. The file system
uses large file caches in the main memories of both clients
and servers, and it ensures the consistency of data in the
caches even in the event of concurrent write accesses.
Thus the Sprite file system encourages users to share tiles,

The second interesting featme of Sprite is its process
migration mechanism, which makes it easy for users to
offload jobs to idle machines in the cluster [2]. The most
common use of process migration is through pmuke, a re-
implementation of the muke utility that uses migration to

generate multiple targets in parallel. Pmake is used for all
compilations in the cluster and also for simulations and
other tasks. Long-term measurements show that 109ZOto
30% of all user-level cycles are executed by migrated
processes.

Using Sprite had the disadvantage of limiting us to a
single Sprite cluster for measurements; this makes our
results vulnerable to anomaties in that cluster’s workload.
However, the danger of anomalies was reduced by the
presence of different user groups in the cluster. Moreover,

Sprite allowed us to examine some interesting features not
present in the other heavily-used systems currently avail-

able to us for measurement. For example, Sprite permits
much larger file caches than many commercial systems,
and we were curious to see how they behaved. Sprite has
“perfect” cache consistency; by measuring Sprite we
could see how often users take advantage of this con-
sistency. Lastly, Sprite’s process migration mechanism
makes it unusually easy for a single user to harness several
different workstations to work on the same problem; we
wished to see if this increased the frequency of file sharing
or affected file system behavior in other ways.

3. Collecting the Data
To gather the measurements for this paper, we used

two metlmk tracing and kernel counters. To collect the
&aces we instrumented the Sprite kernels to log informa-
tion about various events in the file system, such as opens,
closes, and tile deletions. The contents of the log were
periodically passed to a user-level process that stored the
data in a series of trace files. The results in Section 4 were
produced by scanning the trace files.

The traces recorded file activity at the level of kernel
calls, not at the level of network requests or disk opera-
tions. As in the BSD study, the traces contained enough
information to indicate which portions of which files were
read or written on behalf of which users, and at approxi-
mately what times. The traces did not record individual
read and write kernel calls but they recorded the file access
position before and after reposition operations (lseek ker-
nel calls) and during opens and closes. This provided
enough information to deduce the exact range of bytes

199

accessed, but it introduced a small amount of uncertainty in
times (actual reads and writes could have occurred at any
time lxxween the surrounding opeddoseheposition
events). Ousterhout et al. have a more complete discussion
of the tracing approach [11].

One of the most difficult tasks in tracing a network of
workstations is coordinating the traces from many
machines. Our task was greatly simplified because most of

the information we wished to trace was available on the
Sprite file servers. Several key file system operations, such
as file opens, file closes, and directory accesses, require

communication between the client and the server. l%us a
system-wide trace of all such events can be made by gath-
ering information on only the file servers. In the one case
where information wasn ‘t available on the server (reposi-
tions); we modified the client kernels to make an extra
request to the server so that the operation could be logged.
This meant that we only had to gather traces on four
machines instead of forty. Each server’s trace data was

recorded in a different set of trace files, but the traces
included enough timing information to merge the maces

from the different servers into a single ordered list of
records. The code that merged the traces also removed all
records related to writing the trace files themselves and all
records related to the nightly tape backup.

h this paper we present the results of tracing eight
24-hour periods. Some overall statistics about the tmces
are presented in Table 1. The traces were collected in
pairs, i.e. we collected data for four 48-hour periods which
were then divided into eight 24-hour periods. No attempt
was made to ensure that the workloads were consistent
across the traces. Users were free to run whatever pro-
grams they wished. During the third and fourth traces two

users were working on class projects that used large input
and output files. One user was using a simulator that read
input files that averaged 20 Mbytes in size. The other user
was running a cache simulation that produced a 10 Mbyte
file that was subsequently postprocessed and deleted. Both
users ran their simulators repeatedly throughout the two
traces. As a result, the workloads for these two traces are
very different from the rest of the traces, causing them to

stand out in some of our measurements. They do, however,
reinforce our assertion that the size of “large” files is
increasing.

Our second method for collecting data was to gather
statistics in the kernels of each of the workstations in the
cluster. We used approximately 50 counters that recorded
statistics about cache traffic, ages of blocks in the cache,
the size of the cache, etc. A user-level process read the
counters at regular intervals and recorded their values in a
file. These counters were recorded 24 hours a day across a

two-week period. The files for diffemt clients were then

post-processed to yield the statistics in Section 5.

4. BSD Study Revisited

We used our trace &ta to repeat all of the measure-
ments of file system usage in the original BSD study. As in
the BSD study, we report the results under three general
categories: user activity (how much the file system is
used), access patterns (sequentiality, dynamic file sizes, and
open times), and file lifetimes. The results only include
accesses to files and directories by user processes.
Accesses to virtual memory swap files and I/O devices are

excluded. Our general conclusions are that the basic access
patterns are similar today to what they were six years ago,

Trace 1 2 3 4 5 I 6 7 8

Date 1/24/91 1/25/91 5/10/91 5/11/91 5/14/91 5/15/91 6/26/91 6/27/91

Trace duration (hours) 24 23.8 24 24 24 24 24 24

Different users 44 48 47 33 48 50 46 36

Users of migration 6 6 11 8 7 11 9 9

Mbytes read from files 1282 1608 13064 17754 822 1489 1292 2320

Mbytes written to files 493 614 4892 1383 476 610 506 626

Mbvtes read from directories 30 67 25 18 15 17 14 15

Open events 149254 224102 149898 115929 124508 184863 133846 275140

Close events 151306 225590 151693 117536 126222 186631 136144 278388

Reposition events 122089 221372 127879 113796 176733 104579 103617 102114

Truncate events 5500 4883 6036 3501 6201 5860 4198 7604

Delete events 20278 30691 24111 16936 24495 28839 15762 20907

Shared Read events 21985 54351 39849 3244 832 2823 3456 9663

Shared Write events 443 1129 45043 3111 322 2499 1452 2224

Table 1. Overall trace statistics. Information about the traces is show% such ss dates, number of users, data rates, and number
of events. Mbytes read from directories is the amount of data read from directories by user-level processes e.g. listing the con-
tents of a duectory. Open is the number of file or directory opens, and Close is the number of closes. Reposition events occur

when the current file offset was changed via an 1s eek kernel call. These usurdly happen when the contents of a file are ac-

cessed randomly. Truncate events occur when a file is truncated to zero length. Delete events occur when a file or d~ectory is
removed. Shared read and Shared write events are read and write events on files undergoing write-sharing, these events were
used for the simulations in Section 5.

200

All Users
Users with

Migrated Processes
BSD Study

Maximum number of active users 27 5 31

Average number of active users 9.1 (5.1) 0.91 (0.98) 12.6 (6.7)

lo-minute Average throughput per active
intervals user (Kbytes/second)

8.0 (36) 50.7 (96) 0.40 (0.4)

Peak throughput for a user in an
458 458

interval (Kbytes/second)
NA

Peak total throughput in an

interval (Kbvtes/second)
681 616 NA

Maximum number of active users 12 4

Average number of active users

NA

1.6 (1.5) 0.14 (0.4) 2.5 (1.5)

10-second Average throughput per active
intervals user (Kbytes/second)

47.0 (268) 316 (808) 1.5 (7.0)

Peak throughput for a user in an

interval (Kbytes/second)
9871 9871 NA

Peak total throughput in an
interval (Kbytes/second)

9977 9871 NA

Table 2. User activity. Each trace was divided into intervals of 10-minutes and 10-seconds, and the number of active users

(those for whom a trace record appeared during the interval) and average file throughput were computed for each interval. The

All Users column contains values for atl active users; the Users with Migrated Processes whtmn wnsiders only users with ac-
tive migrated processes during the interval. The BSD Study column reports the average numbers from [11] for wmparison.
Measurements that weren’t available are Iakeled NA. The numbers in parentheses are standard deviations. For the average
number of active users they are the standard deviations of each interval from the long-term average across all intervals. For the
average throughput measurements they are the standard deviations of each user-interval from the long-term average across all

user-intervats.

File Usatre Accesses PZO) Bvtes (%) Tv-oe of Transfer Accesses (%) Bvtes (%)

Whole-file 78 (64-91) 89 (46-96)

Read-only 88 (82-94) 80 (63-93) Other sequential 19 (7-33) 5 (2-29)

Random 3 (1-5) 7 (2-37)

Whole-file 67 (50-79) 69 (56-76)

Write-only 11 (6-17) 19 (7-36) Other sequential 29 (1847) 19 (4-27)

Random 4 (2-8) 11 (4-41)

Whole-file o (o-o) o (o-o)

Read/write 1 (o-1) 1 (o-3) Other sequential o (o-o) o (o-o)

Random 100 (loo-loo) 100 (loo-loo)

Table 3. File access patterms. The Accesses column indicates the percentages of all accesses that were read-only, write-only,
or read/write. An access consists of opening a file, reading and/or writing i~ and then closing the file. These access types reflect

actual file usage, not the mode in which the file was opened. An access is wnsidered read/write only if the file was both read

and written during the access. The Bytes cohmm shows the percentage of bytes transferred in each type of access. The last two
columns divide each kind of access into three groups based on degree of sequentiality Whole-jile refers to accesses where the

entire file was transferred sequentially from start to finish, Other Sequential refers to accesses that were not whole-file but where

a single sequential run of data was transferred between open and close; and Random includes all other accesses. The numbers in
parentheses are the minimum and maximum values measured for the individual traces. For example, the upper-right entry indi-

cates that, of all bytes transferred in read-only accesses, 89V0 were transferred in whole-file read~ the minimum value measured

for a trace was 46?Z0,while the maximum was 96%.

but overall activity levels are substantially higher (with considered active in an interval if there were any trace
tremendous bursts of activity caused by process migration), reeords for the user in the interval. The 10-minute aver-

and that the largest files in use are much bigger than before. ages represent steady-state behavior, while the 10-second
averages show what can happen during bursts of activity.

4.1. User Activity Table 2 shows that both of these throughput averages have-.

Table 2 reports on overall file system activity during
increased since the BSD study. Average throughput over

the trace. The uaces are divided into 10-minute and 10-
10-minute intervals increased by a factor of 20, while aver-

second intervals, and the number of active users and the
age throughput over 10-second intervals increased by more

throughput are averaged across those intervals. A user is
than a factor of 30.

201

Although the increase in throughput is significant, it
is substantially less than the increase in available process-
ing power per use~ in 1985, 20 to 50 users shared a single
l-MIPS timeshared VAX, but in 1991 each user had a per-
sonal 1O-MIPS workstation. The net result is an increase in
the computing power per user by a factor of 200 to 500, yet
the throughput requirements only increased by about a fac-
tor of 20 to 30. On the other hand, the burstiness of the
throughput requirements has increased, as indicated by the
standard deviations. Users seem to have used their addi-
tional computing resources to decrease the response time to
access data more than they have used it to increase the
overall amount of data that they use.

Table 2 also shows the impact of process migration
on throughput. In the second column of the table, a user is
considered to be active in an interval only if a migrated
process invoked file activity on the user’s behalf during the
interval, and only file activity from migrated processes is
included in the throughput calculations. Migration pro-
duced activity levels about six or seven times higher than
the overall averag~ this is partly because migration is used
for activities that are particularly I/O-intensive (such as
compilations), and partly because migration marshals the
resources of several workstations in the network on a single
user’s behalf.

The increasing burstiness of file I/O makes it particu-
larly important to perform client-level caching in order to

offload the networks and tile servers. For example, in one
10-second interval a single user averaged more than 9.6
Mbytes/second of file throughpu~ without client-level
caching this would not have been possible, since the data
rate exceeds the raw bandwidth of our Ethernet network by
a factor often.

4.2. File Access Patterns

The BSD study concluded that most accesses are

.wquentiau our measurements, as shown in Table 3,
reaffirm this conclusion. By sequential access, we mean
that a file was opened, a series of bytes was transferred in
order, then the file was closed. An access is still con-

sidered sequential even if the entire file was not transferred
because the beginning or end was skipped. If anything, the
sequentiality of access has increased over the last six years:
our traces show that about 78% of all read-only accesses
were sequential whole-file transfers, versus about 7070 in
the BSD study, and that more than 90940 of all data was
transferred sequentially, versus less than 70% in the BSD
study.

A sequential run is a portion of a file read or written
sequentially (i.e. a series of data transfers bounded at the
start by an open or reposition operation and at the end by a
close or artother reposition operation). The top graph in
Figure 1 shows that most sequential runs are short (about
80% transfer less than 10 Kbytes each). This is necessarily
true since most accessed files are short there simply aren’t
very many opportunities for long sequential runs. Long

sequential runs should not be ignored, however, because

100>

80. .

1-
1

g 60. .

%

J 40. . — Trace 1
--- Trace 2
----- Traco3

––- Trace 6
.–.l-””” - ----- Trace7

–-–. Trace8

I
100 lK 10K l&3K lM 10M

Run Length (bytes)

Figure 1. Sequential run length. Cumulative distri-
butions of the lengths of sequential runs. The length of
a sequential mn is the number of bytes transferred be-
fore closing the file or repositioning. The top graph is

weighted by the number of runs; for example, the cir-
cle irdcates that for Trace 2 80% of all sequential runs
are less than 2300 bytes in length. The bottom graph is
weighted by the number of bytes tmmsferred, for examp-
le, the circle indicates that for Trace 7 60% of all

bytes were transferred in sequential runs of 191 Kbytes
or less.

they transfer most of the bytes, as shown in the bottom
graph of Figure 1. Large transfers play a much greater role
in our system than in the original BSD study. For example,
in the BSD study, only 10’%oof all bytes were transferred in
sequential runs longer than 100 Kbytes; in our traces at
least 10% of all bytes were transferred in runs longer than
one Mbyte. In other words, the longest runs have increased
in size by at least a factor of ten. There is a wide variation

in run length between traces, however. For most of the

traces between 55Ya and 80% of the data was transferred in

runs up to one Mbyte in length. For one trace these runs

represented 90% of the bytes, and in two traces these runs
represented less than 10Yo. During the last two traces a
large number of simukttions wem run on input files that

were about 20 Mbytes in size. This caused the run length

distribution to be heavily skewed. Clearly the system

workload has a significant impact on run length.

202

We were initially concerned that the trend towards
larger files might be an artifact of our particular environ-
ment. In particular, the kernel development group com-
monly works with kernel binaries ranging in size from two

to ten Mbytes. To measure the effect of the kernel binaries,
we reprocessed the traces while ignoring all accesses from
the kernel development group. The results were very simi-
lar to those obtained with the kernel group included. For

example, the parallel processing researchers used simula-
tion data files ranging up to 20 Mbytes in size. Our conclu-
sion is that the increase in file size is not an artifact of our
particular environment but a general trend that follows
from increases in computing power and storage space.

The existence of very long sequential runs implies
the existence of very large files. Figure 2 shows that this
implication is correct. Most of the accesses are to short
files, but most bytes are transfemed to or from large files.
Once again, the large files in our measurements are much
bigger than the large files in the BSD study: the top 20% of
all files (by bytes transferred) are more than an order of
magnitude larger than the top 2090 in the BSD study. The
computational resources now available to users allow them
to store and manipulate much larger files than they could
previously, and they use these files often enough to have a
significant effect on system behavior.

The last measurement of access patterns is displayed
in Figure 3; it shows that about 7570 of the files are open
less than one-quarter second. In comparison, the BSD

study found that 75% of files were open less than one-half
second. This shortening of open times is easy to explain:
machines have gotten much faster while most tiles remain

short, so it doesn’t take as long to process most files as it
used to. The speedup isn’t as great as might be expected,
however, since machines have gotten about ten times faster
while open times have only decreased by a factor of two.
This discrepancy may be caused by the use of a local file
system in the BSD study, and the use of a network file sys-
tem in the current study. Previous studies have shown that
open/close times on a client using a network file system are
a factor of four or five slower than those on a machine with
a local file system [13]. This difference in operdclose times
could account for the relatively small change in file open
times despite the large improvement in processor speed.

4.3. File Lifetimes

In Figure 4 we present our measurements of file life-

times (the interval between when a file is created and when
it is deleted or truncated to zero length). File lifetimes have
an important impact on the writing policy of a file cache. If
most lifetimes are short then it is advantageous to buffer

data in the file cache for a while before writing it to the file
serveu data deleted during this period will never need to be
written to the server. Our measurements show that most
files have very short lifetimes (between 65% and 80% live
less than 30 seconds, which is the default time that Sprite
delays before writing data to the server). However, the
short-lived files tend to be shore only about 4 to 27% of all

100

80. .

#

g 60. .

ii’
n=l
L 40. . 1’ — Trace 1

--- Trace 2
----- Trace 3

20. --- Trace6
----- Trace7
---- Trace8

L
100 lK 10K lMIK lM 10M

File Size (bytes)

Trace 1
Trace 2

,---- I
m---- - ,.-.~j 1

100 _,

r

---.
----- ‘Lrace-I

-80 ---- *:K8:
&J— --- Trace6
$ ----- Tracc7

g~
–-–- Tracc S

a
#40

-! ..-.r_-~=-..=*=..=:2-.”::=. -.

K lM 10M

-“---- .

10K 1(M(
File Size (bytes)

Figure 2. File size. Dynamic dk.ribution of file sires,

measured when files were closed. The top graph is a

cumulative distribution weighted by number of files,

and the bottom graph is weighted by the number of

bytes transferred to or from the file. For example, the
circles indicate that for Trace 1 42% of all accesses
were to files less than one Kbyte long, but that during

the same trace 40% of all bytes were transferred to or
from fdes of at least one Mbyte in size.

1oo-

80. .

g 60 .

8
— Trace 1
--- Trace2
----- Trace3
---- ;yc:$

z Trace 6
----- Trace7
–.–- Trace8

I A
.01 .1

Ope~ Time (sec~nds)
100 lK

Figure 3. File open times. Cumulative distribution of
the length of time files were open. For example, the

circle indicates that for Trace 2 about 74% of all opens
lasted less than 0.1 second.

203

100
------- --

80. .

~ 4c-

---- Trace4
20. . — Trace 5

::: %R%J

I:—.A
1 10 100 IOOK lM

Life%ne (8eY&ds)
10M

80, .
g ,

g a“ “

d
m 40. . :
3

— Trace 1
--- Trace2

!s
----- Trace3
---- pw~

–-- Trace6
----- Tracel
---- Trace8

.. ---- ------ --

1 10 100 100K lM 1

Figure 4. File ltfethnes. Cumulative distribution of
file lifetimes, measured when tiles were deleted (files
that were truncated to zero length are considered delet-

ed). The top graph is weighted by the number of files

deleted, while the bottom graph is weighted by the

number of bytes deleted from the file since its creation.

Ltietimes we estimated from the ages of the oldest and
newest bytes in the file. In the top figure, the file life-

time is the average age of the oldest and newest bytes.

In the bottom figure, it is assumed that the file was
written sequentially, so that the age of each byte is pro-

portional to its offset in the file. For example, the top

circle indicates that for Trace 6 70~0 of all tiles were
deleted within 9 seconds of their creation, while the
bottom circle indicates that for Trace 1 73~0 of all
bytes were deleted within about 6 minutes.

new bytes are deleted or overwritten within 30 seconds.
Our per-file lifetimes are similar to those of the original
BSD study, but our per-byte lifetimes are a bit longer
reflecting the increased importance of larger longer-lived
files.

5. File Cache Measurements
One of the most important features of the Sprite sys-

tem is its mechanism for caching file data in main memory

[91. The mechanism was motivated in large part by the
measurements of the BSD study, and has the following
feature~

●

●

●

●

●

File data is cached on both client and server
machines on a block-by-block basis (4-Kbyte
blocks).

Servers cache both naming information and file data,
whereas clients only cache file &@, ti naming
operations, such as opens, closes, and deletes, me
passed through to servers.

Caches vary in size depending on the needs of the
file system and the virtual memory system. As
described in [10], the virtual memory system
receives preference: a physical page used for virtual
memory cannot be converted to a file cache page
unless it has been unreferenced for at least 20
minutes. This 20 minute value was chosen after exa-
mining the results from several benchmarks.

Writes are normally delayed 30 seconds. Every 5
seconds, a daemon process checks the cache for dirty
data that is 30 seconds old. This data is then written
to the server’s cache (if it hasn’t been deleted), and
an additional 30 seconds later it is written to disk.
Application programs may bypass the delays and
request synchronous write-through with the fs ync

kernel call.

File servers use three mechanisms to maintain con-

sistency of the data in client caches: timestamps,
recall, and cache disabling. When a client opens a
file it receives the file’s current timestamp from the

servev the client uses this to flush any stale data from
its cache. The server keeps track of the last writer
for each file and recalls the dirty data from the writer
if some other client opens the file before the writer
has written the new data back to the server. If two or
more client machines have a file open at a time, and

at least one of them has the file open for writing
(concurren(write-sharing), then the server disables
client caching for the shared file: until the file has
been completely closed again by all clients, all read
and write requests are passed through to the server.
The result of these three techniques is that every read
operation is guaranteed to return the most up-to-date
data for the file.

In this section of the paper we present measurements

of the Sprite client caches in order to answer the following
questions:

● How big are Sprite file caches, and how much do
their sizes vary over time?

● How much of the read and write traffic is absorbed
by the caches?

● How long does data live in a cache, and what causes
it to leave the cache?

● How often does write-sharing occur? Is it important

to guarantee consistency among file caches?

● If consistency is to be guaranteed, what is the best
algorithm for doing so?

204

We answered the above questions by analyzing a col-
lection of statistics gathered on the machines in the Sprite
cluster over a period of two weeks. For the last two ques-
tions we also used the trace data gathered on the Sprite
server.y we wrote simulators to estimate the importance of
consistency and to evaluate the overheads of different
approaches to consistency.

5.1. File Cache Sizes

Our first measurements recorded information about
the sizes of client-level file caches. As shown in Table 4,
Sprite’s file caches tend to grow quite large, even though
the virtual memory system receives preferential use of
main memory. On file servers, the caches automatically

adjust themselves to fill nearly all of memory. On the
clients, the “natural” size of file caches appears to be
about one-fourth to one-third of physical memory, or about
7 Mbytes out of an average of 24 Mbytes of physical
memory on each client workstation. This is a significantly
larger fraction of memory than the 10% that is allocated by
many UNIX kernels. The increased use of large files that
we found in Section 4.2 suggests that file caches will need

to be large to be effective.

Table 4 also shows significant variations in cache

size, both among machines and at different times on the
same machine. On client workstations, cache sizes often
varied by several hundred Kbytes over intervals of a few
minutes. Although we cannot estimate the performance
impact of the trading mechanism between the file caches
and virtual memory, we can say that it was used frequently.

Cache size
~
I Standiwd deviation over I

15-minute intervals 5556 Kbytes

Cache size changes Maximum 21904 Kbytes

over 15-minute Average 493 Kbytes

intervals Stsndard deviation 1037 Kbvtes

Cache size changes Maximum 22924 Kbytes

over 60-rninute Average 1049 Kbytes

intervals Standard deviation 1716 Kbytes

Table 4. Cttent cache sizes. This table presents meas-
urements of client cache sizes and how the cache sizes
varied over time. The size change for an interval was

computed as the difference between a cache’s max-

imum and minimum sizes during the interval. We in-
cluded only intervals m which either a user was active

at the console or there was at least one second of user-

level or migrated process CPU time. We screened out
the effects of machine reboots, since a rebooted
machine’s cache stiwts at the minimum size and almost
always grows irnme&ately. The standard deviations

are computed from the individual machine-intervals in
comparison to the long-term averages across all inter-
Vats.

5.2. The Impact of Caching on File Traffic

The BSD study predicted that large caches would be
highly effective at absorbing read traffic. For example, it
predicted a miss ratio of only 10% for a 4-Mbyte cache

size. In reality the Sprite caches are reasonably effective,
but they did not reduce traffic to the server as much as the
BSD study predicted. This section examines file traffic in
more detail to understand why there is still so much server
traffic.

To examine the effects of the client caches, we meas-
ured I/O traffic in three different places in the system, as
illustrated in Figure 5: the traffic presented by applications

to the client operating system (’‘raw traffic’ ‘), the behavior
of the client caches, and the traffic from clients to the file
server. The rest of this section discusses each of these sets
of measurements in turn. Table 5 lists the relative amounts
of the file and paging traffic presented by applications to
the client operating system. Some of this traffic cannot be
cached (’ ‘uncacheable traffic”) and is sent directly to the
server. The cacheable I/O requests are given fist to the
client cache and only sent to the server if the cache access
fails. Table 6 presents measurements of client cache effec-

tiveness in terms of miss ratios and traffic ratios in and out
of the client cache. The final table of measurements, Table
7, shows the types and relative amounts of traffic that the

clients present to the file server across the network. Some
of this traffic is generated by the client caches in order to
satisfy cache requests, and the rest of the traffic consists of
the uncacheable client application I/O requests. Overall,
the ratio of the bytes transferred to the server divided by
the raw traffic to the client operating system is 50%; the
client caches filter out 50$% of the raw traffic. These
numbers do not reflect the effects of caching on the file
server.

The measurements of application traffic in Table 5
show that only 20% of raw tile and paging traffic is
uncacheable, and most of this is paging. Other sources of
non-cacheable file traffic are tiles undergoing write-sharing
and directory reads (Sprite doesn’t cache directories on
clients in order to avoid consistency problems). Traffic
caused by write-sharing is very low, less than 170.

Table 6 measures the effectiveness of the file caches
for the traffic that is cacheable. Read requests miss in the
cache about 40’70 of the time. In terms of bytes, about 4070
of the file bytes requested by applications must be retrieved
from a file server. Although Sprite’s caches perform better
than the (much smaller) caches used at the time of the BSD
study, the miss ratios are about four times higher than the
BSD study predicred for caches as large as Sprite’s. We
suspect that the increased use of very large files accounts
for this difference in performance. Read miss ratios vary
significantly from machine to machine depending upon the
workload; machines processing large files show miss ratios
as high as 97~0. Sprite does not prefetch cache blocks; pre-
fetching could reduce the read miss ratio, and hence I/O

Iatencies, but it would not reduce the read-related server

205

Tab? 5 Table 6 Table 7

& \

“Application- “ Client OS - - Netsvork/Server

Figure 5. Data traffic flow. This figure dlagrarns the
flow of iile-related requests in Sprite clients and shows

the points at which data was collected for Tables 5 to
7. Read and write traffic is combined, and the width of

each path indicates the relative amount of data
transferred via that path. The vertical lines indicate the
measurement points for Tables 5 (raw traffic presented

to the client operating system), 6 (client cache effec-
tiveness), and 7 (traffic sent from clients to the server).
Write fetches are read requests ma& by the client

cache to satisfy a partial-block cache write.

Traffic Type
Bytes Read Bytes Written Total

(%) (%) FZo)

Files ‘ ‘- ‘
,. --.,.,. -/,. -.! ,. AA

Cached
Paging ,..,., ,..-., ,

1. . ..,. /.- ,,.

I 32.4 (13.Z) I lU.3 (t4. /) bL.Y
IIAO (10!?) I 0.0 (0.0) 16.9

I ~I’agmg I 11.~ (12.5) I 6.7 (8.3) 18.0

I‘ncwhd=
I ‘“*”-””=c’”- 0.3 (1,7) 0.2 (2.3) 0.5

0.5 (1.0) 0.0 (0.0) 0.5
IOther 0.3 (1.6) 0.9 (5.9) 1.2.

Total (9’.) 81.7 18.3 100.0

Table 5. Traffic sources. This table lists the sources
and types of raw file traffic on Sprite clients. Each en-
try is a percent of all raw file traffic (raw means that

the traffic has not yet been reduced by any caches).
The right-most column gives the total for both reads
and writes of each type of traffic listed. The numbers
in parentheses are the standard deviations of the daily

averages for individual machines relative to the overall
long-term average across alt machmes and days. See
Section 5.3 for an explanation of the paging traffic.

traffic. A possible solution is to use the file cache for small
files and a separate mechanism for large sequentially-read
files.

For write traffic Table 6 provides two different meas-
ures of overhead: writeback traffic and write fetches, The

writeback traffic gives the percent of bytes written to the

Ratio
Client Ctient

Total (%) Mimated (%)

File read misses 41.4 (26.9) 22.2 (20.4)

File read miss traffic 37.1 (27.8) 31.7 (22.3)

Writeback traffic 88.4 (455.4) NA NA

Write fetches 1.2 (6.8) 1.6 (1.9)

Paging read misses 28.7 (23.6) 8.8 (40.3)

Table 6. Client cache effectiveness. This table gives
measurements of the amount of file traffic that client
caches do not absorb. Larger vatues indicate less ef-
fective caches. We screened out the effects of process-
ing the large counter files from the counters that were

still being recorded. Read musses is the percent of
cache read operations that were not satisfied in the
cache. Read miss traJTic is the ratio of bytes read from

the server to bytes read by applications. Writeback

trajic is the percent of bytes written to the cache that
were eventually written to the server. Write fetches is

the percent of cache write operations that required a

block to be fetched from the server. (This occurs dur-
ing a partial write of a non-resident tile block.) The

column Client Migrated considers only read and write

accesses made on behatf of migrated processes. The
numbers in parentheses are the standard deviations of

the daity averages for individual machines relative to
the overall long-term average across all machines and

days.

cache that were eventually written to the server. The meas-
ured traffic ratio of nearly 90% means that about one-tenth
of all new data is overwritten or deleted before it can be
passed on to the serve~ this number is comparable to that
predicted in the BSD study and also agrees with the byte
lifetimes measured in Section 4.3. The high standard devi-
ation for writeback traffic results from applications that
append to the ends of files. While the application may
append only a few bytes to the file, the data written back to
the server includes the portion from the beginning of the
cache block to the end of the appended data. The second
source of overhead, write fetches, occurs if an existing file
block is partially overwritten. If the block isn’t already in
the client’s cache, then the client must fetch the block from

the server as part of the write. Our measurements show
that write fetches rarely happen.

Table 6 provides a second set of cache measurements
that consider only file traffic from migrated processes. Pro-
cess migration spreads a user’s workload out over several
machines because of this, and because processes from one
user may migrate to different machines at different times,
we hypothesized that file caches would be less effective for
migrated processes. The actual behavior is just the oppo-
site: migrated processes actually have a lower read miss
ratio than the average for all processes. The most likely
explanation is that there is an unusually high degree of
locality in the tasks that are most often migrated, since the
same user may repeatedly use migration in a short time
period. The policy used to select hosts for migration tends
to reuse the same hosts over and over again, which may

206

allow some reuse of data in the caches [2]. It is encourag-
ing to see evidence that a load-sharing scheme such as pro-
cess migration does not negate the benefits of file caching.

Our measurements support the BSD study’s predic-
tions that caches will be more successful at absorbing reads

than writes. Table 7 shows a breakdown of file traffic
between clients and servers. Of the non-paging traffic, the
ratio of reads to writes is about 2:1; in comparison, the raw
file traffic generated by applications (Table 5) favors reads
by a ratio of 4:1. The cache on the server would further
reduce the ratio of read traffic seen by the server’s disk.

5.3. The Impact of Paging Traffic

One of the goals of this study was to measure the
relationship between paging and file traffic. The paging
system and tile system are closely related in Sprite: they
trade physical memory pages back and forth as described
previously, and backing storage for the virtual memory sys-

tem is implemented with ordinary files so all paging traffic
appears as file traffic at some level in the system. We were
curious whether one system dominates the other in terms of

traffic and whether the relationship is changing over time.

Sprite divides each process’s pages up into four
groups code pages, which are read-only, initialized data
pages that have not yet been modified, modified data pages,
and stack pages. Code and unmodified data pages are
paged from the program’s executable file, while modified
data pages and stack pages are paged to or from backing
files. We found that about 50% of paging traffic is to or
from backing files, 40% is for code, and 10% is for

unmodfied data pages.

Sprite uses several techniques to reduce the amount
of paging traffic between clients and servers. First, Sprite
keeps code pages in memory even after processes exi~ the

Table 7. Server traffic. This table gives a breakdown

of file traffic between clients and servers. While Table
5 shows the percentages of different types of traffic be-
fore the client caches have filtered some of ih this table

shows the traffic presented to the server, after the filter-

ing effect of the client caches. The numbers in
parentheses are the standard deviations of the daily
averages for individual machines relative to the overall
long-term average across all machines and days.

pages tend to remain in memory for many minutes before
being replaced, so they can be reused by new invocations
of the same program. Second, Sprite favors the virtual
memory system when trading pages between the file cache
and virtual memory. Third, initialized data pages are

cached in the file system. When a process references an
initialized data page for the tint time, it is copied from the
file cache to the virtual memory system. Processes typi-
cally dirty all of their data pages, so the data pages must be
discarded ftom virtual memory when prcxxsses exit, but
clean versions are available from the file cache if the same
program is re-run. Sprite does not intentionally cache code

pages in the file cache, since the virtual memory system
retains code pages, but Sprite still checks the file cache on
code faults, since recompilation or other accesses to the
executable file can cause new versions of code pages to
exist in the file cache. If a code page is found in the file
cache, the tile cache block is marked for replacement after
its contents are copied to the virtual memory system. Table
6 shows that cache accesses for code and initialized data
pages have a relatively high hit rate. Pages of backing files
are never present in the file caches of clients, but the back-
ing files for clients are cached on the file servers.

Our measurements show a fairly even division
between paging and non-paging traffic. Both in terms of
raw traffic (Table 5) and server traffic (Table 7), paging
represents about 35% of bytes transferred. This division of
traffic is similar to what existed at the time of the BSD
study. Although the BSD study did not explicitly measure
paging activity, Nelson and Duffy measured paging traffic
on one of the same machines used for the BSD study at
about the same time and found an average paging rate of
about 3 Kbytes per second [8]. The BSD study measured
about 4 Kbytes of raw file traffic per second, so paging
accounted for about 4370 of all I/O traffic at that time. This
comparison suggests that increasing memory sizes benefit
file caches and virtual memory systems about equally, so
that neither is likely to dominate the other in the future.

The absolute volume of paging traffic is not very
high: during the middle of the work-day each workstation

transfers only about one 4-Kbyte page every three to four
seconds. However, paging traffic appears to be bursty, and
the amount of paging traffic varies significantly across dif-
ferent machines, depending on their memory sizes and the

locality of their workloads. We suspect that much of the
paging traffic occurs during major changes of activity, such
as when a user returns to a workstation that has been used
only by migrated processes for several hours. The
migrated processes are evicted and the user’s activities
determine the new workload.

Local disks are often proposed for reducing paging

traffic, but we disagree. If backing tiles wete kept on local
disks in Sprite, it would only reduce the server traffic by
about 2070; this does not dramatically increase the scalabil-
ity of the overall system. In terms of latency, a local pag-

ing disk may actually decrease performancti in Sprite it

currently takes about 6 to 7 ms for a client to fetch a 4-

Kbyte page from a server’s file cache over an Ethernet.

207

This time is rdready substantially less than typical disk
access times (20 to 30 ins), and it will improve with faster
CPUS and networks. In environments where servers have
large file caches, it will be much faster to page over the net-
work than from a local disk. Network saturation is not a
problem eithe~ 40 Sprite workstations collectively gen-

erate only about 42 Kbytes/seeond of paging traffic, or
about four percent of the bandwidth of an Ethernet. With
properly-designed virtual memory and file systems, we
think it makes more sense to spend money on additional
memory than local disks.

We were also concerned that process migration
might induce extra paging traffic when a migrated process
starts up on a new machine. Fortunately, this appears not
to be the case. Most process migrations occur at the same
time that a new process is created, so no virtual memory
needs to be transferred with the process. Overall, the pag-
ing rate for migrated processes was no higher than for other
processes.

5.4. Cache Block Replacement and Writeback

This section examines the fate of data once it has

been placed in a client’s cache. To make room for new
data in the cache, old data must be removed. The caches
use a least-recently-used mechanism to choose blocks for
replacement. Table 8 displays information about block
replacement. Most of the time replacement occurs in order
to free up a block for other tile data, but abut one-fifth of
the time a file block is ejected so that its page can be given
to the virtual memory system. On average, blocks have
been umeferenced for almost an hour before they get
replaced. With such long cache lifetimes, usually only

clean blocks are replacet dirty blocks have almost always
been written back to the server long before they could be
replaced.

Dirty cache blocks can be written to the server
(’‘cleaned”) for several reasons; Table 9 indicates how
often each of these reasons occurs. The most common rea-
son is Sprite’s delayed-write policy, which forces blocks to

New Contents
Blocks Replaced Age

(%) (minutes)

Another tile block 79.4 (58.5) 47.6 (1301.6)

Virtual memory page 20.6 (36.2) 201.0 (1163.5)

Table 8. Cache block replacement. For a cache
block to be replaced it must be the least-recently-used.

The BJ%cks Replaced column indicates the percentage
of blocks that were replaced with data for anofier file
block and the percentage that were passed to the virtual
memory system. The Age column indicates the aver-

age number of elaps~ minutes between the l~t refer-
ence to a block and the time it was replaced. The
numbers in parentheses are the standard deviations of

the daily averages for individual machines relative to
the overalt long-term average across alt machines and

days.

Reason for Write
Blocks Written Age

(v.) (seconds)

30-sewnd delay 71.1 (29.6) 27.2 (6.0)

Write-through
requested by application 16.2 (22.7) 1.3 (4.6)

Server recall 12.6 (17.8) 19.0 (9.1)

Virtual memory page 0.1 (1.3) 11.9 (9.8)

Table 9. Dirty block cleaning. A block can be

cleaned for any of four reasons: (a) it has been dirty
for 30 seconds; (b) an application program invoked the

f sync kernel call to force the block to the server’s

dislG (c) the server needs the block to be written (re-
called) because another client is about to access the
fil~ or (d) the page is given to the virtual memory sys-

tem. The Blocks Written column indicates the relative
frequencies of these reasons. The Age column gives

the average elapsed time in seconds between when the
block was last written and when it was written back to
the server. The numbers in parentheses me the stan-
dard deviations of the daily averages for individual
machinea relative to the overall long-term average
across all machines and days.

be written to the server after they have been dirty for 30
seconds. All dirty blocks for a file are written to the server
if any block in the file has been dirty for 30 seconds.
About three-fourths of all blcck cleanings occur because
the 30-second delay has elapsed. Of the remaining block
cleanings, about one-half occur because an application pro-
gram explicitly requested that the block be written to disk,
and the rest occur because the file is about to be read on a
different workstation and the server needs the most up-to-
date copy to supply to that workstation.

Table 9 shows that data integrity, and not cache size,
is the reason why dirty bytes leave the cache. Dirty blocks

almost never leave the cache to make room for other
blocks; they are usually written out to make new data per-
manent, either by the delayed-write mechanism or by
request from the application. For this reason, increasing
the size of the file cache will not teduce its writeback
traffic. The write traffic can only be reduced by increasing
the writeback delay or reducing the number of synchronous
writes requested by applications. This would leave new
data more vulnerable to client crrtshes.

5.5. The Importance of Cache Consistency

Sprite’s caching mechanism provides “perfect” con-
sistency: it guarantees that each read operation will return
the most recently written data for the file, even if the file is
being read and written simultaneously on more than one
machine. Most network file systems, such as AFS [4] and
NFS [16], don’t provide such strong consistency guaran-
tees. In this section we attempt to evaluate the importance

of cache consistency, first by measuring how often Sprite
takes special actions to guarantee consistency, and second
by estimating how many errors might occur under a weaker

208

Tvue of Action File Ou ens (YO)

Concurrent write-sharing 0.34 (0.18-0.56)

Server recall 1.7 (0.79-3.35)

Table 10. Consistency action frequency. This table
gives the frequency of various consistency actions,
measured as a percent of att file (excluding directory)
opens. Concurrent write-sharing refers to opens that

result in a file being open on multiple machmes and be-
ing open for writing on at least one of the machines.
Server recall refers to opena for which tie file’s
current data resides on another client and the server
must retrieve it. The numbers in parentheses give the

minimum and maximum values among the 8 traces.

approach to consistency.

Table 10 measures the frequency of various con-

sistency actions in Sprite. About one in every 300 opens
causes a file to be opened for reading and writing on more
than one machine. In addition, for about one in every 60
opens the server recalls dirty data from another client’s
cache in order to obtain the most recent version of a file.
This is an upper bound on the required number of server
recalls, because the Sprite server does not keep track of
whether the client has already finished flushing its dirty
data via the delayed write mechanism.

To estimate the negative impact of a weaker cache

consistency scheme, we used our trace data to simulate a
cache consistency mechanism similar to that used in some

NFS implementations [16]. In the simulated mechanism, a

client considers data in its cache to be valid for a fixed
interval of time; on the next access to the file after the
expiration of the interval, the client checks with the file’s
server and updates its cache if necessary. New data is writ-
ten through to the server almost immediately in order to
make it available to other clients. However, if one works-
tation has cached data for a file when another workstation
modifies the file, the first workstation may continue to use
its stale cache data. The actual NFS approach is an adap-
tive one in which the interval varies between 3 and 60
seconds, depending on how recently the file has been
modifid, for our simulations we used fixed intervals of 3
and 60 seconds.

Table 11 presents the results of the simulations. A

60-second refresh interval would have resulted in many
uses of stale data each hem, one-half of all users would
have accessed stale data over a 24-hour period. Although a
3-second refresh interval reduces errors, about 3 out of 52
users would still have received stale data at some point in
an average 24-hour period. This is a large number of
potential file access errors, prtrticulruly when compared to
other sources of error such as undetected network or disk
errors, and we can eliminate them with a cache consistency
meehanism.

We had hypothesized that migrated processes would
experience more stale-data errors than normal processes,

since migration could cause files to be opened on more than
one machine as a process migrates. (This assumes that no
special measums are used to flush dirty data before a pro-

cess migrates.) Our hypothesis appears to be false, since
our results show that migrated processes are no more likely
to cause errors than non-migrated processes. This may be
because many processes are migrated before they begin
executing (they are “remotely executed’ ‘); these processes
open most of their files after they migrate.

Our overall conclusion from Tables 10 and 11 is that
shared access to mcdified data occurs often enough that a
system should provide cache consistency. Otherwise, it
appears that many users could be inconvenienced by stale
data or have to change their working habits to avoid poten-
tially dangerous situations. An examination of the user IDs
of the processes in the trace showed that users accustomed
to working in NFS environments are just as likely to suffer
stale data errors as users accustomed to working on Sprite.
This suggests that users have not adjusted their access pat-

terns to NFS’s weak consistency and that errors probably
happen frequently under some implementations of NFS.

5.6. Algorithms for Concurrent Write-Sharing

When a file is open on seveml workstations and at
least one of them has the file open for writing, the file is

said to undergo concurrent write-sharing. As previously
described, Sprite handles this situation by disabling client
caching for the file. In our measurements only about 170 of
server traffic is caused by write-shared files (see Table 7),
so the current approach is not a major performance prob-
lem. Nonetheless, we were curious about the potential

benefits of other consistency mechanisms. Sprite’s
approach is simple, but it isn’t necessarily the most
efficien~ In this section we use the trace data to compare
Sprite’s algorithm for concurrent write-sharing with two
alternatives.

The first alternative approach is a slight modification
of the Sprite scheme. In the current Sprite implementation,
an uncacheable tile remains uncacheable until it has been
closed by all clients. The modified scheme makes a file
cacheable again as soon as it has been closed by enough
clients to eliminate the concurrent write-sharing.

The second alternative is a token-based scheme simi-
lar to that implemented in the Locus [14], Echo [6], and
DEcorum [5] file systems. In this approach a file is always

cacheable on at least one client. In order to access a file, a
client must obtain a read-only or read-write token from the
serveq once a client has obtained the appropriate token it is
free to cache the file and access it. The server guarantees

that at any given time there is either a single read-write
token or any number of read-only tokens outstanding for
each file. Concurrent write-sharing takes the form of
conflicting token requests. When this occurs, the server
recatls one or more of the existing tokens in order to grant

the new request. When a write token is recalled from a
client, the client must flush any dirty data for that file back
to the server. If the new token granted is a write token, all

209

Measurement 60-second 3-second

Average errors per hour 18 (8-53) 0.59 (0.12-1.8)
Percent of users affected during 24 hours 48 (38-54) 7.1 (4.5-12)

Percent of users affected over all traces 63 NA 20 NA

Percent of file opens with error 0.34 (0.21-0.93) 0.011 (0.0001-0.032)

Percent of migrated file opens with error 0.33 (0.05-2.8) <0.01 (0.0-0.055)

Table 11. Stale data errors. This table MS our simulations of a weaker cache consistency mechanism based on polling:

clients refresh their caches by checking the server for newer data at intervals of 60 seconds or 3 seconds. Errors are &fined as
potentiat uses of stale cache data. Affected users are those whose processes suffered errors. The numbers in parentheses give

the minimum and maximum values among the 8 traces.

the clients that give up tokens for that file must also invali-

date their cache blocks for the file.

The token-based approach allows a file to be cached

in many cases for which the Sprite scheme, or even the

modified Sprite scheme, would cause the file to become

uncacheable. For example, if two workstations both have a

file continuously open but they don’t actually access it at

the same time, then Sprite will make the file uncacheable

but the token approach will allow the file to be cached. On

the other hand, the token approach is worse than the Sprite

approach in the extreme case where a file is undergoing

concurrent read-write sharing on a very fine grain. In this

case, the token approach will generate just as much server

traffic as Sprite: the caches will be flushed continuously by

token recalls, whole cache blocks will be reread many

times, and there will be additional overhead for issuing and

recalling tokens.

In order to compare these three approaches quantita-

tively, we recorded additional information in the traces on

the file servers. For files undergoing concurrent write shar-

ing, we logged the starting position, size, and time for

every read or write request on the shared file (this was easy

to do since all such uncacheable requests are passed
through to the server in Sprite). We then wrote a cache
simulator that scanned the trace files and computed the
consistency overhead for each of the three algorithms. The
simulator considered only the accesses that occurred during

concurrent write-sharing, and it assumed infinitely large

client caches, so blocks were never removed from the

simulated caches except in response to consistency actions.

The simulator included the effects of a 30-second delayed
write scheme. In computing the overheads for the token-
based mechanism, we assumed that remote procedure calls
would be combined (piggy-backed) whenever possible (e.g.
write-token recalls are combined with dirty-data recalls).

Table 12 shows the simulation results for the dif-

ferent consistency mechanisms both in terms of bytes

transferred between the clients and server and in terms of

remote procedure calls. We were surprised to discover that

there were only small differences in overhead between the

algorithms. Since Sprite leaves a file uncacheable for a
larger amount of time than the other approaches, we
expected that it would perform comparatively poorly.
Instead, only the token approach shows an improvement,

and only by 2% in terms of bytes and 20% in terms of
remote procedure calls, The reason for this lack of
improvement is small 1/0 requests made by some applica-
tions. While a file is uncacheable, reads and writes go
through to the server. If these reads and writes are small
(less than a block’s worth of data), only a few bytes are
transferred. In the consistency mechanisms that allow a file
to become cacheable again (the modified Sprite and token
mechanisms), these small reads and writes miss in the

cache at first and cause whole cache blocks to be fetched
from the server. During concurrent write-sharing, we see a
significant number of these short I/O operations in our
traces. The token mechanism is the most sensitive to appli-
cation 1/0 behavior, as seen from the high variance in its
performance. When files are shared at a fine grain, the
token mechanism invalidates caches and rereads whole
cache blocks frequently.

Our conclusion is that concurrent write-sharing is
rare enough now that it is reasonable to pick the simplest
consistency mechanism. In the future, if write-sharing
increases, the 1/0 behavior of the applications causing it
should be examined in order to choose the best mechanism.

Table 12. Cache consistency overhead. llk table
lists cache consistency overheads for three dtiferent

consistency schemes: the Sprite approach a
modification of the Sprite approach in which tiles be-
come cacheable again when concurrent write-sharing
ends, and a token-based approach. The second column
shows the ratio of bytes transferred by the consistency
algorithm compared to the actuat number of bytes re-
quested by the applications to write-shared files. The
current sprite mechanism transfers exactly these bytes.
The third column gives the number of remote pro-
cedure catts for an algorithm divided by the actual

number of read and write events requested by the ap-
plications to write-shared files. The numbers in

parentheses give the miniium and maximum values
among the 8 traces.

210

6. Summary

Our measurements of application-level file accesses
show many of the same trends found by the BSD study six
years ago. Average throughput per user is relatively low,
most files are short and are opened for only brief periods of

time, most accesses are sequential, and most bytes don’t
live more than a few minutes. We found two substantial

changes, however. First, file throughput has increased by a
factor of 20 overall and has become much more bursty.
Second, typical large files used today are more than an
order of magnitude larger than typical large files used in
1985. Large files account for much of the increase in

throughput and burstiness, and they stress many parts of the
system, such as the file caches.

In our measurements of the Sprite file caches, we
found that increases in cache size have led to increases in
read hit ratios, but the improvements have been much

smaller than we expected. We suspect that the increasing
size of large files accounts for this discrepancyy. We found
almost no improvement in the effectiveness of caches at
reducing write traffic: about 9070 of all new bytes eventu-
ally get written to the server in order to safeguard the data.
If read hit ratios continue to improve, then writes will even-
tually dominate file system performance and new
approaches, such as longer writeback intervals, non-volatile
cache memories, and log-structured file systems [15], will
become attractive.

We found that many users access file data in a way
that assumes cache consistency among workstations, and
that they will be inconvenienced on a daily basis if full con-
sistency is not provided. Fortunately, we also found that
the overheads for implementing consistency are very low,
since write-sharing only occurs for about one percent of file
accesses. Our simulations of cache consistency mechan-
isms showed no clear winne~ the mechanisms had com-
parable overheads, and where there were differences they
depended strongly on the application mix. Without specific
information about application behavior, it seems wisest to

choose a consistency mechanism based on the simplicity of
its implementation.

Lastly, we found that process migration increases the
burstiness of file traffic by an order of magnitude. For
example, users with migrated processes generated file
traffic at a short-term rate 40 times the medium-term aver-
age rate for all users. Fortunately, we found that migration
does not seem to degrade the performance of file caches or
increase cache consistency overheads. In fact, we found
that file caches worked better for migrated processes than
for processes in general.

7. Acknowledgements

We owe special thanks to David Bacon, Fred
Douglis, Bruce Nelson, Mendel Rosenblum, Jim Mott-
Smith, and the SOSP program committee reviewers for
their many helpful comments on this paper. We’d also like
to thank Bob Bruce for his help in the formative stages of
this study. Finally, we thank all the patient users of Sprite

who put up with us and the trouble we caused during the

course of these measurements.

8.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10,

11.

References

Cheriton, D. R., “The V Kernel: A Software Base

for Distributed Systems”, IEEE Software 1,2 (April
1984), 19-43.

Douglis, F. and Ousterhout, J., “Transparent Process
Migration: Design Alternatives and the Sprite
Implementation”, Software+%actice & Experience
21,7 (July 1991).

Hisgen, A., Birrell, A., Mann, T., Schroeder, M. and
Swart, G., “Availability and Consistency Tradeoffs
in the Echo Distributed File System”, Proceedings of
the Second Workshop on Workstation Operating
Systems, September 1989,49-53.

Howard, J. H., Kazar, M. L., Menees, S. G., Nichols,
D. A., Satyanarayanan, M., Sidebotham, R. N. and
West, M. J., “Scale and Performance in a Distributed
File System”, ACM Transactions on Computer

Systems 6,1 (February 1988), 51-81.

Kazar, M, L., Leverett, B. W., Anderson, O. T.,
Apostolides, V., Bottos, B. A., Chutani, S., Everhart,
C. F., Mason, W. A., Tu, S. and Zayas, E. R.,
‘ ‘DEcorum File System hhitectural Overview”,
Proceedings of the Summer 1990 USENIX
Conference, Anaheim, CA, June 11-15 1990, 151-
164.

Mann, T., Hisgen, A. and Swart, G., An Algorithm
for Data Replication, Digital Systems Research
Center Tech. Rep. 46, June 1989.

Mullender, S., van Rossum, G., Tanenbaum, A.,
van Renesse, R. and van Staveren, H., “Amoeba A
Distributed Operating System for the 1990s”, IEEE

Computer 23,5 (May 1990), 44-53.

Nelson, M. N. and Duffy, J. A., Feasibility of
Network Paging and a Page Server Design, Term
project, CS 262, Department of EECS, University of
California, Berkeley, May 1984.

Nelson, M. N., Welch, B. B. and Ousterhout, J. K.,
“Caching in the Sprite Network File System”, ACM
Transactions on Computer Systems 6, 1 (February
1988), 134-154.

Nelson, M. N., Physical Memory Management in a
Network Operating System, PhD Thesis, University
of California, Berkeley, November 1988. Also
available as Technical Report UCB/CSD 88/471.

Ousterhout, J. K., Da Costa, H., Harrison, D., Kunze,
J. A., Kupfer, M. and Thompson, J. G., “A Trace-
Driven Analysis of the UNIX 4.2 BSD File System”,
Proceedings of the 10th Symposium on Operating
System Principles, Orcas Island, WA, December
1985, 15-24.

211

12. Ousterhout, J., Cherenson, A., Douglis, F., Nelson,
M. and Welch, B., “The Sprite Network Operating
System”, IEEE Computer 21, 2 (February 1988),
23-36.

13. Ousterhout, J., “Why Aren’t Operating Systems
Getting Faster As Fast As Hardware?”, Proceedings
of the Summer 1990 USENIX Conference, Anaheim,
CA, June 11-151990,247-256.

14. G. J. Popek and B. J. Walker, eds., The LOCUS
Distributed System Architecture, MIT Press,
Cambridge, MA, 1985.

15. Rosenblum, M. and Ousterhout, J. K., “The Design
and Implementation of a Log-Structured File
System”, Proceedings of the 13th Symposium on
Operating System Principles, Asilomar, CA, October
1991.

16. Sandberg, R., Goldberg, D., Kleiman, S., Walsh, D.
and Lyon, B., “Design and Implementation of the

Sun Network Filesystem”, Proceedings of the
Summer 1985 USENIX Conference, Portland, OR,
June 1985, 119-130.

17. Welch, B. B., Natrdng, State Management, and
User-Level Extensions in the Sprite Distributed File
System, PhD Thesis, University of California,
Berkeley, February 1990. Also available as
Technical Report UCB/CSD 90/567.

212

