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Motivation

• Packet Analyzer

Shared Memory

Core 1 Core 2 Core 3 Core 4

H1 H2 H3 H4
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Locking

flag[i] = 1;
while (flag[j] == 1) {}
/∗ critical section ∗/
flag[i] = 0;
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Locking

flag[i] = 1;
while (flag[j] == 1) {}
/∗ critical section ∗/
flag[i] = 0;

Problematic
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Peterson’s algorithm

flag[i] = 1;
turn = j;
while (flag[j] == 1 && turn == j) {}
/∗ critical section ∗/
flag[i] = 0;
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Peterson’s algorithm

flag[i] = 1;
turn = j;
while (flag[j] == 1 && turn == j) {}
/∗ critical section ∗/
flag[i] = 0;

Still problematic
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Peterson’s algorithm

flag[i] = 1;
turn = j;
fence(); /∗ force other threads to see flag and turn ∗/
while (flag[j] && turn == j) {} /∗ spin ∗/
/∗ critical section ∗/
fence(); /∗ make visible changes made in critical section ∗/
flag[i] = 0;
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Peterson’s algorithm

flag[i] = 1;
turn = j;
fence(); /∗ force other threads to see flag and turn ∗/
while (flag[j] && turn == j) {} /∗ spin ∗/
/∗ critical section ∗/
fence(); /∗ make visible changes made in critical section ∗/
flag[i] = 0;

Applies to two processes only
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N-process locks

bool success;
do {

while (lck == 1) {} /∗ wait ∗/
success = compare_and_swap(&lck, 0, 1);

} while (!success);
}
/∗ critical section ∗/
lck = 0;
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Motivation

• Packet Analyzer

Shared Memory

Core 1 Core 2 Core 3 Core 4

H1 H2 H3 H4
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Peterson’s algorithm

flag[i] = 1;
turn = j;
fence(); /∗ force other threads to see flag and turn ∗/
while (flag[j] && turn == j) {} /∗ spin ∗/
/∗ critical section ∗/
fence(); /∗ make visible changes made in critical section ∗/
flag[i] = 0;

• Two process algorithm
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Dominant process lock

• Contends with other processes using Peterson’s

algorithm

peterson_lock();
/∗ critical section ∗/
peterson_unlock();
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Non-Dominant process lock

• Contends with the dominant processes using

Peterson’s algorithm

• Contends with other non-dominant processes using a

normal n-process lock.

lockN();
peterson_lock();
/∗ critical section ∗/
peterson_unlock();
unlockN();
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Biased Lock = 2-lock + n-lock

Locking Unlocking

if (this_thread_id == owner)
lock2();

else {
lockN();
lock2();

}

if (this_thread_id == owner)
unlock2();

else {
unlock2();
unlockN();

}
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The problem

flag[i] = 1;
turn = j;
fence(); /∗ force other threads to see flag and turn ∗/
while (flag[j] && turn == j) {} /∗ spin ∗/
/∗ critical section ∗/
fence(); /∗ make visible changes made in critical section ∗/
flag[i] = 0;

• Need fences
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Asymmetric locks

• Eliminate fences in the dominant process

Dominant process Non-dominant process

while (grant) {} /∗ wait ∗/
/∗ critical section ∗/
if (request) {

request = 0;
fence();
grant = 1;

}

lockN();
request = 1;
while (grant == 0) {} /∗ wait ∗/
/∗ critical section ∗/
fence();
grant = 0;
unlockN();
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Performance
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Performance - Higher domination
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Performance - Packet analyzer
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Bias Transfer

• Dynamic scheme for transferring bias

• Based on the frequency

• Only one thread can be declared dominant at any time
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Performance - Bias Transfer
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Performance - SPLASH
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Conclusions

• Simple algorithms for constructing biased locks

• Verified using the SPIN model checker

• Implemented as a library

• Extended it to read-write locks

• Good performance when high dominance

• Future work: different architectures
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