
Simple and Fast Biased Locks

Nalini Vasudevan

Columbia University

Kedar Namjoshi Stephen Edwards

Bell Laboratories Columbia University

Simple and Fast Biased Locks, Nalini Vasudevan, Columbia University – p. 1

Motivation

• Packet Analyzer

Shared Memory

Core 1 Core 2 Core 3 Core 4

H1 H2 H3 H4

Simple and Fast Biased Locks, Nalini Vasudevan, Columbia University – p. 2

Locking

flag[i] = 1;
while (flag[j] == 1) {}
/∗ critical section ∗/
flag[i] = 0;

Simple and Fast Biased Locks, Nalini Vasudevan, Columbia University – p. 3

Locking

flag[i] = 1;
while (flag[j] == 1) {}
/∗ critical section ∗/
flag[i] = 0;

Problematic

Simple and Fast Biased Locks, Nalini Vasudevan, Columbia University – p. 3

Peterson’s algorithm

flag[i] = 1;
turn = j;
while (flag[j] == 1 && turn == j) {}
/∗ critical section ∗/
flag[i] = 0;

Simple and Fast Biased Locks, Nalini Vasudevan, Columbia University – p. 4

Peterson’s algorithm

flag[i] = 1;
turn = j;
while (flag[j] == 1 && turn == j) {}
/∗ critical section ∗/
flag[i] = 0;

Still problematic

Simple and Fast Biased Locks, Nalini Vasudevan, Columbia University – p. 4

Peterson’s algorithm

flag[i] = 1;
turn = j;
fence(); /∗ force other threads to see flag and turn ∗/
while (flag[j] && turn == j) {} /∗ spin ∗/
/∗ critical section ∗/
fence(); /∗ make visible changes made in critical section ∗/
flag[i] = 0;

Simple and Fast Biased Locks, Nalini Vasudevan, Columbia University – p. 5

Peterson’s algorithm

flag[i] = 1;
turn = j;
fence(); /∗ force other threads to see flag and turn ∗/
while (flag[j] && turn == j) {} /∗ spin ∗/
/∗ critical section ∗/
fence(); /∗ make visible changes made in critical section ∗/
flag[i] = 0;

Applies to two processes only

Simple and Fast Biased Locks, Nalini Vasudevan, Columbia University – p. 5

N-process locks

bool success;
do {

while (lck == 1) {} /∗ wait ∗/
success = compare_and_swap(&lck, 0, 1);

} while (!success);
}
/∗ critical section ∗/
lck = 0;

Simple and Fast Biased Locks, Nalini Vasudevan, Columbia University – p. 6

Motivation

• Packet Analyzer

Shared Memory

Core 1 Core 2 Core 3 Core 4

H1 H2 H3 H4

Simple and Fast Biased Locks, Nalini Vasudevan, Columbia University – p. 7

Peterson’s algorithm

flag[i] = 1;
turn = j;
fence(); /∗ force other threads to see flag and turn ∗/
while (flag[j] && turn == j) {} /∗ spin ∗/
/∗ critical section ∗/
fence(); /∗ make visible changes made in critical section ∗/
flag[i] = 0;

• Two process algorithm

Simple and Fast Biased Locks, Nalini Vasudevan, Columbia University – p. 8

Dominant process lock

• Contends with other processes using Peterson’s

algorithm

peterson_lock();
/∗ critical section ∗/
peterson_unlock();

Simple and Fast Biased Locks, Nalini Vasudevan, Columbia University – p. 9

Non-Dominant process lock

• Contends with the dominant processes using

Peterson’s algorithm

• Contends with other non-dominant processes using a

normal n-process lock.

lockN();
peterson_lock();
/∗ critical section ∗/
peterson_unlock();
unlockN();

Simple and Fast Biased Locks, Nalini Vasudevan, Columbia University – p. 10

Biased Lock = 2-lock + n-lock

Locking Unlocking

if (this_thread_id == owner)
lock2();

else {
lockN();
lock2();

}

if (this_thread_id == owner)
unlock2();

else {
unlock2();
unlockN();

}

Simple and Fast Biased Locks, Nalini Vasudevan, Columbia University – p. 11

The problem

flag[i] = 1;
turn = j;
fence(); /∗ force other threads to see flag and turn ∗/
while (flag[j] && turn == j) {} /∗ spin ∗/
/∗ critical section ∗/
fence(); /∗ make visible changes made in critical section ∗/
flag[i] = 0;

• Need fences

Simple and Fast Biased Locks, Nalini Vasudevan, Columbia University – p. 12

Asymmetric locks

• Eliminate fences in the dominant process

Dominant process Non-dominant process

while (grant) {} /∗ wait ∗/
/∗ critical section ∗/
if (request) {

request = 0;
fence();
grant = 1;

}

lockN();
request = 1;
while (grant == 0) {} /∗ wait ∗/
/∗ critical section ∗/
fence();
grant = 0;
unlockN();

Simple and Fast Biased Locks, Nalini Vasudevan, Columbia University – p. 13

Performance

-2

-1

 0

 1

 2

 3

 4

 5

 0 10 20 30 40 50 60 70 80 90

In
cr

ea
se

 in
 s

pe
ed

 (
%

)

Domination Percentage

Asymmetric

Peterson + Pthread

Unbiased Pthread

Simple and Fast Biased Locks, Nalini Vasudevan, Columbia University – p. 14

Performance - Higher domination

 0

 50

 100

 150

 200

 250

 300

 90 91 92 93 94 95 96 97 98 99 100

In
cr

ea
se

 in
 s

pe
ed

 (
%

)

Domination Percentage

Asymmetric

Peterson + Pthread

Unbiased Pthread

Simple and Fast Biased Locks, Nalini Vasudevan, Columbia University – p. 15

Performance - Packet analyzer

-5

 0

 5

 10

 15

 20

 25

 30

 90 91 92 93 94 95 96 97 98 99 100

In
cr

ea
se

 in
 s

pe
ed

 (
%

)

Percentage of local operations

Asymmetric

Peterson + Pthread

Unbiased Pthread

Simple and Fast Biased Locks, Nalini Vasudevan, Columbia University – p. 16

Bias Transfer

• Dynamic scheme for transferring bias

• Based on the frequency

• Only one thread can be declared dominant at any time

Simple and Fast Biased Locks, Nalini Vasudevan, Columbia University – p. 17

Performance - Bias Transfer

-5

 0

 5

 10

 15

 20

 9
0

 9
1

 9
2

 9
3

 9
4

 9
5

 9
6

 9
7

 9
8

 9
9

 1
00

In
cr

ea
se

 in
 s

pe
ed

 (
%

)

Domination Percentage

Dominance set statically and correctly

With on-the-fly ownership transfer

Unbiased Pthread

Simple and Fast Biased Locks, Nalini Vasudevan, Columbia University – p. 18

Performance - SPLASH

 0

 20

 40

 60

 80

 100

 120

B
A

R
N

E
S

R
A

Y
T

R
A

C
E

W
A

T
E

R
-S

P
A

T
IA

L

R
A

D
IO

S
IT

Y

O
C

E
A

N

In
cr

ea
se

 in
 s

pe
ed

 (
%

)

Application

Unbiased Pthread

Biased Pthread

Sequential

Simple and Fast Biased Locks, Nalini Vasudevan, Columbia University – p. 19

Conclusions

• Simple algorithms for constructing biased locks

• Verified using the SPIN model checker

• Implemented as a library

• Extended it to read-write locks

• Good performance when high dominance

• Future work: different architectures

Simple and Fast Biased Locks, Nalini Vasudevan, Columbia University – p. 20

	Motivation
	Locking
	Locking

	Peterson's algorithm
	Peterson's algorithm

	Peterson's algorithm
	Peterson's algorithm

	N-process locks
	Motivation
	Peterson's algorithm
	Dominant process lock
	Non-Dominant process lock
	Biased Lock = 2-lock + n-lock
	The problem
	Asymmetric locks
	Performance
	Performance - Higher domination
	Performance - Packet analyzer
	Bias Transfer
	Performance - Bias Transfer
	Performance - SPLASH
	Conclusions

