
Determinism Should Ensure Deadlock-Freedom
Nalini Vasudevan and Stephen A. Edwards

Columbia University

Parallel Library Parallel Performance Races Deadlocks Hard to
Computers Support Languages debug

Data Races

void f(sharedint &a) {
a = 3;

}

void g(sharedint &b) {
b = 5;

}

main(){
sharedint x = 1;
spawn f(x);
g(x);
sync;/∗ Wait for f and g to finish∗/
print x;

}

The above program creates two tasksf andg in par-
allel using thespawnconstruct.x is being modified
concurrently by the two tasks and therefore the pro-
gram is not race-free.
By determinism, we mean the output behavior of the
program is independent of the scheduling choices
(e.g., the operating system) and depends only on the
input behavior.

Non-
Determinism

A remedy to avoid races is to introduce locks.

lock p;

void f(sharedint &a) {
lock (p);
a = 3;
unlock (p);

}

void g(sharedint &b) {
lock (p);
b = 5;
unlock (p);

}

main(){
sharedint x = 1;
spawn f(x);
g(x);
sync;/∗ Wait for f and g to finish∗/
print x;

}

Even though x is protected by a lock, the value
printed by this program is either 3 or 5 depending
on the schedule. Therefore, it is non-deterministic.

Deadlocks

The problem with locks: incorrect usage may lead
to deadlocks.

lock p, q;

void f(sharedint &a) {
lock (p);
lock (q);
a = 3;
unlock (q);
unlock (p);

}

void g(sharedint &b) {
lock (q);
lock (p);
b = 5;
unlock (p);
unlock (q);

}

main(){
sharedint x = 1;
spawn f(x);
g(x);
sync;/∗ Wait for f and g to finish∗/
print x;

}

The SHIM
Model

SHIM allows single writes and in a
synchronized fashion. Tasks in SHIM run
asynchronously but synchronize explicitly
using rendezvous communication. There is

no shared data.

SHIM is a C-like language with additional
constructs for concurrency:

stmt1 par stmt2 Runstmt1 and
stmt2 concurrently

send var Send on channelvar
recv var Receive on channelvar

An Example in
SHIM

void f(in a){
a = 3;
recv a;

/∗ a is now 5∗/
}

void g(out b) {
b = 5;
send b;

/∗ b = 5∗/
}

main(){
chan int c;
f(c) par g(c);
/∗ c is 5∗/

}

This program creates two tasks,f andg, and runs them in paral-
lel. Thepar statement blocks until bothf andg terminate.c is a
channel and botha andb are incarnations ofc. g takesc by out
(reference); any modification ofb is therefore reflected in main’s
c. f takesc by in (value), and hencef maintains a local copy of
c. Supposef wants to receive the updated value, then it explicitly
calls recvon a. This statement synchronizes withsend bof g to
exchange values.
The SHIM model prohibits any variable from being passed by
reference (out) to more than one task at a time and this makes it
impossible for a task to modify another task’s copy of a variable
through a simple assignment.

Deadlocks in
SHIM

Even though SHIM is deterministic, it can introduce dead-
locks. Consider a program below. Taskf ’s send awaits
for a matchingrecv a from taskg. Taskg’s send bwaits
for a matchingrecv bfrom task f . The two tasksf andg
wait infinitely for each other causing a deadlock.

void f(out a, in b) {
/∗ wait for recv a from task g∗/
send a = 1;
recv b; /∗ unreached∗/

}

void g(out b, in a){
/∗ wait for recv b from task f∗/
send b = 2;
recv a; /∗ unreached∗/

}

Resolving deadlocks in
SHIM

We maintain a dependency graph during runtime and check for cycles.
If a cycle is detected, the deadlock is broken.

SHIM’s semantics makes cycle detection algorithm easy. A process
can block atmost on one channel at a time, therefore allowing atmost

one outgoing edge out of any node.

void f(out a, in b) {
/∗ Wait for recv a from task g∗/
send a = 1;/∗ Deadlocking action; deadlock broken∗/
/∗ 1 is written to a∗/
recv b; /∗ Deadlocking action; deadlock broken∗/

/∗ 2 is read∗/
}

void g(out b, in a){
/∗ Wait for recv b from task f∗/
send b = 2; /∗ Deadlocking action; deadlock broken∗/
/∗ 2 is written to b∗/
recv a; /∗ Deadlocking action; deadlock broken∗/
/∗ 1 is read∗/

}

Deadlock Breaking
Algorithm in SHIM

[f blocks atsend a]

f g

[Next, g blocks atsend b]

f g

[g detects a cycle, revivesf , and breaks the cycle,]

f g

[As the cycle is broken,f writes 1 toa andg writes 2 tob]

f g

[f blocks atrecv b]

f g

[Next, g blocks atrecv a]

f g

[g detects a cycle, revivesf , and breaks the cycle]

f g

[As the cycle is broken,f gets 1 fromb andg gets 2 froma]

f g

