Parallel Library
Computers Support

Deter minism Should Ensure Deadlock-Freedom

—

Parallel Performance
Languages

An Examplein

SHIM

Nalini Vasudevan and Stephen A. Edwards

Columbia University

Non-
Deter minism

Resolving deadlocksin

Deadlocks

The problem with locks: incorrect usage may lea

_ A remedy to avoid races is to introduce locks. to deadlocks.
void f(sharednt &a) { lock p: lock p, .
a=3,
J void f(sharedint &a) { void f(sharednt &a) {
- lock (p);
void g(sharednt &b) { Iacl)c::kg(.p), lock Ecpig
i b =5; unlock (p): a=3;
e } } unlock (q);
oy | unlock (p);
main()y void g(sharednt &b) { !
sharednt x =1, lock (D):
spawn f(x); LS |
_ R = Pa ’ b=5 void g(sharednt &b) {
T4 Wait for fand g to inish unlock (p); jock ()
Races Deadlocksdltar ek) } ock ();
debug main() { unlock (p);
The above program creates two taskandg in par- sharednt x = 1; unlock (q);
allel using thespawnconstruct.x is being modified spawn f(x); }
concurrently by the two tasks and therefore the pro- g(x);
gram is not race-free. sync;/x Wait for f and g to finish/ main(){
By determinism, we mean the output behavior of the print Xx; sharednt x = 1,
program is independent of the scheduling choices | } spawn f(X);
(e.g., the operating system) and depends only on the _ 9(Xx);
input behavior. Even though X Is protected by a lock, the value sync;/+ Wait for f and g to finish¢/
printed by this program is either 3 or 5 depending print X;
on the schedule. Therefore, it is non-deterministic. }

void f(in a) { SHIM
a=3; ;
v o Deadlocksin
The SHIM [+ ais now 5/ SHIM o . | Deadlock Breaking
1 We maintain a dependency graph during runtime and check for cycles. _ _
M odel If a cycle is detected, the deadlock is broken. Algorithm in SHIM
void g(out b) { Even though SHIM is deterministic, it can introduce deadSHIM’s semantics makes cycle detection algorithm easy. A process
| _ | b=5: locks. Consider a program below. Tagk send awaits C€an block atmost on one channel at a time, therefore allowing atmost
SHIM allowssinglewritesand in a send b; for a matchingrecv afrom taskg. Taskg's send bwaits one outgoing edge out of any node. g
synchronized tashion. Tasks in SHIM run b =5%/ for a matchingeecv bfrom taskf. The two tasks andg | | (f blocks atsend a
asynchronously but synchronize explicitly 1 wait infinitely for each other causing a deadlock. void f(out a,in b) {
using rendezvous communication. There is [x Wait for recv a from task g/ f@g
no shared data. main() { send a = 1;/+ Deadlocking action; deadlock brokeh [Next, g blocks atsend B
chan int c; void f(out a,in b) { [+ 1is written to a«/ |
f(c) par g(c); [+ wait for recv a from task g/ recv b; /x Deadlocking action; deadlock broken [g detects a cycle, revivels and breaks the cycle,]
SHIM is a C-like language with additional /% Cis 5%/ send a = 1; \ [+ 21s reack/
constructs for concurrency: J recv b; /x unreached/ [As the cycle is brokenf writes 1 toa andg writes 2 tob]
stmg par stmp Runstmt and } | |
stmt concurrently void g(out b, in a) { f 9
This program creates two tasksandg, and runs them in paral- void g(out b, in a) { [+ \Wait for recv b from task &/ [f blocks atrecv H
send var Send on channafar lel. Thepar statement blocks until both andg terminatecis a /% wait for recv b from task f/ send b = 2;/« Deadlocking action; deadlock brokeh f—0
recv var Receive on channelr channel and both andb are incarnations af. g takesc by out send b = 2 [x 2 1S written to bx/
. . . . ! _ . . [Next, g blocks atrecv 4
(reference); any modification tfis therefore reflected in main’s recv a: /x unreached/ recv a;/+ Deadlocking action; deadlock brokeh
c. f takesc by in (value), and hencé maintains a local copy of } [x 1 Is reads/ |
c. Supposd wants to receive the updated value, then it explicitly } [g detects a cycle, revivels and breaks the cycle]

callsrecvona. This statement synchronizes wabnd bof g to
exchange values.

[As the cycle is brokenf gets 1 fromb andg gets 2 froma]

The SHIM model prohibits any variable from being passed by
reference gut) to more than one task at a time and this makes it
Impossible for a task to modify another task’s copy of a variable
through a simple assignment.

d

