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Background

The X10 Programming Language

• Concurrent programming model

• Activities are light weight threads

• Places are distributed memory locations

A1 A2

Place p1

A3 A4 A5

Place p2
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The X10 Programming Language

• Activities created using async

async {

/∗ Body of async

executed locally ∗/

}

async (p2) {

/∗ Body of async

executed at p2 ∗/

}

• Synchronization between activities through

• finish

• atomic

• clocks
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Clocks in X10

• Barriers in X10

final clock c = clock.factory.clock();
async clocked (c) {

..
c.next();
..
c.next();

}
async clocked (c) {

..
c.next();
..

}
c.next();
..
c.next();
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Clocks in X10

• Barriers in X10

final clock c = clock.factory.clock();
async clocked (c) {

..
c.next();
..
c.next();

}
async clocked (c) {

..
c.next();
..

}
c.next();
..
c.next();

Declare a clock

Share the clock

Synchronize: All tasks

clocked on c synchronize

on next().
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Clocks in X10

• Barriers in X10

final clock c = clock.factory.clock();
async clocked (c) {

..
c.next();
..
c.next();

}
async clocked (c) {

..
c.next();
..

}
c.next();
..
c.next();

final clock c = clock.factory.clock();
async clocked (c) {

..
c.next();—–
..
c.next();—–

}
async clocked (c) {

..
c.next();—–
..

}
c.next();—–
..
c.next();—–

Declare a clock

Share the clock

Synchronize: All tasks

clocked on c synchronize

on next().
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More about Clocks

• next()

final clock c = clock.factory.clock();
async clocked (c) {

..
c.next();
..
..
..
c.next();
..

}
..
c.next();
..
c.next();
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More about Clocks

• resume()

final clock c = clock.factory.clock();
async clocked (c) {

..
c.next();
..
c.resume();
..
c.next();
..

}
..
c.next();
..
c.next();
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More about Clocks

• drop()

• Explicitly drop

the clock

• Task does not

have to

synchronize

anymore

final clock c = clock.factory.clock();
async clocked (c) {

..
c.next();
..
c.drop();
..

}
..
c.next();
..
c.next();
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Motivation

• Default implementation handles all cases

• Protocol violation is handled by exceptions

• Example: call next() after drop()

• We can generate more efficient code if

• Activity never violates the protocol

• Activity never calls resume() on clock c
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Design Overview

Static Analysis

Code Specialization

Never Calls resume()?

Exception Free?
Distributed?

• Extract model from IR

• One automaton per clock

• Use NuSMV

• X10 compiler plug-in to

choose clock implementation

based on analysis result

• Each clock specialized inde-

pendently
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Building the Automaton

c = clock.factory.clock()
c.next()
if (n > 1)

c.resume()
else

c. next();
c.next();
c.drop();

Complile-Time Analysis and Specialization of Clocks in Concurrent Programs – p. 10/23



Building the Automaton

c = clock.factory.clock()
c.next()
if (n > 1)

c.resume()
else

c. next();
c.next();
c.drop();

c = clock.factory.clock() 1

c.next() 2

if (n > 1)
c.resume() 3

else
c. next(); 4

c.next(); 5

c.drop(); 6
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Building the Automaton

c = clock.factory.clock()
c.next()
if (n > 1)

c.resume()
else

c. next();
c.next();
c.drop();

c = clock.factory.clock() 1

c.next() 2

if (n > 1)
c.resume() 3

else
c. next(); 4

c.next(); 5

c.drop(); 6

register 1

next 2

resume 3 next 4

next 5

drop 6
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Building the Automaton

register 1

next 2

resume 3 next 4

next 5

drop 6
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Building the Automaton

register 1

next 2

resume 3 next 4

next 5

drop 6

init (clock) = register;
next(clock) :=
case

(clock = register) : next_2;
(clock = next_2) : {resume_3, next_4};
(clock = resume_3) : next_5;
(clock = next_4) : next_5;
(clock = next_5) : drop_6;
1: clock;

esac;
DEFINE clock_next = clock in

{next_2, next_4, next_5}
DEFINE clock_resume = clock in {resume_3}
..
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The Protocol

Active Resumed

Inactive Exception

register with c

c.resume

c.next

c.next

any

c.drop c.resume
c.
dr

op

any
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The Monitor

init (state) = inactive;
next(state) :=
case

(state = inactive) & (clock_register) : active;
(state = active) & (clock_drop) : inactive;
(state = active) & (clock_resume): resumed;
(state = resumed) & (clock_next): active;
..

−− Exception cases
(state = resumed) & (clock_resume): exception;
(state = inactive) & (clock_next) : exception;

Complile-Time Analysis and Specialization of Clocks in Concurrent Programs – p. 13/23



The Monitor

register 1

next 2

resume 3 next 4

next 5

drop 6
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The Monitor

register 1state = active

next 2

resume 3 next 4

next 5

drop 6
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The Monitor

register 1

next 2state = active

resume 3 next 4

next 5

drop 6
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The Monitor

register 1

next 2

resume 3state = resumed next 4

next 5

drop 6
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The Monitor

register 1

next 2

resume 3 next 4

next 5state = active

drop 6
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The Monitor

register 1

next 2

resume 3 next 4

next 5

drop 6state = inactive
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Dealing with async

c = clock.factory.clock() 1

c.next(); 2

async clocked (c) { 3

c.resume(); 4

}
c.next(); 5

c.drop(); 6
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Dealing with async

c = clock.factory.clock() 1

c.next(); 2

async clocked (c) { 3

c.resume(); 4

}
c.next(); 5

c.drop(); 6

register 1

next 2

next 5

resume 4

drop 6

asyncClockedLocal 3
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The Protocol

Active Resumed

Inactive Exception

register with c

c.resume

c.next

c.next or

async clocked(c)
async clocked(c)

any

c.drop c.resume
c.
dr

op

any
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Checking for properties

• Is the clock protocol violation free?

AG (!(state = exception))

• Does the clock ever call resume()?

AG (!(state = resumed))

• Is the clock used in multiple places?

AG(!clock_asyncClockedRemote)

• Do the spawned activities ever call next?

G(clock_next− >

H(!(clock_asyncClockedLocal|clock_asyncClockedRemote)))
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Code Specialization

Static Analysis

Code Specialization

Never Calls resume()?

Exception Free?
Distributed?

• We generate different code

for each clock

• For eg., we remove run-time

exception checks for excep-

tion free clocks
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Experimental Results

Example Clocks Lines Result Speed Analysis Time

Up Base NuSMV

Linear Search 1 35 EF, NR, L 35.2% 33.5s 0.4s

Relaxation 1 55 EF, NR, L 87.6 6.7 0.3

All Reduction Barrier 1 65 EF, NR 1.5 27.2 0.1

Pascal’s Triangle 1 60 EF, L 20.5 25.8 0.4

Prime Number Sieve 1 95 NR, L 213.9 34.7 0.4

N-Queens 1 155 EF, NR, ON, L 1.3 24.3 0.5

LU Factorization 1 210 EF, NR 5.7 20.6 0.9

MolDyn JGF Bench. 1 930 NR 2.3 35.1 0.5

Pipeline 2 55 Clock 1: EF, NR, L

Clock 2: EF, NR, L

31.4 7.5 0.5

Edmiston 2 205 Clock 1: NR, L

Clock 2: NR, L

14.2 29.9 0.5

EF: No ClockUseException

NR: No Resume

ON: Only the activity that created the clock calls next on it

L: Clocked used locally (in a single place)
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Conclusion

• Sequential analysis for concurrency optimization

• Our analysis is safe

• Combined with alias analysis

• Future work

• Modular techniques

• Inter-activity analysis

• Refining alias analysis using clock information
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Beginning of Research
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Combining with Alias Analysis

final clock c = clock.factory.clock();
final clock d = clock.factory.clock();
final clock x = (n > 1)? c: d;
x.next();
x.resume();

Complile-Time Analysis and Specialization of Clocks in Concurrent Programs – p. 22/23



Combining with Alias Analysis

final clock c = clock.factory.clock();
final clock d = clock.factory.clock();
final clock x = (n > 1)? c: d;
x.next();
x.resume();

final clock c = clock.factory.clock();
final clock d = clock.factory.clock();
if (∗) {

c.next();
c.resume();

} else {
d.next();
d.resume();

}
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Combining with Alias Analysis

final clock c = clock.factory.clock();
final clock d = clock.factory.clock();
final clock x = (n > 1)? c: d;
x.next();
x.resume();

final clock c = clock.factory.clock();
final clock d = clock.factory.clock();
if (∗)

c.next();
else

d.next();
if (∗)

c.resume();
else

d.resume();
}
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Related Work

• Typestate analysis

• Model checking concurrent programs

• Code specialization

• Specialization of CML message-passing techniques

[Reppy 2007]

• Analysis of X10 programs

• May-happen-in-parallel analysis [Agarwal 2007]
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