
Compile-Time Analysis and

Specialization of Clocks in

Concurrent Programs

Nalini Vasudevan (Columbia University)

Olivier Tardieu (IBM Research)

Julian Dolby (IBM Research)

Stephen A. Edwards (Columbia University)

Complile-Time Analysis and Specialization of Clocks in Concurrent Programs – p. 1/23



Background

The X10 Programming Language

• Concurrent programming model

• Activities are light weight threads

• Places are distributed memory locations

A1 A2

Place p1

A3 A4 A5

Place p2

Complile-Time Analysis and Specialization of Clocks in Concurrent Programs – p. 2/23



The X10 Programming Language

• Activities created using async

async {

/∗ Body of async

executed locally ∗/

}

async (p2) {

/∗ Body of async

executed at p2 ∗/

}

• Synchronization between activities through

• finish

• atomic

• clocks

Complile-Time Analysis and Specialization of Clocks in Concurrent Programs – p. 3/23



Clocks in X10

• Barriers in X10

final clock c = clock.factory.clock();
async clocked (c) {

..
c.next();
..
c.next();

}
async clocked (c) {

..
c.next();
..

}
c.next();
..
c.next();

Complile-Time Analysis and Specialization of Clocks in Concurrent Programs – p. 4/23



Clocks in X10

• Barriers in X10

final clock c = clock.factory.clock();
async clocked (c) {

..
c.next();
..
c.next();

}
async clocked (c) {

..
c.next();
..

}
c.next();
..
c.next();

Declare a clock

Complile-Time Analysis and Specialization of Clocks in Concurrent Programs – p. 4/23



Clocks in X10

• Barriers in X10

final clock c = clock.factory.clock();
async clocked (c) {

..
c.next();
..
c.next();

}
async clocked (c) {

..
c.next();
..

}
c.next();
..
c.next();

Declare a clock

Share the clock

Complile-Time Analysis and Specialization of Clocks in Concurrent Programs – p. 4/23



Clocks in X10

• Barriers in X10

final clock c = clock.factory.clock();
async clocked (c) {

..
c.next();
..
c.next();

}
async clocked (c) {

..
c.next();
..

}
c.next();
..
c.next();

Declare a clock

Share the clock

Synchronize: All tasks

clocked on c synchronize

on next().

Complile-Time Analysis and Specialization of Clocks in Concurrent Programs – p. 4/23



Clocks in X10

• Barriers in X10

final clock c = clock.factory.clock();
async clocked (c) {

..
c.next();
..
c.next();

}
async clocked (c) {

..
c.next();
..

}
c.next();
..
c.next();

final clock c = clock.factory.clock();
async clocked (c) {

..
c.next();—–
..
c.next();—–

}
async clocked (c) {

..
c.next();—–
..

}
c.next();—–
..
c.next();—–

Declare a clock

Share the clock

Synchronize: All tasks

clocked on c synchronize

on next().

Complile-Time Analysis and Specialization of Clocks in Concurrent Programs – p. 4/23



More about Clocks

• next()

final clock c = clock.factory.clock();
async clocked (c) {

..
c.next();
..
..
..
c.next();
..

}
..
c.next();
..
c.next();

Complile-Time Analysis and Specialization of Clocks in Concurrent Programs – p. 5/23



More about Clocks

• next()

final clock c = clock.factory.clock();
async clocked (c) {

..
c.next();
..
..
..
c.next();
..

}
..
c.next();
..
c.next();

next()

next()

next()

next()

Complile-Time Analysis and Specialization of Clocks in Concurrent Programs – p. 5/23



More about Clocks

• next()

final clock c = clock.factory.clock();
async clocked (c) {

..
c.next();
..
..
..
c.next();
..

}
..
c.next();
..
c.next();

next()

next()

next()

next()

Complile-Time Analysis and Specialization of Clocks in Concurrent Programs – p. 5/23



More about Clocks

• next()

final clock c = clock.factory.clock();
async clocked (c) {

..
c.next();
..
..
..
c.next();
..

}
..
c.next();
..
c.next();

next()

next()

next()

next()

Complile-Time Analysis and Specialization of Clocks in Concurrent Programs – p. 5/23



More about Clocks

• next()

final clock c = clock.factory.clock();
async clocked (c) {

..
c.next();
..
..
..
c.next();
..

}
..
c.next();
..
c.next();

next()

next()

next()

next()

Complile-Time Analysis and Specialization of Clocks in Concurrent Programs – p. 5/23



More about Clocks

• resume()

final clock c = clock.factory.clock();
async clocked (c) {

..
c.next();
..
c.resume();
..
c.next();
..

}
..
c.next();
..
c.next();

Complile-Time Analysis and Specialization of Clocks in Concurrent Programs – p. 6/23



More about Clocks

• resume()

final clock c = clock.factory.clock();
async clocked (c) {

..
c.next();
..
c.resume();
..
c.next();
..

}
..
c.next();
..
c.next();

next()

resume()

next()

next()

next()

Complile-Time Analysis and Specialization of Clocks in Concurrent Programs – p. 6/23



More about Clocks

• resume()

final clock c = clock.factory.clock();
async clocked (c) {

..
c.next();
..
c.resume();
..
c.next();
..

}
..
c.next();
..
c.next();

next()

resume()

next()

next()

next()

Complile-Time Analysis and Specialization of Clocks in Concurrent Programs – p. 6/23



More about Clocks

• resume()

final clock c = clock.factory.clock();
async clocked (c) {

..
c.next();
..
c.resume();
..
c.next();
..

}
..
c.next();
..
c.next();

next()

resume()

next()

next()

next()

Complile-Time Analysis and Specialization of Clocks in Concurrent Programs – p. 6/23



More about Clocks

• resume()

final clock c = clock.factory.clock();
async clocked (c) {

..
c.next();
..
c.resume();
..
c.next();
..

}
..
c.next();
..
c.next();

next()

resume()

next()

next()

next()

Complile-Time Analysis and Specialization of Clocks in Concurrent Programs – p. 6/23



More about Clocks

• drop()

• Explicitly drop

the clock

• Task does not

have to

synchronize

anymore

final clock c = clock.factory.clock();
async clocked (c) {

..
c.next();
..
c.drop();
..

}
..
c.next();
..
c.next();

Complile-Time Analysis and Specialization of Clocks in Concurrent Programs – p. 7/23



Motivation

• Default implementation handles all cases

• Protocol violation is handled by exceptions

• Example: call next() after drop()

• We can generate more efficient code if

• Activity never violates the protocol

• Activity never calls resume() on clock c

Complile-Time Analysis and Specialization of Clocks in Concurrent Programs – p. 8/23



Design Overview

Static Analysis

Code Specialization

Never Calls resume()?

Exception Free?
Distributed?

• Extract model from IR

• One automaton per clock

• Use NuSMV

• X10 compiler plug-in to

choose clock implementation

based on analysis result

• Each clock specialized inde-

pendently

Complile-Time Analysis and Specialization of Clocks in Concurrent Programs – p. 9/23



Building the Automaton

c = clock.factory.clock()
c.next()
if (n > 1)

c.resume()
else

c. next();
c.next();
c.drop();

Complile-Time Analysis and Specialization of Clocks in Concurrent Programs – p. 10/23



Building the Automaton

c = clock.factory.clock()
c.next()
if (n > 1)

c.resume()
else

c. next();
c.next();
c.drop();

c = clock.factory.clock() 1

c.next() 2

if (n > 1)
c.resume() 3

else
c. next(); 4

c.next(); 5

c.drop(); 6

Complile-Time Analysis and Specialization of Clocks in Concurrent Programs – p. 10/23



Building the Automaton

c = clock.factory.clock()
c.next()
if (n > 1)

c.resume()
else

c. next();
c.next();
c.drop();

c = clock.factory.clock() 1

c.next() 2

if (n > 1)
c.resume() 3

else
c. next(); 4

c.next(); 5

c.drop(); 6

register 1

next 2

resume 3 next 4

next 5

drop 6

Complile-Time Analysis and Specialization of Clocks in Concurrent Programs – p. 10/23



Building the Automaton

register 1

next 2

resume 3 next 4

next 5

drop 6

Complile-Time Analysis and Specialization of Clocks in Concurrent Programs – p. 11/23



Building the Automaton

register 1

next 2

resume 3 next 4

next 5

drop 6

init (clock) = register;
next(clock) :=
case

(clock = register) : next_2;
(clock = next_2) : {resume_3, next_4};
(clock = resume_3) : next_5;
(clock = next_4) : next_5;
(clock = next_5) : drop_6;
1: clock;

esac;
DEFINE clock_next = clock in

{next_2, next_4, next_5}
DEFINE clock_resume = clock in {resume_3}
..

Complile-Time Analysis and Specialization of Clocks in Concurrent Programs – p. 11/23



The Protocol

Active Resumed

Inactive Exception

register with c

c.resume

c.next

c.next

any

c.drop c.resume
c.
dr

op

any

Complile-Time Analysis and Specialization of Clocks in Concurrent Programs – p. 12/23



The Monitor

init (state) = inactive;
next(state) :=
case

(state = inactive) & (clock_register) : active;
(state = active) & (clock_drop) : inactive;
(state = active) & (clock_resume): resumed;
(state = resumed) & (clock_next): active;
..

−− Exception cases
(state = resumed) & (clock_resume): exception;
(state = inactive) & (clock_next) : exception;

Complile-Time Analysis and Specialization of Clocks in Concurrent Programs – p. 13/23



The Monitor

register 1

next 2

resume 3 next 4

next 5

drop 6

Complile-Time Analysis and Specialization of Clocks in Concurrent Programs – p. 14/23



The Monitor

register 1state = active

next 2

resume 3 next 4

next 5

drop 6

Complile-Time Analysis and Specialization of Clocks in Concurrent Programs – p. 14/23



The Monitor

register 1

next 2state = active

resume 3 next 4

next 5

drop 6

Complile-Time Analysis and Specialization of Clocks in Concurrent Programs – p. 14/23



The Monitor

register 1

next 2

resume 3state = resumed next 4

next 5

drop 6

Complile-Time Analysis and Specialization of Clocks in Concurrent Programs – p. 14/23



The Monitor

register 1

next 2

resume 3 next 4

next 5state = active

drop 6

Complile-Time Analysis and Specialization of Clocks in Concurrent Programs – p. 14/23



The Monitor

register 1

next 2

resume 3 next 4

next 5

drop 6state = inactive

Complile-Time Analysis and Specialization of Clocks in Concurrent Programs – p. 14/23



Dealing with async

c = clock.factory.clock() 1

c.next(); 2

async clocked (c) { 3

c.resume(); 4

}
c.next(); 5

c.drop(); 6

Complile-Time Analysis and Specialization of Clocks in Concurrent Programs – p. 15/23



Dealing with async

c = clock.factory.clock() 1

c.next(); 2

async clocked (c) { 3

c.resume(); 4

}
c.next(); 5

c.drop(); 6

register 1

next 2

next 5

resume 4

drop 6

asyncClockedLocal 3

Complile-Time Analysis and Specialization of Clocks in Concurrent Programs – p. 15/23



The Protocol

Active Resumed

Inactive Exception

register with c

c.resume

c.next

c.next or

async clocked(c)
async clocked(c)

any

c.drop c.resume
c.
dr

op

any

Complile-Time Analysis and Specialization of Clocks in Concurrent Programs – p. 16/23



Checking for properties

• Is the clock protocol violation free?

AG (!(state = exception))

• Does the clock ever call resume()?

AG (!(state = resumed))

• Is the clock used in multiple places?

AG(!clock_asyncClockedRemote)

• Do the spawned activities ever call next?

G(clock_next− >

H(!(clock_asyncClockedLocal|clock_asyncClockedRemote)))

Complile-Time Analysis and Specialization of Clocks in Concurrent Programs – p. 17/23



Code Specialization

Static Analysis

Code Specialization

Never Calls resume()?

Exception Free?
Distributed?

• We generate different code

for each clock

• For eg., we remove run-time

exception checks for excep-

tion free clocks

Complile-Time Analysis and Specialization of Clocks in Concurrent Programs – p. 18/23



Experimental Results

Example Clocks Lines Result Speed Analysis Time

Up Base NuSMV

Linear Search 1 35 EF, NR, L 35.2% 33.5s 0.4s

Relaxation 1 55 EF, NR, L 87.6 6.7 0.3

All Reduction Barrier 1 65 EF, NR 1.5 27.2 0.1

Pascal’s Triangle 1 60 EF, L 20.5 25.8 0.4

Prime Number Sieve 1 95 NR, L 213.9 34.7 0.4

N-Queens 1 155 EF, NR, ON, L 1.3 24.3 0.5

LU Factorization 1 210 EF, NR 5.7 20.6 0.9

MolDyn JGF Bench. 1 930 NR 2.3 35.1 0.5

Pipeline 2 55 Clock 1: EF, NR, L

Clock 2: EF, NR, L

31.4 7.5 0.5

Edmiston 2 205 Clock 1: NR, L

Clock 2: NR, L

14.2 29.9 0.5

EF: No ClockUseException

NR: No Resume

ON: Only the activity that created the clock calls next on it

L: Clocked used locally (in a single place)

Complile-Time Analysis and Specialization of Clocks in Concurrent Programs – p. 19/23



Conclusion

• Sequential analysis for concurrency optimization

• Our analysis is safe

• Combined with alias analysis

• Future work

• Modular techniques

• Inter-activity analysis

• Refining alias analysis using clock information

Complile-Time Analysis and Specialization of Clocks in Concurrent Programs – p. 20/23



Beginning of Research

Complile-Time Analysis and Specialization of Clocks in Concurrent Programs – p. 21/23



Combining with Alias Analysis

final clock c = clock.factory.clock();
final clock d = clock.factory.clock();
final clock x = (n > 1)? c: d;
x.next();
x.resume();

Complile-Time Analysis and Specialization of Clocks in Concurrent Programs – p. 22/23



Combining with Alias Analysis

final clock c = clock.factory.clock();
final clock d = clock.factory.clock();
final clock x = (n > 1)? c: d;
x.next();
x.resume();

final clock c = clock.factory.clock();
final clock d = clock.factory.clock();
if (∗) {

c.next();
c.resume();

} else {
d.next();
d.resume();

}

Complile-Time Analysis and Specialization of Clocks in Concurrent Programs – p. 22/23



Combining with Alias Analysis

final clock c = clock.factory.clock();
final clock d = clock.factory.clock();
final clock x = (n > 1)? c: d;
x.next();
x.resume();

final clock c = clock.factory.clock();
final clock d = clock.factory.clock();
if (∗)

c.next();
else

d.next();
if (∗)

c.resume();
else

d.resume();
}

Complile-Time Analysis and Specialization of Clocks in Concurrent Programs – p. 22/23



Related Work

• Typestate analysis

• Model checking concurrent programs

• Code specialization

• Specialization of CML message-passing techniques

[Reppy 2007]

• Analysis of X10 programs

• May-happen-in-parallel analysis [Agarwal 2007]

Complile-Time Analysis and Specialization of Clocks in Concurrent Programs – p. 23/23


	Background
	The X10 Programming Language
	Clocks in X10
	Clocks in X10
	Clocks in X10
	Clocks in X10
	Clocks in X10

	More about Clocks
	More about Clocks
	More about Clocks
	More about Clocks
	More about Clocks

	More about Clocks
	More about Clocks
	More about Clocks
	More about Clocks
	More about Clocks

	More about Clocks
	Motivation
	Design Overview
	Building the Automaton
	Building the Automaton
	Building the Automaton

	Building the Automaton
	Building the Automaton

	The Protocol
	The Monitor
	The Monitor
	The Monitor
	The Monitor
	The Monitor
	The Monitor
	The Monitor

	Dealing with emph {async}
	Dealing with emph {async}

	The Protocol
	Checking for properties
	Code Specialization
	Experimental Results
	Conclusion
	Combining with Alias Analysis
	Combining with Alias Analysis
	Combining with Alias Analysis

	Related Work

