
GAMBAS - Gambas Almost Means BASic!

(Linux Bangalore 2004)

Nalini Vasudevan ∗ Arjun Jain †

1 Introduction

Gambas is a Linux replacement for Visual Ba-
sic (but by no means it’s clone). It is a free
development software based on a Basic in-
terpreter. To put it in short, it is a Basic
Language with object extensions. If a RAD
tool is required for say designing a GUI or
a front-end to access MySQL or PostgreSQL
databases, then Gambas is the tool. KDE pi-
lot application and network applications (with
the Gambas Network ToolBox) can also be
designed. Also Gambas has multilingual sup-
port and thus a program can be translated
into many languages.

Gambas was not designed to be a VB clone,
but a “better” Visual Basic like tool for the
Linux environment. Gambas is not compati-
ble with Visual basic and will never be..

Gambas comprises of a Compiler, an In-
terpreter, an Archiver, a Graphical User
Interface component and a Development
Environment.

A program written in Gambas has a number
of classes, each described in a file.It uses the
concept of Object programming. The .class
files are compiled and then executed by an

∗R.V. College of Engineering, Computer Science &
Engineering, Bangalore, India 560059 Tel: +91 94481
07482 Email: naliniv@gmail.com

†R.V. College of Engineering, Computer Science &
Engineering, Bangalore, India 560059 Tel: +91 94483
74482 Email: arjunjain@gmail.com

Figure 1: ‘How Gambas Works’

interpreter.

2 Gambas - Features

The main advantage of Gambas is that it has
a component architecture. This allows exten-
sion. We can write our own components as
shared libraries that can be added dynami-
cally. This architecture is useful for writing
the GUI of the language. In fact, the Gam-
bas interpreter is a text only program and
the graphical interface itself is implemented
as a Gambas-Qt component. The advantage
is that Gambas can me made independent of
any tool kit! A Gambas program can first
be written and then the toolkit can be chosen

later.(of course the toolkit needs to be written
first)

A Gambas project is stored under one direc-
tory. The project directory structure is trans-
formed into one sole executable file by the
archiver. Only the modified classes are com-
piled during compilation. External references
of a class are solved dynamically at the execu-
tion time. Finally, Gambas projects are easily
translatable, in any language.

3 Gambas - Architecture

The Development Environment hides this ma-
chinery behind a pretty graphical interface.

3.1 Interpreter

The interpreter is a program named gbx. It
executes the byte code of the compiled file
generated by the compiler.

3.2 Project

A project is a set of files stored in one di-
rectory. A project can contain source files
(forms, classes, modules) or any data files of
any types. The project configuration is stored
in a file named “.project”.

3.3 Native Classes

The native classes can be used without load-
ing any component. They are integrated in
the interpreter, and can be looked upon as a
part of the Gambas language.

3.4 Component Interface

The Component Interface is a set of routines
and services used by the components to com-
municate with the interpreter. The inter-
preter’s internals are hidden this way.

Figure 2: The Gambas Architecture

3.5 Components

Components are shared libraries that are
loaded at run time by the interpreter. They
can contain new classes and hook routines
such as event loop management, shell argu-
ments analyze, etc. They can publish a set of
routines as an interface to other components.

3.6 Execution Unit

The execution unit is the heart of the inter-
preter. It dispatches and executes each byte-
code instruction generated by the compiler.

2

3.7 Subroutines

The subroutines are the interpreter functions
associated to the corresponding Gambas Ba-
sic functions like Sin(), Left$(), etc. or op-
erators like +, &, etc.

3.8 Class Loader

The Class Loader loads compiled forms,
classes and modules into the interpreter. If
your project was compiled as an executable,
i.e. as an archive, the interpreter maps the
file into memory instead of loading it.

3.9 Executable file

A Gambas executable file is just an uncom-
pressed archive of your project, the compiled
files included. The archive file is marked as a
script with the

"#!/usr/bin/gbx"

magic header, so that Linux executes it by
calling the interpreter.

3.10 Compiled files

A compiled file is a binary representation of
a class, that contains all information useful
to the interpreter : functions transformed to
byte code, constants, variables definitions, de-
bugging information, etc.

3.11 The Archiver

The archiver is a program named gba. It
transforms your project, the compiled files in-
cluded, in one “sole executable file”.

3.12 The Compiler

The compiler is a program named gbc. It
transforms your project’s forms, classes and
modules files into binary compiled files that
can be understood by the interpreter.

3.13 The Component Loader

The Component Loader is the part of the
interpreter that loads components shared li-
braries, gives them access to the Component
Interface, and that publishes their interface to
other components.

4 Gambas v/s Microsoft Visual
Basic

Gambas is not just a replica of Visual Basic.
So, you can not expect to simply copy your
VB code and compile it under Gambas. This
is a great tool for VB developers and people
wanting to port their legacy VB projects to
the Linux environment. There are perhaps
more similarities than differences and one to
one relations between VB and Gambas, but
the differences are the ones that need more
attention.

4.1 Non-Language-Specific Differences

• VB embeds the class code for each form
object into the same file as the form def-
inition. Gambas keeps them separate, in
a .form and a .class file
File extensions:

VB Gambas Type of File

.vbp .project Project definition file
.bas .module Module
.cls .class Class File
.frm .form Form defn file
.frx (anything) Binary files

• Gambas projects are defined as a direc-
tory with a .project file in it, and all of
the files in that directory. VB can have
multiple project files in each directory
and can pull the same source file from a
different directory into different projects,
which has its benefits and disadvantages.

• Screen measurements in VB are done in

3

“twips”, units of 1/1440 of an inch; in
Gambas they’re done in actual pixels.

• Form controls in Gambas programs are
private by default. This can be changed
by going into the Project Properties dia-
log and checking the Make Form Controls
Public checkbox.

• Str$(), Val(), CStr()... conversion func-
tions behave differently. For example,
Str$() and Val() use the localization set-
tings in Gambas, whereas they don’t in
Visual Basic. Note that Gambas behav-
ior is more logical :-)

4.2 VB Has It, Gambas Doesn’t

• Currently code can’t be edited in Break
mode in Gambas; the program needs to
be terminated first.

• In Gambas, simple datatypes (integer,
string, etc.) are passed by value to pro-
cedures and functions. They cannot be
passed by reference as in Visual Basic.
Note that VB passes parameters by ref-
erence if the ByVal keyword is not used.
Also, the contents of object datatypes
(array types, collections, objects) are al-
ways passed by reference in both lan-
guages!

• There is no such thing as a project-
wide global variable in Gambas. (As a
workaround, a class called Global can be
created and global variables can be de-
clared as static public variables in that
class, and then they can be referred to as
global variablename in your project.)

• Unless Option Explicit is included in a
VB module, variables need not be de-
clared prior to using them. Gambas be-
haves as if Option Explicit were always

turned on, which makes for much better
code at the expense of a bit more work.

• There’s no direct Gambas equivalent to
the Index property of VB form con-
trols. Arrays of controls can be created
easily, but it has to be done in code.
There’s currently no way to do it graph-
ically. Thus, when a control is copied
and pasted back on the form it came
from, rather than prompting you to cre-
ate a control array it automatically re-
names the copied control to an appropri-
ate name.

• Currently transparent labels can’t be cre-
ated in Gambas; the background is al-
ways opaque.

• The MouseMove event only occurs when
a mouse button is depressed in Gambas.
The exception is the DrawingArea con-
trol, which has a Tracking property that
allows getting mouse move events even if
no mouse button is pressed.

• In VB two strings can be put together
with the symbol + . Because the + sign
is only used for mathematical addition
in Gambas, ‘&’ should instead be used,
when one string needs to be added to an-
other string.

• In the print command the colon ‘:’ does
not work to separate the code. A new-
line must be taken instead. The print
command in VB 3.0 did not make a Line-
feed. If it was used it to print out some
text with printer.print, then text got lost.
The Print Command in Gambas puts ev-
erything in one line. There is nothing
lost.

• In VB, Mid$() can be used as an instruc-
tion to cut out a substring and put in

4

some other. In Gambas, it can not used
it to assign a new substring. For exam-
ple, in VB: MyString = “the dog jumps”:
Mid$(MyString, 5, 3) = “fox” results in
MyString = “The fox jumps”. That does
not work in Gambas.It must be done like:
MyString = Left$(MyString, 4) & ”fox”
& Mid$(MyString, 8) . One or more
characters which are legal for use in iden-
tifiers in VB code, such as underscore
(“ ”) are not acceptable in Gambas.

• Thankfully, in Gambas you GOTO can
not be used to trap errors! Instead,
CATCH, FINALLY or TRY should be
used.

4.3 Gambas Has It, VB Doesn’t

• Unlike VB, GUI support need not be
compiled in if a Gambas command-line
application needs to be written. Unse-
lection of the gb.qt component in Project
Properties and making the Sub Main def-
inition does the job.

• Gambas has the concept of control
groups, which allows handling of events
from any number of different controls
with one handler subroutine. This re-
duces redundant code and can be used
to do many of the things VB’s control in-
dexes can do, and some things that VB
can’t.

• Whereas VB makes it impossible to run
a program synchronously and receive its
output without learning how to do API
calls (Shell merely launches the program
in the background), Gambas allows do-
ing so using SHELL and EXEC, control
the processes started using the Process
object, and even read from and write to
them, allowing you to easily add func-
tionality with helper applications. This

makes it incredibly easy to write Gambas
front-ends for almost any command-line
procedure.

• As of Gambas 0.60, all of the above can
be done with Unix devices and special
files as well, such as serial or parallel
ports. The /proc filesystem can be used
to write a RAID monitor, for example,
or named pipes to get multiple channels
of information from a back-end program
in any other language! To make an odd-
shaped window, just the ME.Mask prop-
erty of the current window needs to be
set to a picture that has transparent ar-
eas. VB requires API calls and a lot of
more work..

• Controls and menu can now be created
dynamically, just by instantiating them
with the NEW instruction. Gambas
forms can be embedded one inside an-
other one: when the first is instantiated,
the second should be specified as the par-
ent.

• Controls have Enter and Leave events,
which allows to know when the mouse
pointer enters a control and when it
leaves. This feature can be conveniently
be exploited to implement mouse-over ef-
fects.

• Data can be easily read from binary files
and endianness of its format can be easily
managed by using the BIG and LITTLE
keyword with the OPEN instruction.

• Gambas uses UTF-8 charset internally,
and so projects are fully and easily in-
ternationalizable.

• Gambas is Free Software whose develop-
ment environment is written in itself, al-
lowing its customization to a large degree
by using just once BASIC skillset!

5

5 Installation Notes

If you are still not satisfied with Gam-
bas refer http://gambas.sourceforge.net/
To download the software, visit
http://gambas.sourceforge.net/download.html

• Before installing GAMBAS ensure that
your system has the X11 development
packages, the Qt3 development packages
and the KDE3 development packages if
you want to compile the KDE compo-
nent.

• PostgreSQL, MySQL or SQlite develop-
ment packages is needed if you want to
compile database drivers and the libcurl
development packages (version 7.10.7 or
greater) if you want to compile the
network-curl component.

• The SDL and SDL mixer development
packages are required to compile the SDL
component. In addition you require the
libxml and libxslt development packages
if you want to compile the xml compo-
nents.

• Qt 3.2 is now required because of one Qt
functionPicture.Copy() that was missing
in older versions of Qt.

• Gambas does not compile with gcc 3.0.x.,
3.2 is used instead.

• You must have the right to write to /tmp,
otherwise Gambas will not work.

6 The Future. . .

In the very far future many improvements are
planned and soon to be implemented in Gam-
bas.

• A XML component, based on the libxml2
shared library.

• A Perl compatible regular expression
component, based on the libpcre shared
library.

• A GTK+ component, so that you can re-
ally choose the toolkit for any program.

• Manage 64 bits integer in the interpreter
with a new datatype named LONG

• Make objects persistent, i.e. store them
in databases automatically. A little bit
obscure for me at the moment. . .

• A SDL component, based on the libsdl
shared library. The goal is to make games
with Gambas !

• And many many more . . .

References

[1] http://gambas.sourceforge.net/, Gambas
Home

[2] http://www.binara.com/gambas-wiki/,
Gambas Wiki

[3] http://www.theeasygambasdoku.de/, The
Easy Gambas Documentation

6

