Semantic Keyword Extraction via Adaptive Text Binarization of Unstructured Unsourced Video Michele Merler and John R. Kender Computer Science Department {mmerler,jrk}@cs.columbia.edu Columbia University NEW Local Adaptive Otsu (LAO) Binarization Introduction

- > Videos of presentations are employed in a large variety of systems for different purposes
 - Distance or E-learning
 - Automatic generation of conference proceedings
 - Student presentations

Optimize for threshold *T* maximizing between-class variance in **sliding window**

Optimal version of Sauvola's algorithm

 $T(x, y) = \mu(x, y, W) \left| 1 + k \left(\frac{\sigma(x, y, W)}{1 - 1} \right) \right|$

Localized version of Otsu's algorithm [Otsu 79]

 $\sigma_{_{between}}^{'2}(T) = n_B(T)n_F(T)(\mu_B(T) - \mu_F(T))^2$

Many videos are already archived	Low quality	Lack of Structure
 Lack of additional sources of information (e.g. electronic copies of slides) 	 Unconstrained camera movements Slides Clipped 	 Not recorded by professional cameramen Shots cannot be used as clue
	 Compression 	 Not edited

- Result: Fully automatic method for summarizing and indexing unstructured presentation videos based on text extracted from the projected slides
- Integration into summarization and presentation tools such as the VAST MultiMedia Browser¹ (see image above)

Proposed Approach

1. <u>Segment video</u> into semantically distinct shots based on slides

Studies have been conducted in order

K [Sauvola et al. 00] **Dependency from** k is removed!

- Assumption: h(p)bimodal distribution (foreground/background)
- Fast implementation with Integral Histogram [Porikli et al. 05]

 $\sigma_{_{within}}^2(T) = n_B(T)\sigma_B^2(T) + n_F(T)\sigma_F^2(T)$

[Otsu 79]

Results

 $\mu_F T$

 σ_{R}^{2}

 μ_{B}

8 presentation videos, 1hr 45 mins, ~13 Slides each

400 with text Slides Text Detection - 500 Frames 100 no text $Precision = \frac{TA_{GT} \cap TA_{E}}{TA_{GT}}$ SIMPLE – use all candidate text regions REFINED – prune candidate text regions 0.8 TA_{E} based on OCR output-0.6 $Recall = \frac{TA_{GT} \cap TA_{E}}{TA_{GT}}$ Precision_{SIMPLE}

to assess the reliability of slides as a summarization tool [He et al.2000]

- No electronic copies of the slides **NEW!**
- Changes in text used to assess slide changes

Binarization - 54 Detected Regions, 2177154 annotated pixels

Algorithm	Precision	Recall	F1*	t(sec)	General Grant House Technology	
Otsu	0.8611	0.8555	0.8583	0.539	oneral Grant House Technology	Text vs. Non-Text
Sauvola (k = 0.5)	0.9003	0.8759	0.8879	0.626	General Grant House Technology	Foreground vs. Background
LAO	0.8831	0.9278	0.9049	2.126	General Grant House Technology	E1* > Precision · Recall
LAO + Int. Hist.	0.8831	0.9278	0.9049	1.29	$FI = 2 \cdot \frac{1}{Precision + Reca}$	

Slides Text Recognition - 2276 words, 13804 characters

2. Slides Text Detection

<i>F</i> – Frame
R – Candidate Text Region

3. Slides Text Recognition

NEW!

• Training with 15 character sets with Bilinear Interpolation LAO Binarization Height 30pt

Most popular fonts used in presentation slides Text reflecting English letters frequencies³

Example of <u>indexing</u> function: the word **Energy** is recognized in slides across 4 different presentations

1. www.aquaphoenix.com/research/vastmm 2. http://code.google.com/p/tesseract-ocr 3. http://en.wikipedia.org/wiki/Letter_frequencies