COMS W3101-2 Programming Languages: MATLAB Spring 2010 - Lecture 5 exercises

1. The file groceries.txt contains a shopping list and the record about when groceries on the list were bought. The format is the following:

Name time1 time2 time3 ... timeN
Bananas, 0, 1, 1, ... , 1
Where a ' 1 ' under timeL means that the $L^{\text {th }}$ time we went shopping we bought Bananas, a ' 0 ' means we did not buy Bananas.
We need to
1.1. Read the list of names and a matrix containing the bought/non-bought variables into 2 separate variables
1.2. Write a function named numBought() which takes as input, together with the list of names and the matrix, the name of a food item and returns the number of times the food item was bought
1.3. Write a function named coBought() which takes as input, together with the list of names and the matrix, 2 food items and return the number of times both food items were bought together
1.4. Consider all possible pairs of food items (x, y) and compute the co-occurrence score of each pair. The -occurrence score of each pair (x, y) is computed as Co-occurrence score $(\mathrm{x}, \mathrm{y})=\#$ times x and y were bought together

> \# times x was bought

Build a co-occurrence matrix M with items x as row indexes and items y as column indexes, and fill it with the values Co-occurrence score(x, y). For example, $\mathrm{M}(3,4)$ will contain the cooccurrence score of food item 3 and food item 4.
1.5. Render the matrix M with the hot colormap, and show the colorbar as well
1.6. The diagonal of the matrix M contains the maximum values, why?
1.7. By looking at the colormap, which pair of items gets bought together more often?
2. Verify series convergence
2.1. Verify that the series $\mathrm{S} 1=\sum_{n=1}^{\infty} \frac{2}{n^{2}+2 n}$ converges
(HINT1: plot its values from $n=1$ to a sufficiently large n, say $n=10^{\wedge} 4$)
(HINT2: use the MATLAB function cumsum() might be useful)
2.2. Verify that the series $\mathrm{S} 2=\sum_{n=1}^{\infty}(-1)^{n} \cdot \frac{n}{n+1}$ does NOT converge
2.3. Plot the behavior of $S 1$ and $S 2$ for n up to 100 in 2 separate graphs in the same figure

