
Spring 2010

Instructor: Michele Merler

http://www1.cs.columbia.edu/~mmerler/comsw3101-2.html

 1. Generate the pythagoric table (do not insert the values
manually)

1 2 3 4 5 6 7 8 9 10 11 12
2 4 6 8 10 12 14 16 18 20 22 24
3 6 9 12 15 18 21 24 27 30 33 36
4 8 12 16 20 24 28 32 36 40 44 48
5 10 15 20 25 30 35 40 45 50 55 60
6 12 18 24 30 36 42 48 54 60 66 72
7 14 21 28 35 42 49 56 63 70 77 84
8 16 24 32 40 48 56 64 72 80 88 96
9 18 27 36 45 54 63 72 81 90 99 108

10 20 30 40 50 60 70 80 90 100 110 120
11 22 33 44 55 66 77 88 99 110 121 132
12 24 36 48 60 72 84 96 108 120 132 144

 1. Generate the pythagoric table (do not insert the values
manually)

◦ r = 1:12;

◦ PT = r'*r;

 2. Compute the series

◦ Using 10 elements (S10)

◦ Using 100 elements (S100)
◦ Compare the S10 and S100 with the value of the limit. Which one is closer to the

limit? Display the answer to command window

11

1

9

1

7

1

5

1

3

1
14S

 2. Compute the series

◦ Using 10 elements (S10) ↦ N = 9

◦ Using 100 elements (S100) ↦ N = 99
◦ Compare the S10 and S100 with the value of the limit. Which one is closer to the

limit? Display the answer to command window

N

n n

n

S

0 12

1
14

11

1

9

1

7

1

5

1

3

1
14

11

1

9

1

7

1

5

1

3

1
14S

 2. Compute the series

◦ Using 10 elements (S10) ↦ N = 9

◦ Using 100 elements (S100) ↦ N = 99
◦ Compare the S10 and S100 with the value of the limit. Which one is closer to the limit?

Display the answer to command window

◦ fracVec = ones(1,100)./[1:2:199];

signs =(-1).^[0:99];

◦ S10 = 4 * sum(fracVec(1:10).*signs(1:10));

◦ diff10 = pi - S10;

◦ S100 = 4 * sum(fracVec.*signs);

◦ diff100 = pi - S100;

◦ Ff
◦ ff

11

1

9

1

7

1

5

1

3

1
14S

N

n n

n
S

0 12

1
14

11

1

9

1

7

1

5

1

3

1
14

 2. Compute the series

◦ Using 10 elements (S10) ↦ N = 9

◦ Using 100 elements (S100) ↦ N = 99
◦ Compare the S10 and S100 with the value of the limit. Which one is closer to the limit?

Display the answer to command window

◦ fracVec = ones(1,100)./[1:2:199];

◦ signs =(-1).^[0:99];

◦ S10 = 4 * sum(fracVec(1:10).*signs(1:10));

◦ diff10 = pi - S10;

◦ S100 = 4 * sum(fracVec.*signs);

◦ diff100 = pi - S100;

◦ Ff
◦ ff

11

1

9

1

7

1

5

1

3

1
14S

N

n n

n
S

0 12

1
14

11

1

9

1

7

1

5

1

3

1
14

 2. Compute the series

◦ Using 10 elements (S10) ↦ N = 9
◦ Using 100 elements (S100) ↦ N = 99
◦ Compare the S10 and S100 with the value of the limit. Which one is closer to the limit?

Display the answer to command window

◦ fracVec = ones(1,100)./[1:2:199];
◦ signs =(-1).^[0:99];

◦ S10 = 4 * sum(fracVec(1:10).*signs(1:10));
◦ diff10 = pi - S10;

◦ S100 = 4 * sum(fracVec.*signs);
◦ diff100 = pi - S100;

if(diff10>diff100)
disp('S100 is closer to the limit')

else
disp('S100 is closer to the limit')

end

11

1

9

1

7

1

5

1

3

1
14S

N

n n

n
S

0 12

1
14

11

1

9

1

7

1

5

1

3

1
14

 2. Compute the series

◦ Using 10 elements (S10) ↦ N = 9
◦ Using 100 elements (S100) ↦ N = 99
◦ Compare the S10 and S100 with the value of the limit. Which one is closer to the limit?

Display the answer to command window

◦ fracVec = ones(1,100)./[1:2:199];
◦ signs =(-1).^[0:99];

◦ S10 = 4 * sum(fracVec(1:10).*signs(1:10));
◦ diff10 = pi - S10;

◦ S100 = 4 * sum(fracVec.*signs);
◦ diff100 = pi - S100;

◦ if(diff10>diff100)
◦ disp('S100 is closer to the limit')
◦ else
◦ disp('S100 is closer to the limit')
◦ end

11

1

9

1

7

1

5

1

3

1
14S

N

n n

n
S

0 12

1
14

11

1

9

1

7

1

5

1

3

1
14

 2. Compute the series

◦ Using 10 elements (S10)

◦ Using 100 elements (S100)
◦ Compare the S10 and S100 with the value of the limit. Which one is closer to the

limit? Display the answer to command window

◦ varSign = -1;

◦ S10 = 4;

◦ for in=3:2:19

◦ S10 = S10 + 4 * varSign * 1/in;

◦ varSign = -1 * varSign;

◦ end

11

1

9

1

7

1

5

1

3

1
14S

 2. Compute the series

◦ Using 10 elements (S10)

◦ Using 100 elements (S100)
◦ Compare the S10 and S100 with the value of the limit. Which one is closer to the

limit? Display the answer to command window

◦ varSign = -1;

◦ S100 = 4;

◦ for in=3:2:199

◦ S100 = S100 + 4 * varSign * 1/in;

◦ varSign = -1 * varSign;

◦ end

11

1

9

1

7

1

5

1

3

1
14S

 3. Compute sin(x) and cos(x) in the interval x = [0,
2π] (choose the number of elements in x so that
the functions can be plotted smoothly). You have to
plot 3 graphs in the same figure:

◦ Plot sin(x) in blue in the specified interval, label the axes,
assign a title to the figure

◦ Plot cos(x) in red in the specified interval, label the axes,
assign a title to the figure and display the legend

◦ Compute the maximum between the two functions at each
point in x, then plot the function called maxSinCos(x) , with
line width 2 and color magenta, together with sin(x) and
cos(x) in the specified interval. Label the axes, assign a title
to the figure and display the legend

 3. Compute sin(x) and cos(x) in the interval x = [0, 2π] (choose the number of
elements in x so that the functions can be plotted smoothly). You have to plot 3
graphs in the same figure:

◦ Plot sin(x) in blue in the specified interval, label the axes, assign a title to the figure
◦ Plot cos(x) in red in the specified interval, label the axes, assign a title to the figure and

display the legend
◦ Compute the maximum between the two functions at each point in x, then plot the function

called maxSinCos(x) , with line width 2 and color magenta, together with sin(x) and cos(x) in
the specified interval. Label the axes, assign a title to the figure and display the legend

◦ x = [0:0.1:2*pi];

◦ sX = sin(x);
◦ cX = cos(x);

◦ figure
◦ subplot(3,1,1)
◦ plot(x,sX);
◦ xlim([0 2*pi])
◦ title('sin(x)');
◦ xlabel('x'); ylabel('f(x)')

◦ subplot(3,1,2)
◦ plot(x,cX,'r');
◦ xlim([0 2*pi])
◦ title('cos(x)');
◦ xlabel('x'); ylabel('f(x)'); legend('cos(x)‘);

◦ maxSinCosX = max(sin(x),cos(x));

◦ subplot(3,1,3)
◦ plot(x,sX);
◦ hold on
◦ plot(x,cX,'r');
◦ plot(x,maxSinCosX,'m','linewidth',2);
◦ hold off
◦ xlim([0 2*pi])
◦ title('maxSinCos(x)');
◦ xlabel('x'); ylabel('f(x)')
◦ legend('sin(x)','cos(x)','maxSinCos(x)')

3. Output

 4. Playing with the ‘why’ function.

◦ Open the ‘why’ function, copy the full code into a file
named why2.m and save it. Modify line 1 of why2.m so
that the function returns the variable ‘a’.

◦ Write function called ‘countWhy’ that takes a filename.txt
as input. In the function, implement a loop which invokes
the ‘why2’ command at every iteration. Stop the loop when
the message returned by ‘why2’ is a repetition of a
message already seen. Write to filename.txt all the ‘why2’
messages seen, and display to command window the
number of iterations achieved.

 4. Playing with the ‘why’ function.

◦ Open the ‘why’ function, copy the full code into a file
named why2.m and save it. Modify line 1 of why2.m so
that the function returns the variable ‘a’.

Write function called ‘countWhy’ that takes a filename.txt as
input. In the function, implement a loop which invokes the
‘why2’ command at every iteration. Stop the loop when the
message returned by ‘why2’ is a repetition of a message
already seen. Write to filename.txt all the ‘why2’ messages
seen, and display to command window the number of
iterations achieved.

 Write function called ‘countWhy’ that takes a filename.txt as
input. In the function, implement a loop which invokes the
‘why2’ command at every iteration. Stop the loop when the
message returned by ‘why2’ is a repetition of a message already
seen. Write to filename.txt all the ‘why2’ messages seen, and
display to command window the number of iterations achieved.

o numTimes = countWhy('whyAnswers.txt');
o disp(numTimes)

o function [count] = countWhy(filename)

o fid = fopen(filename,'w');

o count = 0;

o in = 1;

o control = 0;

o while 1

o v{in} = why2;

o fprintf(fid,'%s\n',v{in});

o

o control = 0;

o if(in>1)

o for in2 = 1:in-1

o if(strcmp(v{in},v{in2}))

o control=1;

o break

o end

o end

o end

o if(control==1)

o break

o else

o in = in+1;

o end

o end

o fclose(fid)

o count = in

 Handle = another type of variables in MATLAB

 An identifier for a function

o h = @sin;

o x = h(pi/2);

o x = sin(pi/2);

 Can be inserted in structs and cells, not arrays
◦ S.a = @sin; S.b = @cos; S.c = @tan;

◦ C = {@sin, @cos, @tan};

◦ A = [@sin, @cos, @tan];

o handlename = @functionname;

 Handle to anonymous function

o h = @(x,y) x + y;

Example 1
o h = @(x,y) x + y;

o x = h(1,2);

Example 2
o h = @(fun,x,y) fun(x) + y;

o val = h(@sin, pi/2, 3);

Example 3
o function [val] = myfun(fun,x,y)
o val = fun(x) + y;

o myfun(@sin, pi/2, 3);

o handlename = @(v1,v2,…) body;

 Handle to anonymous function

o h = @(x,y) x + y;

Example 1
o h = @(x,y) x + y;

o x = h(1,2);

Example 2
o h = @(fun,x,y) fun(x) + y;

o val = h(@sin, pi/2, 3);

Example 3
o function [val] = myfun(fun,x,y)
o val = fun(x) + y;

o myfun(@sin, pi/2, 3);

o handlename = @(v1,v2,…) body;

Note that the function does not have
a specified name, but it is identified
only trough the function handle h !

In these cases the variable fun
is a function handle itself!

 fzero() – finds a zero of a function f(x) the closest
possible to a specified point x1

◦ xZ = fzero(@sin,x1);

Example1: find the zero of the function sin(x) closest to π/3

◦ x = [-pi:0.1:pi];
◦ x1 = pi/3;
◦ xZero = fzero(@sin,x1);
◦ plot(x, sin(x));
◦ hold on
◦ plot(x, 0.*x,'k');
◦ plot(x1, sin(x1),'g*');
◦ plot(xZero, sin(xZero),'rd');
◦ hold off
◦ xlim([-pi pi]);

o res = fzero(funHandle,startPoint);

 fzero() – finds a zero of a function f(x) inside a specified
range x1

◦ xZ = fzero(@sin,x1);

Example2: find the zero of the function sin(x) between -π/3 and π/3

◦ x = [-pi:0.1:pi];
◦ x1 = [-pi/3 pi/3];
◦ xZero = fzero(@sin,x1);
◦ plot(x, sin(x));
◦ hold on
◦ plot(x, 0.*x,'k');
◦ plot(x1, sin(x1),'g*');
◦ plot(xZero, sin(xZero),'rd');
◦ hold off
◦ xlim([-pi pi]);

o res = fzero(funHandle,range);

 fzero() – finds a zero of a function f(x) inside a specified
range x1

◦ xZ = fzero(@sin,x1);

Example2: find the zero of the function sin(x) between -π/3 and π/3

◦ x = [-pi:0.1:pi];
◦ x1 = [-pi/3 pi/3];
◦ xZero = fzero(@sin,x1);
◦ plot(x, sin(x));
◦ hold on
◦ plot(x, 0.*x,'k');
◦ plot(x1, sin(x1),'g*');
◦ plot(xZero, sin(xZero),'rd');
◦ hold off
◦ xlim([-pi pi]);

o res = fzero(funHandle,range);

If x1 is a range, the function fun()
referenced by funHandle MUST change
sign between x1(1) and x1(2) !

Sign(fun(x1(1))) ~= Sign(fun(x1(2))) !!!

 roots() - returns a vector whose elements
are the roots of a polynomial

Example

◦ p = [1 -5 6];

◦ res = roots(p);

[3;2]

o res = roots(vec);

0652 xx 0)2)(3(xx

 Suppose we have the following system of
linear equations:
 x + y – 2z = 4

 3x + 5y + z = -2

 -2x + 3y – 10z = 7

◦ We want to solve it and find the values of x, y and z

◦ We can store the equations in the following way:

 AX = b, with

1032

153

211

A

7

2

4

b

z

y

x

X

 Suppose we have the following system of
linear equations:
 x + y – 2z = 4

 3x + 5y + z = -2

 -2x + 3y – 10z = 7

◦ We know from linear algebra the solution is

 X = inv(A) * b

o So with MATLAB we can solve it in 2 ways:

o X = inv(A) * b;

o X = A \ b;

 Suppose we have the following system of
linear equations:
 x + y – 2z = 4

 3x + 5y + z = -2

 -2x + 3y – 10z = 7

◦ We know from linear algebra the solution is

 X = inv(A) * b

o So with MATLAB we can solve it in 2 ways:

o X = inv(A) * b;

o X = A \ b;

NOTE 1 : the \ operator works for square systems. For rectangular
systems it gives the least squares solution.

NOTE 2 : we have to check if the system is over or underdetermined

 rank()
◦ Computes the rank of a matrix (the number of linearly independent rows

or columns)

◦ R = rank(M);

 det()
◦ Computes the determinant of a matrix, which must be square
◦ NOTE: if determinant is nonzero, matrix is invertible

◦ d = det(M);

 trace()
◦ Computes the trace of a matrix (the sum of its diagonal elements)

◦ R = trace(M);

 inv()
◦ Computes the inverse of a matrix

◦ Ainv = inv(M)

http://comp.uark.edu/~jjrencis/femur/Learning-Modules/Linear-
Algebra/solving/determinant/cofactor_expansion.html

http://comp.uark.edu/~jjrencis/femur/Learning-Modules/Linear-Algebra/solving/determinant/cofactor_expansion.html
http://comp.uark.edu/~jjrencis/femur/Learning-Modules/Linear-Algebra/solving/determinant/cofactor_expansion.html
http://comp.uark.edu/~jjrencis/femur/Learning-Modules/Linear-Algebra/solving/determinant/cofactor_expansion.html
http://comp.uark.edu/~jjrencis/femur/Learning-Modules/Linear-Algebra/solving/determinant/cofactor_expansion.html
http://comp.uark.edu/~jjrencis/femur/Learning-Modules/Linear-Algebra/solving/determinant/cofactor_expansion.html

 Eigenvalues, Eigenvectors
 eig()

◦ [eigVect eigVal] = eig(M);

◦ NOTE: M must be square
◦ RESULT: 2 matrices of same dimension as M,

◦ a diagonal matrix eigVal whose diagonal elements are the
eigenvalues of M

◦ a matrix eigVec whose columns are the eigenvectors of M

◦ eigVal*M = eigVal*eigVec

 Singular Value Decomposition
 svd()

◦ [U, S, V] = svd(M);

◦ NOTE: M does not have to be square
◦ RESULT: a diagonal matrix S of the same dimension as M, with

nonnegative diagonal elements in decreasing order, and unitary
matrices U and V so that

◦ M = U*S*V‘.

 diff() 1D

◦ x = [1:2:11];

◦ diff(x)/2;

 gradient() 2D

◦ x = 1:12;

◦ M = x’*x

◦ [dx dy] = gradient(M);

dx

xdf
xf

y

yxf
x

yxf

yxf

,

,

,

 Using the trapezoidal rule

◦ x = 0:0.01:pi;

◦ intTX = trapz(x,sin(x));

0

sinint dxxX

 Using recursive adaptive Simpson quadrature

◦ intQX = quad(@sin,0,pi)

◦ q = quad(@sin,0,pi,tol);

0

sinint dxxX

 Fit an nth degree polynomial to predefined data

 polyfit()
 polyval()

 Example (fit 2nd degree polynomial to noisy data)
◦ x = [-4:0.1:4];
◦ y = x.^2;
◦ yNoisy = y + randn(size(y));
◦ plot(x,yNoisy,’.’);

◦ polY = polyfit(x,yNoisy,2);

◦ hold on;
◦ plot(x,polyval(polY,x),’r’);

 Fit an nth degree polynomial to predefined data

 polyfit()
 polyval()

 Example (fit 2nd degree polynomial to noisy data)
◦ x = [-4:0.1:4];
◦ y = x.^2;
◦ yNoisy = y + randn(size(y));
◦ plot(x,yNoisy,’.’);

◦ polY = polyfit(x,yNoisy,2);

◦ hold on;
◦ plot(x,polyval(polY,x),’r’);
◦ hold off;

 Fit an nth degree polynomial to predefined data

 polyfit()
 polyval()

 Example (fit 2nd degree polynomial to noisy data)
◦ x = [-4:0.1:4];
◦ y = x.^2;
◦ yNoisy = y + randn(size(y));
◦ plot(x,yNoisy,’.’);

◦ polY = polyfit(x,yNoisy,2);

◦ hold on;
◦ plot(x,polyval(polY,x),’r’);
◦ hold off;

o bought = dlmread('groceries.txt',',',0,1);
o fid = fopen('groceries.txt');
o food = textscan(fid,'%s');
o fclose(fid);
o food = strtok(food{1},',');

o M = eye(length(food),length(food));
o for in1=1:length(food)
o for in2=1:length(food)
o if(in1 ~= in2)

o M(in1,in2) = ...
coBought(food,bought,food{in1},food{in2}) / ...
numBought(food,bought,food{in1});

o end
o end
o end

o imagesc(M);
o colormap('hot');
o colorbar

o function [num] = numBought(names,mat,index)

o for in=1:length(names)
o if(strcmp(names{in},index))
o break
o end
o end
o num = sum(mat(in,:));

o function [num] = coBought(names,mat,index1,index2)

o for in=1:length(names)
o if(strcmp(names{in},index1))
o in1 = in;
o end
o if(strcmp(names{in},index2))
o in2 = in;
o end
o end
o num = sum(mat(in1,:).* mat(in2,:));

% series 1
n = 1:10^5;
S1 = cumsum(2 ./ (n.^2 + 2.*n));

figure
subplot(1,2,1)
plot(S1)

% series 2
S2 = cumsum((-1).^n .* n./(n+1));

subplot(1,2,2)
plot(S2)

 Due at beginning of class, no

exceptions

 Put your code (.m files) and

additional files in a single folder,

name it youruni_hw_X and zip it

 Upload the zipped folder to

CourseWorks

 Bring a printout of your code to class

 Good luck and have fun, it’s the last

one !

