

COMS W3101-2

#### Programming Languages: MATLAB



Spring 2010 Instructor: Michele Merler

http://www1.cs.columbia.edu/~mmerler/comsw3101-2.html

1. Generate the pythagoric table (do not insert the values manually)

| 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9   | 10  | 11  | 12  |
|----|----|----|----|----|----|----|----|-----|-----|-----|-----|
| 2  | 4  | 6  | 8  | 10 | 12 | 14 | 16 | 18  | 20  | 22  | 24  |
| 3  | 6  | 9  | 12 | 15 | 18 | 21 | 24 | 27  | 30  | 33  | 36  |
| 4  | 8  | 12 | 16 | 20 | 24 | 28 | 32 | 36  | 40  | 44  | 48  |
| 5  | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45  | 50  | 55  | 60  |
| 6  | 12 | 18 | 24 | 30 | 36 | 42 | 48 | 54  | 60  | 66  | 72  |
| 7  | 14 | 21 | 28 | 35 | 42 | 49 | 56 | 63  | 70  | 77  | 84  |
| 8  | 16 | 24 | 32 | 40 | 48 | 56 | 64 | 72  | 80  | 88  | 96  |
| 9  | 18 | 27 | 36 | 45 | 54 | 63 | 72 | 81  | 90  | 99  | 108 |
| 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90  | 100 | 110 | 120 |
| 11 | 22 | 33 | 44 | 55 | 66 | 77 | 88 | 99  | 110 | 121 | 132 |
| 12 | 24 | 36 | 48 | 60 | 72 | 84 | 96 | 108 | 120 | 132 | 144 |



- 1. Generate the pythagoric table (do not insert the values manually)
  - r = 1:12;
     PT = r'\*r;



• 2. Compute the series 
$$S = 4 \cdot \left(1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + \cdots\right) \rightarrow \pi$$

- Using 10 elements (S<sub>10</sub>)
- Using 100 elements (S<sub>100</sub>)
- $^\circ$  Compare the  $S_{10}$  and  $S_{100}$  with the value of the limit. Which one is closer to the limit? Display the answer to command window



• 2. Compute the series 
$$S = 4 \cdot \left(1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + \cdots\right) \rightarrow \pi$$

- Using 10 elements ( $S_{10}$ )  $\mapsto N = 9$
- Using 100 elements  $(S_{100}) \rightarrow N = 99$
- $^\circ$  Compare the  $S_{10}$  and  $S_{100}$  with the value of the limit. Which one is closer to the limit? Display the answer to command window

$$S = 4 \cdot \left( 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + \cdots \right) \to \pi$$
$$= 4 \cdot \sum_{n=0}^{N=\infty} (-1)^n \left( \frac{1}{2n+1} \right)$$



- 2. Compute the series  $S = 4 \cdot \left(1 \frac{1}{3} + \frac{1}{5} \frac{1}{7} + \frac{1}{9} \frac{1}{11} + \cdots\right) \rightarrow \pi$ 
  - Using 10 elements  $(S_{10}) \rightarrow N = 9$
  - Using 100 elements  $(S_{100}) \mapsto N = 99$
  - Compare the  $S_{10}$  and  $S_{100}$  with the value of the limit. Which one is closer to the limit? Display the answer to command window

$$S = 4 \cdot \left( 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + \cdots \right) = 4 \cdot \sum_{n=0}^{N=\infty} (-1)^n \left( \frac{1}{2n+1} \right) \Rightarrow \pi$$

o fracVec = ones(1,100)./[1:2:199];



- 2. Compute the series  $S = 4 \cdot \left(1 \frac{1}{3} + \frac{1}{5} \frac{1}{7} + \frac{1}{9} \frac{1}{11} + \cdots\right) \to \pi$ 
  - Using 10 elements ( $S_{10}$ )  $\mapsto N = 9$
  - Using 100 elements  $(S_{100}) \rightarrow N = 99$
  - Compare the  $S_{10}$  and  $S_{100}$  with the value of the limit. Which one is closer to the limit? Display the answer to command window

$$S = 4 \cdot \left(1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + \cdots\right) = 4 \cdot \sum_{n=0}^{N=\infty} (-1)^n \left(\frac{1}{2n+1}\right) \rightarrow \pi$$
  
• fracVec = ones(1,100)./[1:2:199];  
• signs =(-1).^[0:99];



- 2. Compute the series  $S = 4 \cdot \left(1 \frac{1}{3} + \frac{1}{5} \frac{1}{7} + \frac{1}{9} \frac{1}{11} + \cdots\right) \rightarrow \pi$ 
  - Using 10 elements (S<sub>10</sub>) → N = 9
    Using 100 elements (S<sub>100</sub>) → N = 99

  - Compare the  $S_{10}$  and  $S_{100}$  with the value of the limit. Which one is closer to the limit? Display the answer to command window

$$S = 4 \cdot \left(1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + \cdots\right) = 4 \cdot \sum_{n=0}^{N=\infty} \left(-1\right)^n \left(\frac{1}{2n+1}\right) \rightarrow \pi$$
• fracVec = ones(1,100) /[1:2:199];
• signs =(-1).^{[0:99]};
• S10 = 4 \* sum(fracVec(1:10).\*signs(1:10));
• diff10 = pi - S10;

o S100 = 4 \* sum(fracVec.\*signs); o diff100 = pi - S100;



- 2. Compute the series  $S = 4 \cdot \left(1 \frac{1}{3} + \frac{1}{5} \frac{1}{7} + \frac{1}{9} \frac{1}{11} + \cdots\right) \rightarrow \pi$ 
  - Using 10 elements  $(S_{10}) \rightarrow N = 9$
  - Using 100 elements  $(S_{100}) \rightarrow N = 99$
  - Compare the  $S_{10}$  and  $S_{100}$  with the value of the limit. Which one is closer to the limit? Display the answer to command window

$$S = 4 \cdot \left(1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + \cdots\right) = 4 \cdot \sum_{n=0}^{N=\infty} (-1)^n \left(\frac{1}{2n+1}\right) \to \pi$$

```
• S10 = 4 * sum(fracVec(1:10).*signs(1:10));
• diff10 = pi - S10;
```

```
• S100 = 4 * sum(fracVec.*signs);
• diff100 = pi - S100;
```

```
• if(diff10>diff100)
• disp('S100 is closer to the limit')
• else
• disp('S100 is closer to the limit')
• end
```



- 2. Compute the series  $S = 4 \cdot \left(1 \frac{1}{3} + \frac{1}{5} \frac{1}{7} + \frac{1}{9} \frac{1}{11} + \cdots\right) \rightarrow \pi$ 
  - Using 10 elements (S<sub>10</sub>)
  - Using 100 elements (S<sub>100</sub>)
  - Compare the S<sub>10</sub> and S<sub>100</sub> with the value of the limit. Which one is closer to the limit? Display the answer to command window
  - o varSign = -1;
  - $\circ$  S10 = 4;
  - for in=3:2:19
  - S10 = S10 + 4 \* varSign \* 1/in;
  - varSign = -1 \* varSign;

° end



- 2. Compute the series  $S = 4 \cdot \left(1 \frac{1}{3} + \frac{1}{5} \frac{1}{7} + \frac{1}{9} \frac{1}{11} + \cdots\right) \rightarrow \pi$ 
  - Using 10 elements (S<sub>10</sub>)
  - Using 100 elements (S<sub>100</sub>)
  - Compare the S<sub>10</sub> and S<sub>100</sub> with the value of the limit. Which one is closer to the limit? Display the answer to command window

- $\circ$  S100 = 4;
- for in=3:2:199
- S100 = S100 + 4 \* varSign \* 1/in;
- varSign = -1 \* varSign;

° end



- 3. Compute sin(x) and cos(x) in the interval x = [0, 2π] (choose the number of elements in x so that the functions can be plotted smoothly). You have to plot 3 graphs in the same figure:
  - Plot sin(x) in blue in the specified interval, label the axes, assign a title to the figure
  - Plot cos(x) in red in the specified interval, label the axes, assign a title to the figure and display the legend
  - Compute the maximum between the two functions at each point in x, then plot the function called maxSinCos(x), with line width 2 and color magenta, together with sin(x) and cos(x) in the specified interval. Label the axes, assign a title to the figure and display the legend



- 3. Compute sin(x) and cos(x) in the interval  $x = [0, 2\pi]$  (choose the number of elements in x so that the functions can be plotted smoothly). You have to plot 3 graphs in the same figure:
  - Plot sin(x) in blue in the specified interval, label the axes, assign a title to the figure
  - Plot cos(x) in red in the specified interval, label the axes, assign a title to the figure and display the legend
  - Compute the maximum between the two functions at each point in x, then plot the function called maxSinCos(x), with line width 2 and color magenta, together with sin(x) and cos(x) in the specified interval. Label the axes, assign a title to the figure and display the legend

```
• maxSinCosX = max(sin(x),cos(x));
 x = [0:0.1:2*pi];
0
                                 • subplot(3,1,3)
• sX = sin(x);
                                 o plot(x,sX);
• cX = cos(x);
                                 • hold on
 figure
0
                                 o plot(x,cX,'r');
• subplot(3,1,1)
                                 o plot(x,maxSinCosX,'m','linewidth',2);
o plot(x,sX);
                                 • hold off
• xlim([0 2*pi])
                                 • xlim([0 2*pi])
• title('sin(x)');
                                 • title('maxSinCos(x)');
 xlabel('x'); ylabel('f(x)')
0
                                 o xlabel('x'); ylabel('f(x)')
                                   legend('sin(x)','cos(x)','maxSinCos(x)')
 subplot(3,1,2)
0
o plot(x,cX,'r');
o xlim([0 2*pi])
• title('cos(x)');
 xlabel('x'); ylabel('f(x)'); legend('\cos(x)');
0
```

#### 3. Output



- 4. Playing with the 'why' function.
  - Open the 'why' function, copy the full code into a file named why2.m and save it. Modify line 1 of why2.m so that the function returns the variable 'a'.
  - Write function called 'countWhy' that takes a *filename.txt* as input. In the function, implement a loop which invokes the 'why2' command at every iteration. Stop the loop when the message returned by 'why2' is a repetition of a message already seen. Write to *filename.txt* all the 'why2' messages seen, and display to command window the number of iterations achieved.



- 4. Playing with the 'why' function.
  - Open the 'why' function, copy the full code into a file named why2.m and save it. Modify line 1 of why2.m so that the function returns the variable 'a'.

| Editor - C:\Users\Giambo\Desktop\Quiz\solutio(\why2.m |        |                                                        |  |  |  |  |
|-------------------------------------------------------|--------|--------------------------------------------------------|--|--|--|--|
|                                                       | File E | dit Text Cell Tools Debug Desktop Window Help          |  |  |  |  |
|                                                       | 🗋 🖻    | : 📰 🕺 🐚 🛍 🗠 😋 🎒 🚧 🗲 🗟 😢 🗐 🛍 🗊 🎜 🏭 Stack: Base 🗾        |  |  |  |  |
|                                                       | 1      | function [a] = why2(n)                                 |  |  |  |  |
|                                                       | 2      | %WHY Provides succinct answers to almost any question. |  |  |  |  |



Write function called 'countWhy' that takes a *filename.txt* as input. In the function, implement a loop which invokes the 'why2' command at every iteration. Stop the loop when the message returned by 'why2' is a repetition of a message already seen. Write to *filename.txt* all the 'why2' messages seen, and display to command window the number of iterations achieved.

- o numTimes = countWhy('whyAnswers.txt');
- disp(numTimes)



o function [count] = countWhy(filename)

```
o fid = fopen(filename, 'w');
\circ count = 0;
\circ in = 1;
\circ control = 0;
• while 1
       v\{in\} = why2;
0
       fprintf(fid, '%s\n',v{in});
0
0
       control = 0;
0
       if(in>1)
0
            for in2 = 1:in-1
0
                if(strcmp(v{in},v{in2}))
0
                     control=1;
0
                     break
0
                end
0
            end
0
       end
0
```

```
o if(control==1)
```

```
o break
```

```
else
```

```
in = in+1;
```

```
• end
```

```
• end
```

0

0

fclose(fid)

```
o count = in
```



#### **Functions Handles**

- Handle = another type of variables in MATLAB
- An identifier for a function

• 
$$x = h(pi/2);$$

$$\circ x = sin(pi/2);$$

- Can be inserted in structs and cells, not arrays
  - S.a = @sin; S.b = @cos; S.c = @tan;
  - C = {@sin, @cos, @tan};





### **Functions Handles**

#### Handle to anonymous function

• h = Q(x,y) + y; • handlename = Q(v1,v2,...) body;

Example 1 • h = @(x,y) x + y;

```
• x = h(1, 2);
```

Example 2
• h = @(fun,x,y) fun(x) + y;
• val = h(@sin, pi/2, 3);

#### Example 3

- o function [val] = myfun(fun,x,y)
- $\circ$  val = fun(x) + y;

o myfun(@sin, pi/2, 3);



# **Functions Handles**

#### Handle to anonymous function

• h = Q(x,y) + y; • handlename = Q(v1,v2,...) body;

Example 1
o h = @(x,y) x + y;
o x = h(1,2);

Note that the function does not have a specified name, but it is identified only trough the function handle *h* !

### Find zeros of functions

fzero() – finds a zero of a function f(x) the closest possible to a specified point x1

```
• xZ = fzero(@sin,x1);  • res = fzero(funHandle,startPoint);
```

Example1: find the zero of the function sin(x) closest to  $\pi/3$ 

```
* x = [-pi:0.1:pi];
x1 = pi/3;
xZero = fzero(@sin,x1);
plot(x, sin(x));
hold on
plot(x, 0.*x,'k');
plot(x1, sin(x1),'g*');
plot(xZero, sin(xZero),'rd');
hold off
xlim([-pi pi]);
```



#### Find zeros of functions

- fzero() finds a zero of a function f(x) inside a specified
  range x1
  - xZ = fzero(@sin,x1); res = fzero(funHandle,range);

Example2: find the zero of the function sin(x) between  $-\pi/3$  and  $\pi/3$ 

```
• x = [-pi:0.1:pi];
• x1 = [-pi/3 pi/3];
• xZero = fzero(@sin,x1);
• plot(x, sin(x));
• hold on
• plot(x, 0.*x,'k');
• plot(x1, sin(x1),'g*');
• plot(xZero, sin(xZero),'rd');
• hold off
• xlim([-pi pi]);
```



### Find zeros of functions

- fzero() finds a zero of a function f(x) inside a specified
  range x1
  - xZ = fzero(@sin,x1); res = fzero(funHandle,range);

Example2: find the zero of the function sin(x) between  $-\pi/3$  and  $\pi/3$ 

If x1 is a range, the function *fun()* referenced by *funHandle* MUST change sign between x1(1) and x1(2) !

Sign(fun(x1(1)))  $\sim$ = Sign(fun(x1(2))) !!!



# Find roots of polynomials

roots() – returns a vector whose elements are the roots of a polynomial

Example 
$$x^2 - 5x + 6 = 0 \Leftrightarrow (x - 3)(x - 2) = 0$$
  
• p =  $[1 - 5 6];$  • res = roots(vec);  
• res = roots(p);  
[3;2]



### **Solving Equations**

Suppose we have the following system of linear equations:

$$\begin{cases} x + y - 2z = 4\\ 3x + 5y + z = -2\\ -2x + 3y - 10z = 7 \end{cases}$$

• AX = b, with

• We want to solve it and find the values of x, y and z

• We can store the equations in the following way:

$$A = \begin{bmatrix} 1 & 1 & -2 \\ 3 & 5 & 1 \\ -2 & 3 & -10 \end{bmatrix} \qquad X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \qquad b = \begin{bmatrix} 4 \\ -2 \\ 7 \end{bmatrix}$$



## **Solving Equations**

#### Suppose we have the following system of linear equations:

$$\int x + y - 2z = 4$$
  
3x + 5y + z = -2

$$\int -2x + 3y - 10z = 7$$

• We know from linear algebra the solution is

• So with MATLAB we can solve it in 2 ways:

$$\circ X = A \setminus b;$$



#### **Solving Equations**

#### Suppose we have the following system of linear equations:

$$\begin{cases} x + y - 2z = 4\\ 3x + 5y + z = -2 \end{cases}$$

$$\int -2x + 3y - 10z = 7$$

• We know from linear algebra the solution is

• *X* = inv(A) \* b

• So with MATLAB we can solve it in 2 ways:

$$\circ X = inv(A) * b;$$

$$\bullet X = A \setminus b;$$

**NOTE 1 : the \ operator works for square systems.** For **rectangular systems** it gives the **least squares** solution.

NOTE 2 : we have to check if the system is over or underdetermined

#### Linear Algebra

- rank()
  - Computes the rank of a matrix (the number of linearly independent rows or columns)
  - R = rank(M);
- > det()
  - Computes the determinant of a matrix, which must be square
  - NOTE: if determinant is nonzero, matrix is invertible
  - d = det(M);
- > trace()
  - Computes the trace of a matrix (the sum of its diagonal elements)
  - R = trace(M);

#### inv()

- Computes the inverse of a matrix
- Ainv = inv(M)



# Computing the determinant: cofactor expansion

http://comp.uark.edu/~jjrencis/femur/Learning-Modules/Linear-Algebra/solving/determinant/cofactor\_expansion.html



#### Matrix Decomposition

Eigenvalues, Eigenvectors

#### > eig()

- o [eigVect eigVal] = eig(M);
- NOTE: M must be square
- RESULT: 2 matrices of same dimension as M,
  - a diagonal matrix eigVal whose diagonal elements are the eigenvalues of M
  - a matrix eigVec whose columns are the eigenvectors of M
- eigVal\*M = eigVal\*eigVec
- Singular Value Decomposition
- > svd()
  - [U, S, V] = svd(M);
  - NOTE: M does not have to be square
  - RESULT: a diagonal matrix S of the same dimension as M, with nonnegative diagonal elements in decreasing order, and unitary matrices U and V so that
     M = U\*S\*V'.

#### Differentiation

- >diff() 1D
  - x = [1:2:11];
     diff(x)/2;

 $f(x) \to \frac{df(x)}{dx}$ 

 $f(x, y) \to \partial f$ 

- >gradient() 2D
  - $\circ x = 1:12;$
  - $\circ M = x' * x$
  - o [dx dy] = gradient(M);



 $\partial f(x,y)$ 

#### Integration 1

Using the trapezoidal rule

$$\inf X = \int_{0}^{\pi} \sin(x) dx$$



#### Integration 2

Using recursive adaptive Simpson quadrature

$$\inf X = \int_{0}^{\pi} \sin(x) dx$$

- o intQX = quad(@sin,0,pi)
- o q = quad(@sin,0,pi,tol);



# **Polynomial Fitting**

- Fit an *n<sup>th</sup>* degree polynomial to predefined data
- > polyfit()
- > polyval()
- Example (fit 2nd degree polynomial to noisy data )
  - x = [-4:0.1:4];

- o yNoisy = y + randn(size(y));
- o plot(x,yNoisy,'.');
- o polY = polyfit(x,yNoisy,2);



# **Polynomial Fitting**

- Fit an *n<sup>th</sup>* degree polynomial to predefined data
- > polyfit()
- > polyval()
- Example (fit 2nd degree polynomial to noisy data )

- o yNoisy = y + randn(size(y));
- o plot(x,yNoisy,'.');
- o polY = polyfit(x,yNoisy,2);
- o hold on;
- o plot(x,polyval(polY,x),'r');
- o hold off;



# **Polynomial Fitting**

- Fit an *n<sup>th</sup>* degree polynomial to predefined data
- > polyfit()
- > polyval()

#### Example (fit 2nd de

- x = [-4:0.1:4];
- $y = x \cdot 2;$
- o yNoisy = y + randr o plot(x,yNoisy,'.')
- o polY = polyfit(x, y)
- o hold on;
- o plot(x,polyval(pol
- o hold off;



#### Exercises in class !





#### Exercises in class 1/2

- o bought = dlmread('groceries.txt',',',0,1);
- o fid = fopen('groceries.txt');
- o food = textscan(fid,'%s');
- o fclose(fid);
- o food = strtok(food{1}, ', ');

```
o M = eye(length(food),length(food));
```

o for in1=1:length(food)

```
o for in2=1:length(food)
```

```
• if(in1 ~= in2)
```

• M(in1, in2) = ...

```
coBought(food,bought,food{in1},food{in2}) / ...
numBought(food,bought,food{in1});
```

• end

```
• end
```

```
o end
```

```
o imagesc(M);
```

```
o colormap('hot');
```

```
• colorbar
```



#### Exercises in class 1/2

o function [num] = numBought(names,mat,index)

o function [num] = coBought(names,mat,index1,index2)



#### Exercises in class 2/2

```
% series 1
n = 1:10^5;
S1 = cumsum( 2 ./ (n.^2 + 2.*n) );
figure
subplot(1,2,1)
plot(S1)
```

```
% series 2
S2 = cumsum((-1).^n .* n./(n+1));
```

```
subplot(1,2,2)
plot(S2)
```



# Homeworks policy

- Due at beginning of class, no exceptions
- Put your code (.m files) and additional files in a single folder, name it youruni\_hw\_X and zip it
- Upload the zipped folder to CourseWorks
- Bring a printout of your code to class
- Good luck and have fun, it's the last one !



