
Spring 2010

Instructor: Michele Merler

http://www1.cs.columbia.edu/~mmerler/comsw3101-2.html

 Type from command line:

◦ matlab -nodisplay –r command

 This will start MATLAB, open its environment without

showing the GUI, and execute the specified command

within the environment

 NOTE: MATLAB will stay open after this!!! We have to

explicitly close the environment

Tells MATLAB not to
initialize the visual interface
NOTE: this works only for
Linux

Tells MATLAB to
execute the
following command

 Example 1:

◦ matlab -nodisplay –r x=3

 Example 2:

◦ Prepare script myscript.m

 x = rand(30);

 save('my_x','x');

◦ matlab -nodisplay –r myscript

 Example 1:

◦ matlab -nodisplay –r x=3

 Example 2:

◦ Prepare script myscript.m

 x = rand(30);

 save('my_x','x');

 exit

◦ matlab -nodisplay –r myscript

MATLAB stores data in specific files, with extension .mat

 save

◦ Example General Form

◦ x = rand(7, 3);

◦ y = ‘cool’;

◦ save(‘myfile’,‘x’); save(‘namefile(.mat)’,‘variable’);

◦ save(‘myfile2’,‘x’,‘y’); save(‘namefile(.mat)’,‘var1’,‘var2’,…);

 load
◦ Example General Form

◦ load myfile2; load ‘namefile(.mat)’ ;

◦ newX = load(‘myfile2’,‘x’); var = load(‘namefile(.mat)’);

 input()

◦ Example 1 General Form

◦ weight = input(‘Insert weight: ’); var = input(‘string ’);

◦ Example 2 General Form

◦ name = input(‘Insert name:\n ’,’s’); var = input(‘string ’,’s’);

MATLAB allows scripts or functions to read data inserted by users in
the command window, using the function input()

This specifies that var
is going to be a string

 fopen
◦ fid = fopen(‘myfile.txt’,’r’)

 Operations on file fid

 fclose
◦ fclose(fid)

File ID Filename Mode: ‘r’ – read
‘w’ – write
‘a’ - append

Example

◦ fid = fopen(‘myfile.txt’,’r’);

◦ while 1

◦ tline = fgetl(fid);

◦ if ~ischar(tline), break, end

◦ disp(tline)

◦ end

◦ fclose(fid);

Example

◦ fid = fopen(‘myfile.txt’,’r’);

◦ while 1

◦ tline = fgetl(fid);

◦ if ~ischar(tline), break, end

◦ disp(tline)

◦ end

◦ fclose(fid);

Reads single line in file

Checks format
of argument

 MATLAB has special functions to deal with files
containing formatted data

 dlmread

◦ data = dlmread('myfile.txt',' ', 2, 1);

◦ data = dlmread('myfile.txt',' ', [2 1 4 2]);

 dlmwrite

 MATLAB has special functions to deal with files
containing formatted data

 dlmread

◦ data = dlmread('myfile.txt',' ', 2, 1);

◦ data = dlmread('myfile.txt',' ', [2 1 4 2]);

 dlmwrite

Filename Delimiter First column

First row

Rows Columns

 MATLAB has special functions to deal with files
containing formatted data

 dlmread

◦ data = dlmread('myfile.txt',' ', 2, 1);

◦ data = dlmread('myfile.txt',' ', [2 1 4 2]);

 dlmwrite

Starts counting with 0 !

 MATLAB has special functions to deal with files
containing formatted data

 dlmread

◦ data = dlmread('myfile.txt',' ', 2, 1);

◦ data = dlmread('myfile.txt',' ', [2 1 4 2]);

 dlmwrite

◦ dlmwrite('myfile2.txt',data,‘\t', ‘-append');

Filename Variable Delimiter

 MATLAB has special functions to deal with
files containing formatted data

 csvread

 csvwrite

◦ dataCSV = csvread('myfile.csv')

◦ dataCSV2 = dlmread('myfile.csv',',')

For comma separated files

 Images are matrices
◦ Color images are [nxmx3] matrices

◦ Grayscale images are [nxm] matrices

 Reading Images

 imread
◦ Im = imread(‘mypic.jpg’);

 Saving Images

 imwrite
◦ imwrite(Im,‘mypic2.png’);

R

G

B

1,1

y

x

 Structs are data structures that allow to keep

different data types in the same variable

 Struct
◦ s = struct('field1', var1, 'field2', var2, ...);

Example

◦ s = struct(‘num', [1:10], ‘str', ‘cool’);

◦ s.str

◦ s.newField = 3;

Note: when we save multiple variables in a .mat file, and later try to load
them assigning to a single variable, they get saved as fields of a struct

 Cells also allow to keep different data types in

the same variable

 Cell
◦ c = cell(n);

◦ c = cell(m,n);

◦ c = {‘one’,’two’,’three’};

◦ c = {‘one’,’two’,3};

◦ c = {[1] [2 3 4]; [5; 9] [6 7 8; 10 11 12]};

◦ for in=1:5
◦ c{in} = rand(in,2);
◦ end

 Cell2mat

◦ for in=1:5

◦ c{in} = rand(in,2);

◦ end

◦ cMat = cell2mat(c); Error!

◦ cMat = cell2mat(c’);

c

cMat

Matrices dimensions
must agree!

 cell2struct

◦ fields = {‘number’,’name’,’value’}

◦ c = {‘one’,’Luke’,3; ‘two’,’Don’,7};

◦ cStruct = cell2struct(c,fields,2);

 textscan()

 Read data from text file, convert, and write to cell

array

◦ fid = fopen(‘myfile.txt’);

◦ C = textscan(fid,'format');

◦ fclose(fid);

 textscan()

 Read data from text file, convert, and write to cell array

 Example

◦ fid = fopen(‘inputTextscan.txt’);

◦ C = textscan(fid,'%s %s %f32 %d8 %u %f %f %s');

◦ fclose(fid);

◦ C = [1x8] cell

Sally Level1 12.34 45 1.23e10 inf NaN Yes
Joe Level2 23.54 60 9e19 -inf 0.001 No
Bill Level3 34.90 12 2e5 10 100 No

{3x1 cell}
{3x1 cell}
[3x1 single]
[3x1 int8]
[3x1 uint32]
[3x1 double]
[3x1 double]
{3x1 cell}

%s
%s
%f32
%d8
%u
%f
%f
%s

inputTextscan.txt

 lower

◦ S = ‘ABCDE’;
◦ sL = lower(S); ‘abcde’

 upper

◦ Sagain = upper(sL);

 strtok

◦ S = ‘try it out! It is fun’;
◦ [part res] = strtok(S,’!’);

try it out ! It is fun

 str(n)cmp(i)
◦ res = strcmp(‘hi’,’Hi’); 0

◦ res = strcmpi(‘hi’,’Hi’); 1

 strfind
◦ S = ‘this is my long long string’;

◦ index = strfind(S,’i’);

 str2num
◦ S = ‘334345’;

◦ sNum = str2num(S);

 num2str
◦ n = 33;

◦ s = str2num(n);

 interface
Insert/remove

breakpoint

Continue, step, jump,
stop debugging

 Definition

function [ret1, ret2, …] = nameF(input1, input2, …)

 The .m file containing the function must be named
nameF.m

 Dynamic management of input/output:

◦ nargin, nargout

◦ varargin, varargout

Return number of inputs and
outputs

Allow number of inputs and
outputs to be determined by
the function call

Example 1 – file circ.m

function [diam, area] = circ(radius)

diam = radius*2;
area = pi*(radius^2);

Example 2 – file circ2.m

function [varargout] = circ2(varargin)

r= zeros(nargin,1);
for in=1:nargin

r(in) = varargin{in};
end

diam = r*2;
area = pi*(r.^2);
varargout = {diam, area};

 We can define multiple Functions in the same
fun.m file, as long as:

◦ fun.m is a function file, not a simple script

◦ the functions are called only by the main function
of fun.m, which is fun()

 Write 2 functions for time conversion

◦ hms2secs(vec) which takes as input a [1x3] vector
vec containing values of hour, minutes and
seconds and returns a scalar with the total
number of seconds

◦ secs2hms(s) which takes as input a scalar s with a
number of seconds and converts it into a [1x3]
vector containing values of hour, minutes and
seconds

 Write 2 functions for time conversion

◦ hms2secs(vec)

 function [s] = hms2secs(vec)

 s = vec(1)*3600 + vec(2)*60 + vec(3);

◦ secs2hms(s)

 function [vec] = secs2hms(s)

 vec(1) = floor(s/3600);
 vec(2) = floor((s-vec(1)*3600)/60);
 vec(3) = s - vec(1)*3600 - vec(2)*60;

 Exercise 1

◦ Consider the series

◦ Compute it for x = 0.63 and n=10,20,100

◦ Compare the values obtained with the limit value


 


n

i

n

x
x

0 1

1
1xif

 Exercise 2

◦ x has 500 equally spaced elements in the range [-2:2]

◦ Plot the function y=ex-x-1.5 , with red line and
diamond shaped blue markers

◦ Put title and axes labels in the figure

◦ Find the value of x at the global minimum of the
function

 Exercise 3

◦ Generate a vector vec with elements in increasing order
from 1 to 10, at intervals of 2

◦ Write a loop in which at every iteration a [7x1] matrix A is
initialized with random numbers between 0 and 30

◦ Keep iterating until you can access the element of vec
located in the position corresponding to the value of the
third element of A

◦ Keep track of the number of failed attempts by printing a
comment to command window at each iteration

 Exercise 4

◦ Load the peaks built in MATLAB variable into the
variable Z

◦ Plot its surface in the x interval [20 30] and y
interval [30 50]

◦ Find the peak in the interval with the MATLAB
interface tool, without writing code

◦ Plot in the same graph a surface parallel to the xy
axes and passing through the peak

 Exercise 1

◦ x = 0.63;

◦ limit = 1/(1-x);

◦ for n=[10 20 100]

◦ expTerm = [0:n];

◦ s = sum(x.^expTerm);

◦ disp(abs(limit - s))

◦ end

 Exercise 2

◦ x = linspace(-2,2,500);

◦ y = exp(x)-x-1.5;

◦ plot(x,y,’rdb’);

◦ title(‘y’); xlabel(‘x’); ylabel(‘f(x)’);

◦ [minVal minLoc] = min(y);

◦ disp(x(minLoc))

 Exercise 3
◦ c=1;
◦ vec = [1:10];
◦ while(c)
◦ A = floor(30*rand(7,1));
◦ try
◦ t = vec(A(3));
◦ s = c;
◦ c = 0;
◦ catch
◦ fprintf(‘Attempt number %d failed\n‘,c);
◦ c = c+1;
◦ end
◦ end
◦ fprintf(‘Attempt number %d succeeded\n‘,s);

 Exercise 4

◦ Z = peaks;

◦ surf(Z);

◦ xlim([20 30])

◦ ylim([30 50])

◦ hold on

◦ Z2 = 8.075 * ones(size(Z));

◦ mesh(Z2)

◦ hold off

 In class, in front of computer

 40 minutes

 Arguments: everything done so far

 Closed notes, closed web, closed phones

 Only MATLAB (with MATLAB help)

 Upload code to CourseWorks when done

 Due at beginning of class, no

exceptions

 Put your code (.m files) and

additional files in a single folder,

name it youruni_hw_X and zip it

 Upload the zipped folder to

CourseWorks

 Bring a printout of your code to class

 Good Luck and have fun !
30

