
Spring 2010

Instructor: Michele Merler

http://www1.cs.columbia.edu/~mmerler/comsw3101-2.html

 Type from command line:

◦ matlab -nodisplay –r command

 This will start MATLAB, open its environment without

showing the GUI, and execute the specified command

within the environment

 NOTE: MATLAB will stay open after this!!! We have to

explicitly close the environment

Tells MATLAB not to
initialize the visual interface
NOTE: this works only for
Linux

Tells MATLAB to
execute the
following command

 Example 1:

◦ matlab -nodisplay –r x=3

 Example 2:

◦ Prepare script myscript.m

 x = rand(30);

 save('my_x','x');

◦ matlab -nodisplay –r myscript

 Example 1:

◦ matlab -nodisplay –r x=3

 Example 2:

◦ Prepare script myscript.m

 x = rand(30);

 save('my_x','x');

 exit

◦ matlab -nodisplay –r myscript

MATLAB stores data in specific files, with extension .mat

 save

◦ Example General Form

◦ x = rand(7, 3);

◦ y = ‘cool’;

◦ save(‘myfile’,‘x’); save(‘namefile(.mat)’,‘variable’);

◦ save(‘myfile2’,‘x’,‘y’); save(‘namefile(.mat)’,‘var1’,‘var2’,…);

 load
◦ Example General Form

◦ load myfile2; load ‘namefile(.mat)’ ;

◦ newX = load(‘myfile2’,‘x’); var = load(‘namefile(.mat)’);

 input()

◦ Example 1 General Form

◦ weight = input(‘Insert weight: ’); var = input(‘string ’);

◦ Example 2 General Form

◦ name = input(‘Insert name:\n ’,’s’); var = input(‘string ’,’s’);

MATLAB allows scripts or functions to read data inserted by users in
the command window, using the function input()

This specifies that var
is going to be a string

 fopen
◦ fid = fopen(‘myfile.txt’,’r’)

 Operations on file fid

 fclose
◦ fclose(fid)

File ID Filename Mode: ‘r’ – read
‘w’ – write
‘a’ - append

Example

◦ fid = fopen(‘myfile.txt’,’r’);

◦ while 1

◦ tline = fgetl(fid);

◦ if ~ischar(tline), break, end

◦ disp(tline)

◦ end

◦ fclose(fid);

Example

◦ fid = fopen(‘myfile.txt’,’r’);

◦ while 1

◦ tline = fgetl(fid);

◦ if ~ischar(tline), break, end

◦ disp(tline)

◦ end

◦ fclose(fid);

Reads single line in file

Checks format
of argument

 MATLAB has special functions to deal with files
containing formatted data

 dlmread

◦ data = dlmread('myfile.txt',' ', 2, 1);

◦ data = dlmread('myfile.txt',' ', [2 1 4 2]);

 dlmwrite

 MATLAB has special functions to deal with files
containing formatted data

 dlmread

◦ data = dlmread('myfile.txt',' ', 2, 1);

◦ data = dlmread('myfile.txt',' ', [2 1 4 2]);

 dlmwrite

Filename Delimiter First column

First row

Rows Columns

 MATLAB has special functions to deal with files
containing formatted data

 dlmread

◦ data = dlmread('myfile.txt',' ', 2, 1);

◦ data = dlmread('myfile.txt',' ', [2 1 4 2]);

 dlmwrite

Starts counting with 0 !

 MATLAB has special functions to deal with files
containing formatted data

 dlmread

◦ data = dlmread('myfile.txt',' ', 2, 1);

◦ data = dlmread('myfile.txt',' ', [2 1 4 2]);

 dlmwrite

◦ dlmwrite('myfile2.txt',data,‘\t', ‘-append');

Filename Variable Delimiter

 MATLAB has special functions to deal with
files containing formatted data

 csvread

 csvwrite

◦ dataCSV = csvread('myfile.csv')

◦ dataCSV2 = dlmread('myfile.csv',',')

For comma separated files

 Images are matrices
◦ Color images are [nxmx3] matrices

◦ Grayscale images are [nxm] matrices

 Reading Images

 imread
◦ Im = imread(‘mypic.jpg’);

 Saving Images

 imwrite
◦ imwrite(Im,‘mypic2.png’);

R

G

B

1,1

y

x

 Structs are data structures that allow to keep

different data types in the same variable

 Struct
◦ s = struct('field1', var1, 'field2', var2, ...);

Example

◦ s = struct(‘num', [1:10], ‘str', ‘cool’);

◦ s.str

◦ s.newField = 3;

Note: when we save multiple variables in a .mat file, and later try to load
them assigning to a single variable, they get saved as fields of a struct

 Cells also allow to keep different data types in

the same variable

 Cell
◦ c = cell(n);

◦ c = cell(m,n);

◦ c = {‘one’,’two’,’three’};

◦ c = {‘one’,’two’,3};

◦ c = {[1] [2 3 4]; [5; 9] [6 7 8; 10 11 12]};

◦ for in=1:5
◦ c{in} = rand(in,2);
◦ end

 Cell2mat

◦ for in=1:5

◦ c{in} = rand(in,2);

◦ end

◦ cMat = cell2mat(c); Error!

◦ cMat = cell2mat(c’);

c

cMat

Matrices dimensions
must agree!

 cell2struct

◦ fields = {‘number’,’name’,’value’}

◦ c = {‘one’,’Luke’,3; ‘two’,’Don’,7};

◦ cStruct = cell2struct(c,fields,2);

 textscan()

 Read data from text file, convert, and write to cell

array

◦ fid = fopen(‘myfile.txt’);

◦ C = textscan(fid,'format');

◦ fclose(fid);

 textscan()

 Read data from text file, convert, and write to cell array

 Example

◦ fid = fopen(‘inputTextscan.txt’);

◦ C = textscan(fid,'%s %s %f32 %d8 %u %f %f %s');

◦ fclose(fid);

◦ C = [1x8] cell

Sally Level1 12.34 45 1.23e10 inf NaN Yes
Joe Level2 23.54 60 9e19 -inf 0.001 No
Bill Level3 34.90 12 2e5 10 100 No

{3x1 cell}
{3x1 cell}
[3x1 single]
[3x1 int8]
[3x1 uint32]
[3x1 double]
[3x1 double]
{3x1 cell}

%s
%s
%f32
%d8
%u
%f
%f
%s

inputTextscan.txt

 lower

◦ S = ‘ABCDE’;
◦ sL = lower(S); ‘abcde’

 upper

◦ Sagain = upper(sL);

 strtok

◦ S = ‘try it out! It is fun’;
◦ [part res] = strtok(S,’!’);

try it out ! It is fun

 str(n)cmp(i)
◦ res = strcmp(‘hi’,’Hi’); 0

◦ res = strcmpi(‘hi’,’Hi’); 1

 strfind
◦ S = ‘this is my long long string’;

◦ index = strfind(S,’i’);

 str2num
◦ S = ‘334345’;

◦ sNum = str2num(S);

 num2str
◦ n = 33;

◦ s = str2num(n);

 interface
Insert/remove

breakpoint

Continue, step, jump,
stop debugging

 Definition

function [ret1, ret2, …] = nameF(input1, input2, …)

 The .m file containing the function must be named
nameF.m

 Dynamic management of input/output:

◦ nargin, nargout

◦ varargin, varargout

Return number of inputs and
outputs

Allow number of inputs and
outputs to be determined by
the function call

Example 1 – file circ.m

function [diam, area] = circ(radius)

diam = radius*2;
area = pi*(radius^2);

Example 2 – file circ2.m

function [varargout] = circ2(varargin)

r= zeros(nargin,1);
for in=1:nargin

r(in) = varargin{in};
end

diam = r*2;
area = pi*(r.^2);
varargout = {diam, area};

 We can define multiple Functions in the same
fun.m file, as long as:

◦ fun.m is a function file, not a simple script

◦ the functions are called only by the main function
of fun.m, which is fun()

 Write 2 functions for time conversion

◦ hms2secs(vec) which takes as input a [1x3] vector
vec containing values of hour, minutes and
seconds and returns a scalar with the total
number of seconds

◦ secs2hms(s) which takes as input a scalar s with a
number of seconds and converts it into a [1x3]
vector containing values of hour, minutes and
seconds

 Write 2 functions for time conversion

◦ hms2secs(vec)

 function [s] = hms2secs(vec)

 s = vec(1)*3600 + vec(2)*60 + vec(3);

◦ secs2hms(s)

 function [vec] = secs2hms(s)

 vec(1) = floor(s/3600);
 vec(2) = floor((s-vec(1)*3600)/60);
 vec(3) = s - vec(1)*3600 - vec(2)*60;

 Exercise 1

◦ Consider the series

◦ Compute it for x = 0.63 and n=10,20,100

◦ Compare the values obtained with the limit value

n

i

n

x
x

0 1

1
1xif

 Exercise 2

◦ x has 500 equally spaced elements in the range [-2:2]

◦ Plot the function y=ex-x-1.5 , with red line and
diamond shaped blue markers

◦ Put title and axes labels in the figure

◦ Find the value of x at the global minimum of the
function

 Exercise 3

◦ Generate a vector vec with elements in increasing order
from 1 to 10, at intervals of 2

◦ Write a loop in which at every iteration a [7x1] matrix A is
initialized with random numbers between 0 and 30

◦ Keep iterating until you can access the element of vec
located in the position corresponding to the value of the
third element of A

◦ Keep track of the number of failed attempts by printing a
comment to command window at each iteration

 Exercise 4

◦ Load the peaks built in MATLAB variable into the
variable Z

◦ Plot its surface in the x interval [20 30] and y
interval [30 50]

◦ Find the peak in the interval with the MATLAB
interface tool, without writing code

◦ Plot in the same graph a surface parallel to the xy
axes and passing through the peak

 Exercise 1

◦ x = 0.63;

◦ limit = 1/(1-x);

◦ for n=[10 20 100]

◦ expTerm = [0:n];

◦ s = sum(x.^expTerm);

◦ disp(abs(limit - s))

◦ end

 Exercise 2

◦ x = linspace(-2,2,500);

◦ y = exp(x)-x-1.5;

◦ plot(x,y,’rdb’);

◦ title(‘y’); xlabel(‘x’); ylabel(‘f(x)’);

◦ [minVal minLoc] = min(y);

◦ disp(x(minLoc))

 Exercise 3
◦ c=1;
◦ vec = [1:10];
◦ while(c)
◦ A = floor(30*rand(7,1));
◦ try
◦ t = vec(A(3));
◦ s = c;
◦ c = 0;
◦ catch
◦ fprintf(‘Attempt number %d failed\n‘,c);
◦ c = c+1;
◦ end
◦ end
◦ fprintf(‘Attempt number %d succeeded\n‘,s);

 Exercise 4

◦ Z = peaks;

◦ surf(Z);

◦ xlim([20 30])

◦ ylim([30 50])

◦ hold on

◦ Z2 = 8.075 * ones(size(Z));

◦ mesh(Z2)

◦ hold off

 In class, in front of computer

 40 minutes

 Arguments: everything done so far

 Closed notes, closed web, closed phones

 Only MATLAB (with MATLAB help)

 Upload code to CourseWorks when done

 Due at beginning of class, no

exceptions

 Put your code (.m files) and

additional files in a single folder,

name it youruni_hw_X and zip it

 Upload the zipped folder to

CourseWorks

 Bring a printout of your code to class

 Good Luck and have fun !
30

