

COMS W3101-2

Programming Languages: MATLAB

Spring 2010 Instructor: Michele Merler

http://www1.cs.columbia.edu/~mmerler/comsw3101-2.html

Course Information – Instructor

- Michele Merler
 - Email: mmerler@cs.columbia.edu
 - Office : 624 CEPSR
 - Office Hours: TDB

3rd year PhD Student in CS Department

- Research Interests:
 - Image & Video Processing
 - Multimedia
 - Computer Vision

Course Information – TA

Daniel Miau

- Email: <u>dm2701@columbia.edu</u>
- Office : TA room
- Office Hours: Mon 10am 12pm

Rohit Sethi

- Email: <u>rs2990@columbia.edu</u>
- Office: TA room
- Office Hours: Wed 3.30pm 5.30pm

Course Information – Goals

Learn how to use MATLAB for:

- Solve problems in Science and Engineering
- Perform Matrix and Vector Operations
- Compute Complex Mathematical Functions
- Plotting and Visualization
- Perform Simulations and Prototyping

Course Information – Syllabus

- Week 1 March 2
 - Data Structures (Variables, Vectors, Matrices)
 - Types (int, double, single)
 - Operators
 - Basic Plotting
 - Scripts
- Week 2 March 9
 - Plotting (continued)
 - Control flow (if_else, for, while, loops)

Course Information – Syllabus

- Week 3 March 16 March 23
 - I/O (from files, images, loading/saving variables)
 - User input
 - Advanced data structures (cell, struct)
 - Debugging
 - Functions
- Week 4 March 30
 - Figures
 - Images
 - Videos

Course Information – Syllabus

- Week 5 April 6
 - Math and Linear Algebra
 - Solving Equations, basic statistics
- Week 6 April 13
 - Final Useful things
 - Object Oriented Programming
 - GUI
 - Simulink & other Toolboxes

Course Information – Grading

- 5 Homeworks (15%, 15%, 15%, 15%, 15%)
- 1 Midterm Quiz (25%) In class March. 30

- Download Xming and Putty (for Windows)
 - <u>http://sourceforge.net/projects/xming/</u>
 - <u>http://www.chiark.greenend.org.uk/~sgtatham/put</u> <u>ty/download.html</u>

- Launch Xming
- Open a session in putty with Host Name
 - cunix.cc.columbia.edu

Make sure the X11 option of the SSH category is enabled

- Enter your cunix credentials
- Type
 - \$ matlab &

What is MATLAB?

- Programming Environment
- Calculator
- Programming Language
- The solution to all your problems

What is MATLAB?

MATLAB[®] is a high-level language and interactive environment that enables you to perform computationally intensive tasks faster than with traditional programming languages such as C, C++, and Fortran

http://www.mathworks.com/products/matlab/

Design

Compute

Visualize

Design

Visualize

Design

Compute

2 8 2 80880 🗅 🧀 🖩 🐰 🐜 🏨 🕫 🖙 🖨 🖊 🐔 🔮 🖓 👘 🐘 🗊 🕼 Stack Date ⊻ 4 - clear all 5 - clc 6 7 - featureTypes = ('edgeHistogramFeatures','colorHomentFeatures' 8 - modelTypes = { 'edgeHistogram', 'colorHoment', 'gist', 'colorHistogram'); 10 - featureType = featureTypes(1); 11 - modelType = modelTypes(1); 13 - indexFeatures = 50; 14 15 - useKnn = 0; 16 - k = 1; 17 18 % read categories names 19 - letters = 'ABCDEFGHIJKLMNOPORSTUVWXYZ'; 20 - load concept 21 - clf = load/icharacterClassifieril: 22 23 - for i=1:200 24 -1 25 -26 conceptsToFind = []; folder = sprintf('./TestImages/challenge%d',i); 27 fid = fopen(sprintf('%s/challenge%d.txt',folder,i)); 28 for j=1:2 29 tline = fgetl(fid); 30 end Untitled.m × hw1.m × DrawCircle.m × testChallenge.m Ln 1 Col 1

Visualize

Design

Visualize

D | 글 문 중 | 3 월 종 | 그 그 | 1 = 100 Norm 또 문 문 중 양 등 등 등 등 중 수 속 Clutch Controller Mode

S Editor - D:\Columbia courses\Computational Photography\project\code\testChallenge.m

🗅 🧀 🖩 🕺 🗠 🗠 🖓 📇 👫 🐔 🐔 🐔 🖓 🗐 👘 🗊 🕼 Stack Door

folder = sprintf('./TestImages/challenge%d',i);

fid = fopen(sprintf('%s/challenge%d.txt',folder,i));

featureTypes = ('edgeHistogramFeatures','colorHomentFeatures', 8 - modelTypes = { 'edgeHistogram', 'colorHoment', 'gist', 'colorHistogram');

File Edit Text Cell Tools Debug Desktop Window Help

10 - featureType = featureTypes(1); 11 - modelType = modelTypes(1); 13 - indexFeatures = 50;

conceptsToFind = [];

tline = fgetl(fid);

18 % read categories names 19 - letters = 'ABCDEFGHIJKLMNOPORSTUVWXYZ';

for j=1:2

end Untitled.m × hw1.m × DrawCircle.m × testChallenge.m

4 - clear all 5 - clc 7 -

14 15 - uzeKnn = 0: 16 - k = 1; 17

20 load concept 21 - clf = load/icharacterClassifieril:

22 23 - for i=1:200 24 -1 25 -26 -

27 -28 -

29 -

30 -

15

Ln 1 Col 1

2 8 2 80880

MATLAB Interface

🥠 M	ATLAB					
File	Edit Debug De	esktop Window Help				
D	🛩 % 🖻 🛍	· · · · · · · · · · · · · · · · · · ·	Current Directory:	D:\Columbia (courses\Cc	omputational Photography/project/code 🔄 🔜 🗈
Shor	touts 🗷 How to Adr	id 💽 What's New				
Wor	rkspace				× 5	Command Window ? ×
1	🖬 🖆 🖷 🎒	🖌 📶 🔹 Stack: Base	<u>_</u>			>> a = [3 4 5 6 7];
Nan	ne 🛆	Value	Size F	Bytes	Class	>>
1 🗄 8	э	[34567]	1x5	40	double /	
H 1	ans	3.1416	1x1	8	double	
					/	
					/	
					1	
					1	
					/	
					/	
	rent Directory				لك	
		space				
Com	mand History	0. 50001 \ .				
	└─axis([U I4 ⊱ 9/27/09 /	0 7000]); 8.46 PM%			_	
T .	⊢clc					
	-1/((3.89*0.	.3/4)+1)^4)				
	-1/((3.89*0.	.3/4)+1)^4))			_	
	-1/(((3.89*0)))	J.3/4)+1)^4) ► (200)) tri			-	
	-(150 - Sqrt	,(300)) - pr				
📣 s	itart					

Basics

- MATLAB records in the workspace and command history everything you write in the command window, so:
- > clear variable
 - deletes variable from memory (and workspace)

clear all

deletes all variables from memory (and workspace)

clc cleans command window

Basics

- MATLAB's command window works like a Linux terminal
- Some example commands:
 - ° cd
 - o mkdir, rmdir
 - ° ls

•

Basics

- Some commands used to interact with MATLAB
 - ° what
 - returns the MATLAB files (.m , .mat) in the current directory
 - ° who
 - returns the variables in your workspace

° whos

 returns the variables in the workspace with additional info (size, dimensions)

Help

Meet your best friend...

- Start → Help
- Press ? in interface

📑 Help						
File Edit View Go Favorites Desktop V	Vindow Help	لا				
Help Navigator ×	← → 😂 🎒 🛤					
Contents Index Search Demos	Title: Euroctions Categorical List (MATLAB Functions)				
ABCDEFGHIJKLM	This Transions - categorical Elst (i					
NOPORSIUVWXYZ	MATLAB Function Referen	ce 🕒 🗎				
Search index for:						
Name Product	Eunctions C	Categorical List				
A/D 🔺						
See analog-to-digital Real-Ti						
A/D conversion Signal P	The MATLAB Function Refere	ence contains descriptions of all MATLAB commands				
A/D converter Data Ac	and functions.					
input range	Select a category from the fo	llowing table to see a list of related functions.				
A16/A24/A32 memory spaceInstrume	Deskton Tools and	Startun Command Window bein editing and				
abbreviate property names Link for	Development Environment	debugging, tuning, other general functions				
abbreviations SimMec		33 31 31 3				
abc_to_dq0 Transformation kSimPow	Mathematics	Arrays and matrices, linear algebra, data				
abcd2h function RF Tool		analysis, other areas of mathematics				
abcd2s function RF Tool	Programming and Data	Function/expression evaluation, program control,				
abod2y function RF Tool	Types	function handles, object oriented programming,				
abe		error handling, operators, data types, dates and				
C library function in StateStateflow		times, timers				
calling in action languageStateflow	File I/O	General and low-level file I/O inlus specific file				
abs Signal P	<u></u>	formats, like audio, spreadsheet, HDF, images				
abs MATLAB						
A-law companders Commu 🚬	Graphics	Line plots, annotating graphs, specialized plots,				
		la l				

> Type doc name_function

... what about help name_function ?

Data Structures – Variables

- MATLAB does not use explicit type initialization like other languages
- Just assign some value to a variable name, and MATLAB will automagically understand its type
- We can assign mathematical expressions to directly create variable

$$x = (3 + 4)/2$$

operator prevents the variable to be printed in the command window

• x = 3;

disp prevents ans= from being displayed • disp(x)

Data Structures – Variables

- MATLAB does not use explicit type initialization like other languages
- Just assign some value to a variable name, and MATLAB will automagically understand its type

We can assign mathematical expressions to directly create variable

$$x = (3 + 4)/2$$

 ; operator prevents the variable to be printed in the command window

• x = 3;

disp prevents ans= from being displayed • disp(x)

Data Structures – Variables

- Naming Conventions
 - Letter case matters

A = 2a = 4 These are 2 different variables!

- Avoid using functions names for variables
 Example: sin = 2

 a = sin(0.5)
 Sin cannot be used as a function any more!
- Built-in Variables
 - i and j indicate complex numbers
 - pi = 3.1415926...
 - ans = last unassigned value
 - Inf and -Inf = positive and negative infinity
 - NaN = 'Not a Number'

Data Structures – Arrays and Matrices

- This is really what MATLAB is all about!
- Row vectors

• r = [2 3 5 7];

Column vectors

• r = [2, 3, 5, 7];

• c = [2; 3; 5; 7];

 \circ c = [2 3 5 7] \bigcirc ;

Data Structures – Vectors

Special Vectors Constructors

- : operator
 - x = 1:3:13; Spacing, default = 1

- o linspace()
 - x = linspace(0,10,100);

Creates a vector of 100 elements with values equally spaced between 0 and 10 (included)

• Equivalent notation with : operator?

- Explicit Definition
 M = [2 4; 3 6; 8 12];
- Concatenation of vectors
 - r1 = [2 4];
 r2 = [3 6];
 r3 = [8 12];
 •
 - M = [r1; r2; r3];

Concatenation of vectors and matrices

- \circ m1 = [3 6; 8 12];
- M = [r1; m1];

Dimensions and Type must coincide!

Some Predefined Matrix Creation Functions

M = zeros(2,3); [3x2] matrix of zeros rows columns

0

0

0

0.2	0.86	0.1
1	0	0.33

-1.2	-0.86	0.1
1.256	0.435	-1.33

• M = ones(2,3); [3x2] matrix of ones double \circ M = eye(2); [2x2] identity matrix [2x3] matrix of uniformly distributed • M = rand(2,3);random numbers in range [0,1] [2x3] matrix of normally distributed M = randn(2,3)0 random numbers (mean 0, std dev. 1)

Replicating and concatenating matrices

Y

- ° repmat
 - $X = [1 \ 2 \ 3; \ 4 \ 5 \ 6];$
 - Y = repmat(X, 2, 4);
- vertcat
 - $x1 = [2 \ 3 \ 4];$
 - $x^2 = [1 \ 2 \ 3];$
 - X = vertcat(x1, x2);

	L								
		4		5	6				
	-			-		_			_
1	2	3	1	2	3	1	2	3	
4	5	6	4	5	6	4	5	6	4
				-					

5

3

2

XI

5

1

X	2	3	4
	1	2	3

4

\circ horzcat

- x1 = [2; 3; 4];
- $x^2 = [1; 2; 3];$
- X = horzcat(x1, x2);

Χ	2	1	
	3	2	
	4	3	

5

3

6

3

6

5

- Getting the size of the matrix
 - \circ M = [2 3 4; 3 4 55];

- Matrix indexing starts with 1 !
- Explicit access
 - element = M(2,3);
 - element = M(5);
- : operator
 - element = M(1,1:2);
 - element = M(:,1);
- end operator
 - element = M(1,2:end);

Μ	-1.2	-0.86	0.1
	1.256	0.435	-1.33

- Matrix indexing starts with 1 !
- Explicit access
 - element = M(2,3);
 - element = M(5);
- : operator
 - element = M(1,1:2);
 - element = M(:,1);
- end operator
 - element = M(1,2:end);

Μ	-1.2	-0.86	0.1
	1.256	0.435	-1.33

- Matrix indexing starts with 1 !
- Explicit access
 - element = M(2,3);
 - element = M(5);
- : operator
 - element = M(1,1:2);
 - element = M(:,1);
- end operator
 - element = M(1,2:end);

Μ	-1.2	-0.86	0.1
	1.256	0.435	-1.33

- Matrix indexing starts with 1 !
- Explicit access
 - element = M(2,3);
 - element = M(5);
- : operator
 - element = M(1,1:2);
 - element = M(:,1);
- end operator
 - element = M(1,2:end);

Ν	-1.2	-0.86	0.1
	1.256	0.435	-1.33

- Matrix indexing starts with 1 !
- Explicit access
 - element = M(2,3);
 - element = M(5);
- : operator
 - element = M(1,1:2);
 - element = M(:, 1);
- end operator
 - element = M(1,2:end);

М	-1.2	-0.86	0.1
	1.256	0.435	-1.33

- Matrix indexing starts with 1 !
- Explicit access
 - element = M(2,3);
 - element = M(5);
- : operator
 - element = M(1,1:2);
 - element = M(:,1);
- end operator
 - element = M(1,2:end);

M	-1.2	-0.86	0.1
	1.256	0.435	-1.33

Types

Type name	bits	Example
double	64	x = 32
char	16	x = as'
(u)int8	8	x = (u)int8(32)
(u)int16	16	x = (u)int16(32)
(u)int32	32	x = (u)int32(32)
(u)int64	64	x = (u)int64(32)
single float	32	x = single(32)
complex	128 (64+64)	x = complex(2,1)
logical	1	x = true, x = logical([1 0 1])

- Note on complex numbers:
 - x = 3 + 4j;
 - x = complex(3,4);

- Basic Mathematical Operators
 + * / \ ^
- Some more complex mathematical functions

```
o sqrt()
o log(), exp()
o sin(), cos(), tan(), atan()
o abs(), angle()
o round(), floor(), ceil()
o conj(), imag(), real()
o sign()
```

- Logical Operators
 &
- Relational Operators

> < >= <= == ~=

Operators on matrices

 $^{\circ}$ X = [2 3 4; 5 4 6]; Y \circ Y = [1 2 3; 3 3 3]; Rplus • Rplus = X + Y; • Rminus = X - Y; Rminus • Rmult = X * Y; ??? Error using ==> mtimes
Inner matrix dimensions must • X2 = X'; agree. Rmult • Rmult = X2 * Y: o Rpoint_mult = X .* Y; Rpoint_mult

Х

Some operators, like + and -, are always element wise ! Other operators, like * and /, must be disambiguated with . !

Operators on matrices

- R = X 2 ??? Error using ==> mpower Matrix must be square
- X2 = [1 2 3; 3 4 5; 1 1 1];
- Rsquare = $X2 \wedge 2$;

X2	1	2	3
	3	4	5
	1	1	1

	1	2	3		1	2	3		10	13	16
Rsquare =	3	4	5	*	3	4	5	=	20	27	34
	1	1	1		1	1	1		5	7	9

Rdot

4	9	16
25	16	36

$X = [1 \ 2 \ 3; \ 4 \ 5 \ 6];$

Operators

X	1	2	3
	4	5	6

Special Functions for Matrices

- o sum(),prod()
 - SumCols = sum(X);
 - SumRows = sum(X, 2);
 - SumTot = sum(sum(X));
- \circ mean()
 - MeanCols = mean(X);
 - MeanRows = mean(X,2);
 - MeanTot = mean(mean(X));

MeanCols 2.5 3.5 4.5MeanRows 25MeanTot = 3.5

o max(), min() MaxVal = 6• MaxVal = max(max(X));• minCols = min(X); minCols 2 1 3 • minRows = [min(X(1,:));min(X(2,:))]; minRows • minRows2 = min(X,2) = min(X,2*ones(size(X))) 3 2 2 2 2 2 2 min 2 6 2 2 4 5 2 2 2

Special Functions for Matrices

o max(), min() - continued

• [maxVal maxLoc] = max(X); maxVal = 13, maxLoc = 3MATLAB also tells us the location of the maximum value!

- sort() orders the elements of a vector in ascending (default) or descending order
 - xAsc = sort(X);
 - [xDes order] = sort(X, 'descend'); xDes

xAsc 2 5 6 13 4 13 6 5 4 2 order 3 6 5 4 2

o find()

- R = find(X > 4);**R** | 3 6 5
- R = find(X == 13); R = 3

 $X = [1 \ 2 \ 13; \ 4 \ 5 \ 6];$

•
$$R = find(X \ge 2 \& X < 6)';$$

•
$$[r c] = find(X == 6);$$

Matrix indexing

- If we want to define the position of element 1 within the matrix M, we can do it with a single index or with the indexes of row and column
 - M = [2 4; 3 6; 5 1; 8 12]; • index = find(M==1);
- ind2sub
 - o [r c] = ind2sub(size(M),index);

sub2ind

o newIndex = sub2ind(size(M),r,c);

Matrix indexing

If we want to define the position of element 1 within the matrix M, we can do it with a single index or with the indexes of row and column

```
• M = [2 4; 3 6; 5 1; 8 12];
• index = find(M==1);
7
```

```
ind2sub
```

```
• [r c] = ind2sub(size(M),index);
3 2
• sub2ind
• newIndex = sub2ind(size(M),r,c);
```


> plot()

- $\circ x = [-1:0.1:1];$
- $\circ y = x.^{2};$
- o plot(y);
- o plot(x,y);

> plot()

- $\circ x = [-1:0.1:1];$
- $y = x \cdot 2;$
- o plot(y);
- o plot(x,y);

'MarkerEdgeColor','b',...
'MarkerFaceColor','g',...
'MarkerSize',10);

> plot()

- $\circ x = [-1:0.1:1];$
- $y = x \cdot 2;$
- o plot(y);
- o plot(x,y);

bar()

- x = 100*rand(1,20);
- o bar(x);
- ° xlabel('x');
- o ylabel('values');

> pie()

- x = 100*rand(1,5);
- ° pie(x);
- o title('My first pie!');
- o legend('val1', 'val2',... 'val3', 'val4', 'val5');

figure

• To open a new Figure and avoid overwriting plots

Close figures

- close 1
- close all

Multiple plots in same Graph

- o plot(x,y);
- o hold on
- o plot(x,z,'r');
- hold off

Multiple plots in same Figure

- figure(1)
- o subplot(2,2,1)
- o plot(x,y);
- o title('sin(x)');
- subplot(2,2,2)
- o plot(x,z,'r');
- o title('exp(-x)');
- subplot(2,2,3)
- o bar(x);
- o title('bar(x)');
- subplot(2,2,4)
- o pie(x);
- o title('pie(x)');

Scripts

Like a notebook, but for code!

M-files are MATLAB specific script files, they are called *namefile*.m

You can open scripts from command window too, just type open scriptname

Comments

- Adding comments to your code is a very healthy habit
- Think about other people who have to read and understand 3000 lines of your code!
- MATLAB comments, the % operator

$$x = [1 \ 2 \ 3 \ 4];$$

- % this is a comment
- o bar(x);
- o title('bar(x)');
- When you type help namefunction in the command window, what you get is the comments on top of the *namefunction*.m script

Homeworks policy

- Due at beginning of class, no exceptions
- Put your code (.m files) and additional files in a single folder, name it youruni_hw_X and zip it
- Upload the zipped folder to CourseWorks
- Bring a printout of your code to class
 - Good luck and have fun !!!

Conclusion

MATLAB is also a philosopher!

Try typing why in the command window... you'll get the answers!!!

