
Spring 2010

Instructor: Michele Merler

http://www1.cs.columbia.edu/~mmerler/comsw3101-2.html

 Michele Merler
◦ Email: mmerler@cs.columbia.edu
◦ Office : 624 CEPSR
◦ Office Hours: TDB

 3rd year PhD Student in CS Department

 Research Interests:
◦ Image & Video Processing
◦ Multimedia
◦ Computer Vision

 Daniel Miau
◦ Email: dm2701@columbia.edu

◦ Office : TA room

◦ Office Hours: Mon 10am – 12pm

 Rohit Sethi
◦ Email: rs2990@columbia.edu

◦ Office: TA room

◦ Office Hours: Wed 3.30pm – 5.30pm

mailto: <dm2701@columbia.edu>
mailto:rs2990@columbia.edu

Learn how to use MATLAB for:

 Solve problems in Science and Engineering

 Perform Matrix and Vector Operations

 Compute Complex Mathematical Functions

 Plotting and Visualization

 Perform Simulations and Prototyping

 Week 1 – March 2
◦ Data Structures (Variables, Vectors, Matrices)

◦ Types (int, double, single)

◦ Operators

◦ Basic Plotting

◦ Scripts

 Week 2 – March 9
◦ Plotting (continued)

◦ Control flow (if_else, for, while, loops)

 Week 3 - March 16 March 23
◦ I/O (from files, images, loading/saving variables)

◦ User input

◦ Advanced data structures (cell, struct)

◦ Debugging

◦ Functions

 Week 4 – March 30
◦ Figures

◦ Images

◦ Videos

 Week 5 - April 6
◦ Math and Linear Algebra

◦ Solving Equations, basic statistics

 Week 6 – April 13
◦ Final Useful things

◦ Object Oriented Programming

◦ GUI

◦ Simulink & other Toolboxes

 5 Homeworks (15%, 15%, 15% , 15% , 15%)

 1 Midterm Quiz (25%) In class March. 30

15%

15%

15%

15%

15%

25%

HW1

HW2

HW3

HW4

HW5

MIDTERM-QUIZ

 Download Xming and Putty (for Windows)

◦ http://sourceforge.net/projects/xming/

◦ http://www.chiark.greenend.org.uk/~sgtatham/put
ty/download.html

http://sourceforge.net/projects/xming/
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

 Launch Xming

 Open a session in putty with Host Name
◦ cunix.cc.columbia.edu

 Make sure the X11 option of the SSH category
is enabled

 Enter your cunix credentials

 Type

◦ $ matlab &

 Programming Environment

 Calculator

 Programming Language

 The solution to all your problems

MATLAB® is a high-level language and
interactive environment that enables you to
perform computationally intensive tasks faster
than with traditional programming languages
such as C, C++, and Fortran

http://www.mathworks.com/products/matlab/

http://www.mathworks.com/products/matlab/

 Design

 Compute

 Visualize

 Design

 Compute

 Visualize

 Design

 Compute

 Visualize

 Design

 Compute

 Visualize

 MATLAB records in the workspace and
command history everything you write in the
command window, so:

 clear variable
◦ deletes variable from memory (and workspace)

 clear all
◦ deletes all variables from memory (and workspace)

 clc
◦ cleans command window

 MATLAB’s command window works like a
Linux terminal

 Some example commands:

◦ cd

◦ mkdir, rmdir

◦ ls

 Some commands used to interact with MATLAB

◦ what
 returns the MATLAB files (.m , .mat) in the current

directory

◦ who
 returns the variables in your workspace

◦ whos
 returns the variables in the workspace with additional

info (size, dimensions)

Meet your best friend…

 Start ↦ Help

 Press ? in interface

 Type doc name_function

… what about help name_function ?

 MATLAB does not use explicit type initialization like other languages

 Just assign some value to a variable name, and MATLAB will
automagically understand its type

◦ int x
◦ x = 3 double
◦ x = ‘hello’ char

 We can assign mathematical expressions to directly create variable

◦ x = (3 + 4)/2

 ; operator prevents the variable to be printed in the
command window

◦ x = 3;

 disp prevents ans= from being displayed
◦ disp(x)

Most common types

 MATLAB does not use explicit type initialization like other languages

 Just assign some value to a variable name, and MATLAB will
automagically understand its type

◦ int x
◦ x = 3 double
◦ x = ‘hello’ char

 We can assign mathematical expressions to directly create variable

◦ x = (3 + 4)/2

 ; operator prevents the variable to be printed in the
command window

◦ x = 3;

 disp prevents ans= from being displayed
◦ disp(x)

Most common types

 Naming Conventions

◦ Letter case matters

A = 2
a = 4

◦ Avoid using functions names for variables

Example: sin = 2
a = sin(0.5)

 Built-in Variables

◦ i and j indicate complex numbers

◦ pi = 3.1415926…

◦ ans = last unassigned value

◦ Inf and –Inf = positive and negative infinity

◦ NaN = ‘Not a Number’

These are 2 different variables!

sin cannot be used as
a function any more!

 This is really what MATLAB is all about!

 Row vectors
◦ r = [2 3 5 7];

◦ r = [2, 3, 5, 7];

 Column vectors
◦ c = [2; 3; 5; 7];

◦ c = [2 3 5 7]’;

Transpose operator

2 3 5 7

[1x4]

2

3

5

7

[4x1]

 Special Vectors Constructors
◦ : operator

 x = 1:3:13;

◦ linspace()

 x = linspace(0,10,100);

 Equivalent notation with : operator?

1 4 7 10 13

[1x5]

Spacing, default = 1

Creates a vector of 100 elements with values
equally spaced between 0 and 10 (included)

 Explicit Definition
◦ M = [2 4; 3 6; 8 12];

 Concatenation of vectors
◦ r1 = [2 4];
◦ r2 = [3 6];
◦ r3 = [8 12];
◦ M = [r1; r2; r3];

 Concatenation of vectors and matrices
◦ r1 = [2 4];
◦ m1 = [3 6; 8 12];
◦ M = [r1; m1];

2 4

3 6

8 12

[3x2]

Dimensions and Type must coincide!

 Some Predefined Matrix Creation Functions

◦ M = zeros(2,3); [3x2] matrix of zeros

◦ M = ones(2,3); [3x2] matrix of ones

◦ M = eye(2); [2x2] identity matrix

◦ M = rand(2,3);

◦ M = randn(2,3)

0 0 0

0 0 0

1 1 1

1 1 1

1 0

0 1

0.2 0.86 0.1

1 0 0.33

[2x3] matrix of uniformly distributed

random numbers in range [0,1]

[2x3] matrix of normally distributed

random numbers (mean 0, std dev. 1)

-1.2 -0.86 0.1

1.256 0.435 -1.33

rows columns

double

 Replicating and concatenating matrices

◦ repmat

 X = [1 2 3; 4 5 6];

 Y = repmat(X,2,4);

◦ vertcat

 x1 = [2 3 4];

 x2 = [1 2 3];

 X = vertcat(x1,x2);

◦ horzcat

 x1 = [2; 3; 4];

 x2 = [1; 2; 3];

 X = horzcat(x1,x2);

1 2 3

4 5 6

1 2 3 1 2 3 1 2 3 1 2 3

4 5 6 4 5 6 4 5 6 4 5 6

1 2 3 1 2 3 1 2 3 1 2 3

4 5 6 4 5 6 4 5 6 4 5 6

Y

X

2 3 4

1 2 3

X 2 3 4x1

1 2 3x2

2 1

3 2

4 3

2

3

4

1

2

3

x1 x2 X

 Getting the size of the matrix

◦ M = [2 3 4; 3 4 55];

◦ [r c] = size(M);

◦ r = size(M,1);

◦ c = size(M,2);

r = 2;
c = 3;

 Accessing Elements of Matrix M
◦ Matrix indexing starts with 1 !

◦ Explicit access
 element = M(2,3);

 element = M(5);

◦ : operator
 element = M(1,1:2);

 element = M(:,1);

◦ end operator
 element = M(1,2:end);

-1.2 -0.86 0.1

1.256 0.435 -1.33

M

 Accessing Elements of Matrix M
◦ Matrix indexing starts with 1 !

◦ Explicit access
 element = M(2,3);

 element = M(5);

◦ : operator
 element = M(1,1:2);

 element = M(:,1);

◦ end operator
 element = M(1,2:end);

-1.2 -0.86 0.1

1.256 0.435 -1.33

M

 Accessing Elements of Matrix M
◦ Matrix indexing starts with 1 !

◦ Explicit access
 element = M(2,3);

 element = M(5);

◦ : operator
 element = M(1,1:2);

 element = M(:,1);

◦ end operator
 element = M(1,2:end);

-1.2 -0.86 0.1

1.256 0.435 -1.33

M

 Accessing Elements of Matrix M
◦ Matrix indexing starts with 1 !

◦ Explicit access
 element = M(2,3);

 element = M(5);

◦ : operator
 element = M(1,1:2);

 element = M(:,1);

◦ end operator
 element = M(1,2:end);

-1.2 -0.86 0.1

1.256 0.435 -1.33

M

 Accessing Elements of Matrix M
◦ Matrix indexing starts with 1 !

◦ Explicit access
 element = M(2,3);

 element = M(5);

◦ : operator
 element = M(1,1:2);

 element = M(:,1);

◦ end operator
 element = M(1,2:end);

-1.2 -0.86 0.1

1.256 0.435 -1.33

M

 Accessing Elements of Matrix M
◦ Matrix indexing starts with 1 !

◦ Explicit access
 element = M(2,3);

 element = M(5);

◦ : operator
 element = M(1,1:2);

 element = M(:,1);

◦ end operator
 element = M(1,2:end);

-1.2 -0.86 0.1

1.256 0.435 -1.33

M

Type name bits Example

double 64 x = 32

char 16 x = ‘as’

(u)int8 8 x = (u)int8(32)

(u)int16 16 x = (u)int16(32)

(u)int32 32 x = (u)int32(32)

(u)int64 64 x = (u)int64(32)

single float 32 x = single(32)

complex 128 (64+64) x = complex(2,1)

logical 1 x = true, x = logical([1 0 1]

 Note on complex numbers:

◦ x = 3 + 4j;

◦ x = complex(3,4);

 Basic Mathematical Operators
◦ + - * / \ ^

 Some more complex mathematical functions
◦ sqrt()
◦ log(), exp()
◦ sin(), cos(), tan(), atan()
◦ abs(), angle()
◦ round(), floor(), ceil()
◦ conj(), imag(), real()
◦ sign()

 Logical Operators
◦ & | ~

 Relational Operators
◦ > < >= <= == ~=

 Operators on matrices

◦ X = [2 3 4; 5 4 6];

◦ Y = [1 2 3; 3 3 3];

◦ Rplus = X + Y;

◦ Rminus = X - Y;

◦ Rmult = X * Y;

◦ X2 = X’;

◦ Rmult = X2 * Y;

◦ Rpoint_mult = X .* Y;

??? Error using ==> mtimes
Inner matrix dimensions must
agree.

2 3 4

5 4 6

1 2 3

3 3 3

3 5 7

8 7 9

1 1 1

2 1 3

2 6 12

15 12 18

X

Y

Rplus

Rminus

Rpoint_mult

4 9 16

25 16 36

Rmult

Some operators, like + and –, are always element wise !

Other operators, like * and /, must be disambiguated with . !

 Operators on matrices

◦ R = X ^ 2

◦ X2 = [1 2 3; 3 4 5; 1 1 1];

◦ Rsquare = X2 ^ 2;

◦ Rdot = X .^ 2

2 3 4

5 4 6

1 2 3

3 3 3

X

Y

??? Error using ==> mpower
Matrix must be square

4 9 16

25 16 36

Rdot

1 2 3

3 4 5

1 1 1

X2

10 13 16

20 27 34

5 7 9

Rsquare =
1 2 3

3 4 5

1 1 1

1 2 3

3 4 5

1 1 1

* =

 Special Functions for Matrices

◦ sum(),prod()
 SumCols = sum(X);

 SumRows = sum(X,2);

 SumTot = sum(sum(X));

◦ mean()
 MeanCols = mean(X);

 MeanRows = mean(X,2);

 MeanTot = mean(mean(X));

◦ max(), min()
 MaxVal = max(max(X));

 minCols = min(X);

 minRows = [min(X(1,:));min(X(2,:))];

 minRows2 = min(X,2)≡ min(X,2*ones(size(X)))

1 2 3

4 5 6

X

5 7 9

6

15

SumCols

SumRows

SumTot = 21

X = [1 2 3; 4 5 6];

2.5 3.5 4.5

2

5

MeanCols

MeanRows

MeanTot = 3.5

MaxVal = 6
1 2 3minCols

1

4

minRows

1 2 3

4 5 6

2 2 2

2 2 2

1 2 2

2 2 2
,

min

 Special Functions for Matrices

◦ max(), min() – continued
 [maxVal maxLoc] = max(X); maxVal = 13, maxLoc = 3

◦ sort() – orders the elements of a vector in ascending (default)
or descending order

 xAsc = sort(X);
 [xDes order] = sort(X,'descend');

◦ find()

 R = find(X > 4);

 R = find(X == 13);

X = [1 2 13; 4 5 6];

 R = find(X >= 2 & X < 6)’;

 [r c] = find(X == 6);

1 2 13 4 5 6X

X = [1 2 13 4 5 6];

MATLAB also tells us the location
of the maximum value!

3 5 6R

R = 3

R

1 2 13

4 5 6
X

2 3 4

r=2 c=3

1 2 4 5 6 13xAsc

13 6 5 4 2 1xDes

3 6 5 4 2 1order

 If we want to define the position of element 1
within the matrix M, we can do it with a
single index or with the indexes of row and
column

◦ M = [2 4; 3 6; 5 1; 8 12];
◦ index = find(M==1);

 ind2sub
◦ [r c] = ind2sub(size(M),index);

 sub2ind
◦ newIndex = sub2ind(size(M),r,c);

2 4

3 6

5 1

8 12

[4x2]

M

 If we want to define the position of element 1
within the matrix M, we can do it with a
single index or with the indexes of row and
column

◦ M = [2 4; 3 6; 5 1; 8 12];
◦ index = find(M==1);

 ind2sub
◦ [r c] = ind2sub(size(M),index);

 sub2ind
◦ newIndex = sub2ind(size(M),r,c);

2 4

3 6

5 1

8 12

[4x2]

M

7

7

3 2 It’s necessary to provide
the size of the matrix!

 plot()
◦ x = [-1:0.1:1];

◦ y = x.^2;

◦ plot(y);

◦ plot(x,y);

 plot()
◦ x = [-1:0.1:1];

◦ y = x.^2;

◦ plot(y);

◦ plot(x,y);

◦ plot(x,y,'--rd','LineWidth',2,...

'MarkerEdgeColor','b',...

'MarkerFaceColor','g',...

'MarkerSize',10);

 plot()
◦ x = [-1:0.1:1];

◦ y = x.^2;

◦ plot(y);

◦ plot(x,y);

◦ plot(x,y,'--rd','LineWidth',2,...

'MarkerEdgeColor','b',...

'MarkerFaceColor','g',...

'MarkerSize',10);

• Line style – -
• Line color ‘red’
• Marker Type ‘diamond’

 bar()
◦ x = 100*rand(1,20);
◦ bar(x);
◦ xlabel('x');
◦ ylabel('values');
◦ axis([0 21 0 120]);

 pie()
◦ x = 100*rand(1,5);
◦ pie(x);
◦ title('My first pie!');
◦ legend('val1','val2',...
'val3‘,'val4','val5');

x range y range
xlim([0 21]); ylim([0 120]);

 figure
◦ To open a new Figure and avoid overwriting plots
◦ x = [-pi:0.1:pi];
◦ y = sin(x);
◦ z = cos(x);

◦ plot(x,y);
◦ figure
◦ plot(x,z);

 Close figures
◦ close 1
◦ close all

 Multiple plots in same Graph
◦ plot(x,y);
◦ hold on
◦ plot(x,z,’r’);
◦ hold off

The fist plot command
automatically creates a
new Figure!

 Multiple plots in same Figure

◦ figure(1)
◦ subplot(2,2,1)
◦ plot(x,y);
◦ title(‘sin(x)’);

◦ subplot(2,2,2)
◦ plot(x,z,’r’);
◦ title(‘exp(-x)’);

◦ subplot(2,2,3)
◦ bar(x);
◦ title(‘bar(x)’);

◦ subplot(2,2,4)
◦ pie(x);
◦ title(‘pie(x)');

 Like a notebook,

but for code!

 M-files are MATLAB specific script files, they are
called namefile.m

 You can open scripts from command window too,
just type open scriptname

Hit run (or F5) and go!

 Adding comments to your code is a very healthy
habit

 Think about other people who have to read and
understand 3000 lines of your code!

 MATLAB comments, the % operator
◦ x = [1 2 3 4];
◦ % this is a comment
◦ bar(x);
◦ title(‘bar(x)’);

 When you type help namefunction in the
command window, what you get is the comments
on top of the namefunction.m script

 Due at beginning of class, no

exceptions

 Put your code (.m files) and additional

files in a single folder, name it

youruni_hw_X and zip it

 Upload the zipped folder to

CourseWorks

 Bring a printout of your code to class

 Good luck and have fun !!!

 MATLAB is also a philosopher!

 Try typing why in the command window…

you’ll get the answers!!!

