
Spring 2010

Instructor: Michele Merler

http://www1.cs.columbia.edu/~mmerler/comsw3101-2.html

 Michele Merler
◦ Email: mmerler@cs.columbia.edu
◦ Office : 624 CEPSR
◦ Office Hours: TDB

 3rd year PhD Student in CS Department

 Research Interests:
◦ Image & Video Processing
◦ Multimedia
◦ Computer Vision

 Daniel Miau
◦ Email: dm2701@columbia.edu

◦ Office : TA room

◦ Office Hours: Mon 10am – 12pm

 Rohit Sethi
◦ Email: rs2990@columbia.edu

◦ Office: TA room

◦ Office Hours: Wed 3.30pm – 5.30pm

mailto: <dm2701@columbia.edu>
mailto:rs2990@columbia.edu

Learn how to use MATLAB for:

 Solve problems in Science and Engineering

 Perform Matrix and Vector Operations

 Compute Complex Mathematical Functions

 Plotting and Visualization

 Perform Simulations and Prototyping

 Week 1 – March 2
◦ Data Structures (Variables, Vectors, Matrices)

◦ Types (int, double, single)

◦ Operators

◦ Basic Plotting

◦ Scripts

 Week 2 – March 9
◦ Plotting (continued)

◦ Control flow (if_else, for, while, loops)

 Week 3 - March 16 March 23
◦ I/O (from files, images, loading/saving variables)

◦ User input

◦ Advanced data structures (cell, struct)

◦ Debugging

◦ Functions

 Week 4 – March 30
◦ Figures

◦ Images

◦ Videos

 Week 5 - April 6
◦ Math and Linear Algebra

◦ Solving Equations, basic statistics

 Week 6 – April 13
◦ Final Useful things

◦ Object Oriented Programming

◦ GUI

◦ Simulink & other Toolboxes

 5 Homeworks (15%, 15%, 15% , 15% , 15%)

 1 Midterm Quiz (25%) In class March. 30

15%

15%

15%

15%

15%

25%

HW1

HW2

HW3

HW4

HW5

MIDTERM-QUIZ

 Download Xming and Putty (for Windows)

◦ http://sourceforge.net/projects/xming/

◦ http://www.chiark.greenend.org.uk/~sgtatham/put
ty/download.html

http://sourceforge.net/projects/xming/
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

 Launch Xming

 Open a session in putty with Host Name
◦ cunix.cc.columbia.edu

 Make sure the X11 option of the SSH category
is enabled

 Enter your cunix credentials

 Type

◦ $ matlab &

 Programming Environment

 Calculator

 Programming Language

 The solution to all your problems

MATLAB® is a high-level language and
interactive environment that enables you to
perform computationally intensive tasks faster
than with traditional programming languages
such as C, C++, and Fortran

http://www.mathworks.com/products/matlab/

http://www.mathworks.com/products/matlab/

 Design

 Compute

 Visualize

 Design

 Compute

 Visualize

 Design

 Compute

 Visualize

 Design

 Compute

 Visualize

 MATLAB records in the workspace and
command history everything you write in the
command window, so:

 clear variable
◦ deletes variable from memory (and workspace)

 clear all
◦ deletes all variables from memory (and workspace)

 clc
◦ cleans command window

 MATLAB’s command window works like a
Linux terminal

 Some example commands:

◦ cd

◦ mkdir, rmdir

◦ ls

 Some commands used to interact with MATLAB

◦ what
 returns the MATLAB files (.m , .mat) in the current

directory

◦ who
 returns the variables in your workspace

◦ whos
 returns the variables in the workspace with additional

info (size, dimensions)

Meet your best friend…

 Start ↦ Help

 Press ? in interface

 Type doc name_function

… what about help name_function ?

 MATLAB does not use explicit type initialization like other languages

 Just assign some value to a variable name, and MATLAB will
automagically understand its type

◦ int x
◦ x = 3 double
◦ x = ‘hello’ char

 We can assign mathematical expressions to directly create variable

◦ x = (3 + 4)/2

 ; operator prevents the variable to be printed in the
command window

◦ x = 3;

 disp prevents ans= from being displayed
◦ disp(x)

Most common types

 MATLAB does not use explicit type initialization like other languages

 Just assign some value to a variable name, and MATLAB will
automagically understand its type

◦ int x
◦ x = 3 double
◦ x = ‘hello’ char

 We can assign mathematical expressions to directly create variable

◦ x = (3 + 4)/2

 ; operator prevents the variable to be printed in the
command window

◦ x = 3;

 disp prevents ans= from being displayed
◦ disp(x)

Most common types

 Naming Conventions

◦ Letter case matters

A = 2
a = 4

◦ Avoid using functions names for variables

Example: sin = 2
a = sin(0.5)

 Built-in Variables

◦ i and j indicate complex numbers

◦ pi = 3.1415926…

◦ ans = last unassigned value

◦ Inf and –Inf = positive and negative infinity

◦ NaN = ‘Not a Number’

These are 2 different variables!

sin cannot be used as
a function any more!

 This is really what MATLAB is all about!

 Row vectors
◦ r = [2 3 5 7];

◦ r = [2, 3, 5, 7];

 Column vectors
◦ c = [2; 3; 5; 7];

◦ c = [2 3 5 7]’;

Transpose operator

2 3 5 7

[1x4]

2

3

5

7

[4x1]

 Special Vectors Constructors
◦ : operator

 x = 1:3:13;

◦ linspace()

 x = linspace(0,10,100);

 Equivalent notation with : operator?

1 4 7 10 13

[1x5]

Spacing, default = 1

Creates a vector of 100 elements with values
equally spaced between 0 and 10 (included)

 Explicit Definition
◦ M = [2 4; 3 6; 8 12];

 Concatenation of vectors
◦ r1 = [2 4];
◦ r2 = [3 6];
◦ r3 = [8 12];
◦ M = [r1; r2; r3];

 Concatenation of vectors and matrices
◦ r1 = [2 4];
◦ m1 = [3 6; 8 12];
◦ M = [r1; m1];

2 4

3 6

8 12

[3x2]

Dimensions and Type must coincide!

 Some Predefined Matrix Creation Functions

◦ M = zeros(2,3); [3x2] matrix of zeros

◦ M = ones(2,3); [3x2] matrix of ones

◦ M = eye(2); [2x2] identity matrix

◦ M = rand(2,3);

◦ M = randn(2,3)

0 0 0

0 0 0

1 1 1

1 1 1

1 0

0 1

0.2 0.86 0.1

1 0 0.33

[2x3] matrix of uniformly distributed

random numbers in range [0,1]

[2x3] matrix of normally distributed

random numbers (mean 0, std dev. 1)

-1.2 -0.86 0.1

1.256 0.435 -1.33

rows columns

double

 Replicating and concatenating matrices

◦ repmat

 X = [1 2 3; 4 5 6];

 Y = repmat(X,2,4);

◦ vertcat

 x1 = [2 3 4];

 x2 = [1 2 3];

 X = vertcat(x1,x2);

◦ horzcat

 x1 = [2; 3; 4];

 x2 = [1; 2; 3];

 X = horzcat(x1,x2);

1 2 3

4 5 6

1 2 3 1 2 3 1 2 3 1 2 3

4 5 6 4 5 6 4 5 6 4 5 6

1 2 3 1 2 3 1 2 3 1 2 3

4 5 6 4 5 6 4 5 6 4 5 6

Y

X

2 3 4

1 2 3

X 2 3 4x1

1 2 3x2

2 1

3 2

4 3

2

3

4

1

2

3

x1 x2 X

 Getting the size of the matrix

◦ M = [2 3 4; 3 4 55];

◦ [r c] = size(M);

◦ r = size(M,1);

◦ c = size(M,2);

r = 2;
c = 3;

 Accessing Elements of Matrix M
◦ Matrix indexing starts with 1 !

◦ Explicit access
 element = M(2,3);

 element = M(5);

◦ : operator
 element = M(1,1:2);

 element = M(:,1);

◦ end operator
 element = M(1,2:end);

-1.2 -0.86 0.1

1.256 0.435 -1.33

M

 Accessing Elements of Matrix M
◦ Matrix indexing starts with 1 !

◦ Explicit access
 element = M(2,3);

 element = M(5);

◦ : operator
 element = M(1,1:2);

 element = M(:,1);

◦ end operator
 element = M(1,2:end);

-1.2 -0.86 0.1

1.256 0.435 -1.33

M

 Accessing Elements of Matrix M
◦ Matrix indexing starts with 1 !

◦ Explicit access
 element = M(2,3);

 element = M(5);

◦ : operator
 element = M(1,1:2);

 element = M(:,1);

◦ end operator
 element = M(1,2:end);

-1.2 -0.86 0.1

1.256 0.435 -1.33

M

 Accessing Elements of Matrix M
◦ Matrix indexing starts with 1 !

◦ Explicit access
 element = M(2,3);

 element = M(5);

◦ : operator
 element = M(1,1:2);

 element = M(:,1);

◦ end operator
 element = M(1,2:end);

-1.2 -0.86 0.1

1.256 0.435 -1.33

M

 Accessing Elements of Matrix M
◦ Matrix indexing starts with 1 !

◦ Explicit access
 element = M(2,3);

 element = M(5);

◦ : operator
 element = M(1,1:2);

 element = M(:,1);

◦ end operator
 element = M(1,2:end);

-1.2 -0.86 0.1

1.256 0.435 -1.33

M

 Accessing Elements of Matrix M
◦ Matrix indexing starts with 1 !

◦ Explicit access
 element = M(2,3);

 element = M(5);

◦ : operator
 element = M(1,1:2);

 element = M(:,1);

◦ end operator
 element = M(1,2:end);

-1.2 -0.86 0.1

1.256 0.435 -1.33

M

Type name bits Example

double 64 x = 32

char 16 x = ‘as’

(u)int8 8 x = (u)int8(32)

(u)int16 16 x = (u)int16(32)

(u)int32 32 x = (u)int32(32)

(u)int64 64 x = (u)int64(32)

single float 32 x = single(32)

complex 128 (64+64) x = complex(2,1)

logical 1 x = true, x = logical([1 0 1]

 Note on complex numbers:

◦ x = 3 + 4j;

◦ x = complex(3,4);

 Basic Mathematical Operators
◦ + - * / \ ^

 Some more complex mathematical functions
◦ sqrt()
◦ log(), exp()
◦ sin(), cos(), tan(), atan()
◦ abs(), angle()
◦ round(), floor(), ceil()
◦ conj(), imag(), real()
◦ sign()

 Logical Operators
◦ & | ~

 Relational Operators
◦ > < >= <= == ~=

 Operators on matrices

◦ X = [2 3 4; 5 4 6];

◦ Y = [1 2 3; 3 3 3];

◦ Rplus = X + Y;

◦ Rminus = X - Y;

◦ Rmult = X * Y;

◦ X2 = X’;

◦ Rmult = X2 * Y;

◦ Rpoint_mult = X .* Y;

??? Error using ==> mtimes
Inner matrix dimensions must
agree.

2 3 4

5 4 6

1 2 3

3 3 3

3 5 7

8 7 9

1 1 1

2 1 3

2 6 12

15 12 18

X

Y

Rplus

Rminus

Rpoint_mult

4 9 16

25 16 36

Rmult

Some operators, like + and –, are always element wise !

Other operators, like * and /, must be disambiguated with . !

 Operators on matrices

◦ R = X ^ 2

◦ X2 = [1 2 3; 3 4 5; 1 1 1];

◦ Rsquare = X2 ^ 2;

◦ Rdot = X .^ 2

2 3 4

5 4 6

1 2 3

3 3 3

X

Y

??? Error using ==> mpower
Matrix must be square

4 9 16

25 16 36

Rdot

1 2 3

3 4 5

1 1 1

X2

10 13 16

20 27 34

5 7 9

Rsquare =
1 2 3

3 4 5

1 1 1

1 2 3

3 4 5

1 1 1

* =

 Special Functions for Matrices

◦ sum(),prod()
 SumCols = sum(X);

 SumRows = sum(X,2);

 SumTot = sum(sum(X));

◦ mean()
 MeanCols = mean(X);

 MeanRows = mean(X,2);

 MeanTot = mean(mean(X));

◦ max(), min()
 MaxVal = max(max(X));

 minCols = min(X);

 minRows = [min(X(1,:));min(X(2,:))];

 minRows2 = min(X,2)≡ min(X,2*ones(size(X)))

1 2 3

4 5 6

X

5 7 9

6

15

SumCols

SumRows

SumTot = 21

X = [1 2 3; 4 5 6];

2.5 3.5 4.5

2

5

MeanCols

MeanRows

MeanTot = 3.5

MaxVal = 6
1 2 3minCols

1

4

minRows

1 2 3

4 5 6

2 2 2

2 2 2

1 2 2

2 2 2
,

min

 Special Functions for Matrices

◦ max(), min() – continued
 [maxVal maxLoc] = max(X); maxVal = 13, maxLoc = 3

◦ sort() – orders the elements of a vector in ascending (default)
or descending order

 xAsc = sort(X);
 [xDes order] = sort(X,'descend');

◦ find()

 R = find(X > 4);

 R = find(X == 13);

X = [1 2 13; 4 5 6];

 R = find(X >= 2 & X < 6)’;

 [r c] = find(X == 6);

1 2 13 4 5 6X

X = [1 2 13 4 5 6];

MATLAB also tells us the location
of the maximum value!

3 5 6R

R = 3

R

1 2 13

4 5 6
X

2 3 4

r=2 c=3

1 2 4 5 6 13xAsc

13 6 5 4 2 1xDes

3 6 5 4 2 1order

 If we want to define the position of element 1
within the matrix M, we can do it with a
single index or with the indexes of row and
column

◦ M = [2 4; 3 6; 5 1; 8 12];
◦ index = find(M==1);

 ind2sub
◦ [r c] = ind2sub(size(M),index);

 sub2ind
◦ newIndex = sub2ind(size(M),r,c);

2 4

3 6

5 1

8 12

[4x2]

M

 If we want to define the position of element 1
within the matrix M, we can do it with a
single index or with the indexes of row and
column

◦ M = [2 4; 3 6; 5 1; 8 12];
◦ index = find(M==1);

 ind2sub
◦ [r c] = ind2sub(size(M),index);

 sub2ind
◦ newIndex = sub2ind(size(M),r,c);

2 4

3 6

5 1

8 12

[4x2]

M

7

7

3 2 It’s necessary to provide
the size of the matrix!

 plot()
◦ x = [-1:0.1:1];

◦ y = x.^2;

◦ plot(y);

◦ plot(x,y);

 plot()
◦ x = [-1:0.1:1];

◦ y = x.^2;

◦ plot(y);

◦ plot(x,y);

◦ plot(x,y,'--rd','LineWidth',2,...

'MarkerEdgeColor','b',...

'MarkerFaceColor','g',...

'MarkerSize',10);

 plot()
◦ x = [-1:0.1:1];

◦ y = x.^2;

◦ plot(y);

◦ plot(x,y);

◦ plot(x,y,'--rd','LineWidth',2,...

'MarkerEdgeColor','b',...

'MarkerFaceColor','g',...

'MarkerSize',10);

• Line style – -
• Line color ‘red’
• Marker Type ‘diamond’

 bar()
◦ x = 100*rand(1,20);
◦ bar(x);
◦ xlabel('x');
◦ ylabel('values');
◦ axis([0 21 0 120]);

 pie()
◦ x = 100*rand(1,5);
◦ pie(x);
◦ title('My first pie!');
◦ legend('val1','val2',...
'val3‘,'val4','val5');

x range y range
xlim([0 21]); ylim([0 120]);

 figure
◦ To open a new Figure and avoid overwriting plots
◦ x = [-pi:0.1:pi];
◦ y = sin(x);
◦ z = cos(x);

◦ plot(x,y);
◦ figure
◦ plot(x,z);

 Close figures
◦ close 1
◦ close all

 Multiple plots in same Graph
◦ plot(x,y);
◦ hold on
◦ plot(x,z,’r’);
◦ hold off

The fist plot command
automatically creates a
new Figure!

 Multiple plots in same Figure

◦ figure(1)
◦ subplot(2,2,1)
◦ plot(x,y);
◦ title(‘sin(x)’);

◦ subplot(2,2,2)
◦ plot(x,z,’r’);
◦ title(‘exp(-x)’);

◦ subplot(2,2,3)
◦ bar(x);
◦ title(‘bar(x)’);

◦ subplot(2,2,4)
◦ pie(x);
◦ title(‘pie(x)');

 Like a notebook,

but for code!

 M-files are MATLAB specific script files, they are
called namefile.m

 You can open scripts from command window too,
just type open scriptname

Hit run (or F5) and go!

 Adding comments to your code is a very healthy
habit

 Think about other people who have to read and
understand 3000 lines of your code!

 MATLAB comments, the % operator
◦ x = [1 2 3 4];
◦ % this is a comment
◦ bar(x);
◦ title(‘bar(x)’);

 When you type help namefunction in the
command window, what you get is the comments
on top of the namefunction.m script

 Due at beginning of class, no

exceptions

 Put your code (.m files) and additional

files in a single folder, name it

youruni_hw_X and zip it

 Upload the zipped folder to

CourseWorks

 Bring a printout of your code to class

 Good luck and have fun !!!

 MATLAB is also a philosopher!

 Try typing why in the command window…

you’ll get the answers!!!

