
C

COMSW 1003-1

Introduction to Computer
Programming in C

Spring 2011

Instructor: Michele Merler

http://www1.cs.columbia.edu/~mmerler/comsw1003-1.html

Lecture 1

C

Course Information - Goals

“A general introduction to computer science concepts, algorithmic problem-
solving capabilities, and programming skills in C”

University bulletin

• Learn how to program, in C

• Understand basic Computer Science problems

• Learn about basic data structures

• Start to think as a computer scientist

• Use all of the above to solve real world problems

C

Course Information - Instructor

• Michele Merler
– Email: mmerler@cs.columbia.edu or mm3233@columbia.edu
– Office : 624 CEPSR
– Office Hours: Friday 12pm-2pm

• 4th year PhD Student in CS Department

• Research Interests:
– Image & Video Processing
– Multimedia
– Computer Vision

mailto:mmerler@cs.columbia.edu
mailto:mm3233@columbia.edu
mailto:mm3233@columbia.edu
mailto:mm3233@columbia.edu

C

Course Information- TA

• TDB

– Email: TDB@columbia.edu

– Office : TA room

– Office Hours: TDB
?

mailto: <dm2701@columbia.edu>
mailto: <dm2701@columbia.edu>

C

Course Information- Courseworks

We will be using Courseworks (https://courseworks.columbia.edu/) for:

• Message board for discussions

• Submit Homeworks

• Grades

Check out the board before you send an email to the instructor or the TA,
the answer you are looking for could already be there!

https://courseworks.columbia.edu/

C

Course Information
Requirements and Books

Requirements

• Basic computer skills
• CUNIX account

Textbooks

• The C Programming Language (2nd Edition)
by Brian Kernighan and Dennis Ritchie

http://www1.cs.columbia.edu/~mmerler/coms1003-1/C Programming Language.rar

• Practical C Programming (3rd Edition) by Steve Oualline

http://www1.cs.columbia.edu/~mmerler/coms1003-1/
http://www1.cs.columbia.edu/~mmerler/coms1003-1/
http://www1.cs.columbia.edu/~mmerler/coms1003-1/
http://www1.cs.columbia.edu/~mmerler/coms1003-1/
http://www1.cs.columbia.edu/~mmerler/coms1003-1/C Programming Language.rar

C

• 5 Homeworks (10%, 10%, 10% , 10% , 10%)

• Midterm Exam (20%)

• Final Exam (30%)

Course Information - Grading

10%

10%

10%

10%

10%
20%

30%
HW1 HW2

HW3 HW4

HW5 MIDTERM

FINAL

C

Course Information
Academic Honesty

It’s quite simple:

• Do not copy from others
• Do not let others copy from you

Do your homework individually

Please read through the department’s policies on academic honesty
http://www.cs.columbia.edu/education/honesty/

http://www.cs.columbia.edu/education/honesty/

C

Course Information - Syllabus

Go to class webpage

http://www1.cs.columbia.edu/~mmerler/coms1003-1_files/Syllabus.html

http://www1.cs.columbia.edu/~mmerler/coms1003-1_files/Syllabus.html
http://www1.cs.columbia.edu/~mmerler/coms1003-1_files/Syllabus.html
http://www1.cs.columbia.edu/~mmerler/coms1003-1_files/Syllabus.html

C

What is Computer Science?
Computer science (sometimes abbreviated CS) is the study of the theoretical
foundations of information and computation, and of practical techniques for
their implementation and application in computer systems

Wikipedia

"Computer science and engineering is the systematic study of algorithmic processes-their theory, analysis, design,
efficiency, implementation, and application-that describe and transform information”
Comer, D. E.; Gries, D., Mulder, M. C., Tucker, A., Turner, A. J., and Young, P. R. (Jan. 1989). "Computing as a
discipline“. Communications of the ACM 32 (1): 9.

"Computer science is the study of information structures"
Wegner, P. (October 13–15, 1976). "Research paradigms in computer science". Proceedings of the 2nd
international Conference on Software Engineering. San Francisco, California, United States

"Computer Science is the study of all aspects of computer systems, from the theoretical foundations to the very
practical aspects of managing large software projects.“
Massey University

C

What is Computer Science?

Computer Science is the discipline that studies how to
make computers perform tasks that are too complex
or boring for humans

C

Algorithms and data structures

Theory of computation

Artificial Intelligence

Computer Science Areas
Computational science

Software Engineering

Computer architecture

Theoretical computer science

C

Why programming?

• We need a way to tell computers what to do

• It would be nice to communicate with
computers in English, but…
– English can be ambiguous!

– Computers only understand binary!

• Solution: programming languages

C

What is a Program?

• A Program is a sequence of instructions and
computations

• We’ll be designing programs in this course.

• These programs will be based on algorithms

• An Algorithm is a step-by-step problem-
solving procedure

C

Example

• Add 3 large numbers
 453 + 782 + 17,892

• Hard to do all at once
 Solution: “divide and impera”!
 (453 + 782) + 17,892 =
 1,235 + 17,892 = 19,127

• Algorithms help us divide and organize complex problems into
sub-problems which are easier to solve (bottom-up approach)

C

Programming
• Back in the day, programmers wrote in Assembly, a language where each

word stands for a single instruction

• But then they had to hand translate each instruction into binary!!!

• Solution: the assembler, a computer program to do the translation

• From then, programmers could worry only about writing assembly code

• Then they started to devise higher level languages (FORTRAN, COBOL,

PASCAL, C, C++, JAVA, Perl, Python, etc.), which get translated into Assembly

by compilers (we will use GCC, a C compiler for Unix)

High level
language

Assembly
Machine

Instructions
Compiler Assembler

C

What is C?
• Programming language developed by Dennis Ritchie in 1972

at AT&T Bell labs

• Why is it named “C”?
Well… the B programming language already existed !

• C is still the most used programming language for Operating Systems

• Popular because:
• Flexible
• C compiler was widely available

• Basis for other popular programming languages: C++, C#

C

What is C?
• Among the “high level” programming languages, C is one with the

lowest level of abstraction

• Close to English, but more precise!

• Easy to compile into Assembly => Fast

• Rich set of standard function = we don’t have to implement everything
from scratch!

Translated at run timeTranslated before run time

Approximation of popularity of language using Yahoo API http://www.langpop.com/

Why C? Interesting Facts …

Slide credit: Priyank Singh

http://www.langpop.com/

Available language code available using Google code search http://www.langpop.com/

Why C? Interesting Facts …

Slide credit: Priyank Singh

http://www.langpop.com/

Jobs posting on craiglist.org, from website http://www.langpop.com/

Why C? Interesting Facts …

Slide credit: Priyank Singh

http://www.langpop.com/

C/C++ Industry
Open Source Graphics and

Gaming

Embedded
Slide credit: Priyank Singh

C

Example of C program

Hello world!

C

Announcements

• Homework 0 is out! Due at the beginning
of next class

• Bring your laptop to class

C

COMSW 1003-1

Introduction to Computer
Programming in C

Spring 2011

Instructor: Michele Merler

http://www1.cs.columbia.edu/~mmerler/comsw1003-1.html

Lecture 2

1

C

Announcements

• Exercise1 is out

• We have a TA!

Gaurav Agarwal
– MS student in CS department

– Email: ga2310@columbia.edu

– Office Hours: Tuesday 11am-12pm in Mudd
122A (TA room)

2

C

What is a Program?

• A Program is a sequence of instructions and
computations

• We’ll be designing programs in this course.

• These programs will be based on algorithms

• An Algorithm is a step-by-step problem-
solving procedure

3

C

Example

• Add 3 large numbers
 453 + 782 + 17,892

• Hard to do all at once
 Solution: “divide and impera”!
 (453 + 782) + 17,892 =
 1,235 + 17,892 = 19,127

• Algorithms help us divide and organize complex problems into
sub-problems which are easier to solve (bottom-up approach)

4

C

What is C?
• Programming language developed by Dennis Ritchie in 1972

at AT&T Bell labs

• Why is it named “C”?
Well… the B programming language already existed !

• C is one of the high level programming language with the lowest level of
abstraction

• Low to be close to assembly and machine language fast!
• High to be programmable by humans without (too many) headaches

5

C

CUNIX

• CUNIX refers to the Columbia Unix
environment

• For you: place where you develop your
programs!

6

C

Accessing CUNIX remotely

• Secure Shell or SSH is a network protocol that
allows data to be exchanged using a secure
channel between two networked devices

• The SCP protocol is a network protocol that
supports file transfers

Your computer CUNIX

SSH

SCP

7

C

Code Developing Tools – Linux and Mac

• Open terminal

• SSH to cunix.cc.columbia.edu
ssh yourUNI@cunix.cc.columbia.edu

• Data transfer: scp or get/put
– Copying file to host:

scp SourceFile user@host:directory/TargetFile

– Copying file from host:
scp user@host:/directory/SourceFile TargetFile

• For MAC: use FUGU (graphical data transfer tool)
http://www.columbia.edu/acis/software/fugu/
http://download.cnet.com/Fugu/3000-2155_4-26526.html

8

http://www.columbia.edu/acis/software/fugu/
http://download.cnet.com/Fugu/3000-2155_4-26526.html
http://download.cnet.com/Fugu/3000-2155_4-26526.html
http://download.cnet.com/Fugu/3000-2155_4-26526.html
http://download.cnet.com/Fugu/3000-2155_4-26526.html
http://download.cnet.com/Fugu/3000-2155_4-26526.html

C

Code Developing Tools – Linux and Mac

To use windowing environment:

• Mac users need only start X11 (found in the Utilities
folder) and log in to the X11 terminal like this:
ssh -X username@cunix.cc.columbia.edu

• Linux users: see X-Windows section in CUNIX tutorial

9

C

• Xming and Putty to SSH and visualization
– http://sourceforge.net/projects/xming/

– http://www.chiark.greenend.org.uk/~sgtatham/putty/download
.html

• WinSCP for data transfer
– http://winscp.net/eng/download.php#download2

• Notepad++ for editing (can be used in combination with
WinSCP)
— http://notepad-plus-plus.org/

Code Developing Tools - Windows

10

http://sourceforge.net/projects/xming/
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://winscp.net/eng/download.php
http://winscp.net/eng/download.php
http://notepad-plus-plus.org/
http://notepad-plus-plus.org/
http://notepad-plus-plus.org/
http://notepad-plus-plus.org/
http://notepad-plus-plus.org/

C

• Launch Xming

• Open a session in putty with Host Name

– cunix.cc.columbia.edu

Code Developing Tools - Windows

11

C

• Make sure the X11 option of the SSH category
is enabled

Code Developing Tools - Windows

12

C

Code Developing Tools - Windows
• Use WinScp to transfer files

13

C

Code Developing Tools - Windows
• Use WinScp to transfer files

14

C

Code Developing Environment

CUNIX Tutorial

15

C

Compiling your C code
• GCC : GNU Compiler Collection
• When you invoke GCC, it normally does

preprocessing, compilation, assembly and linking

– Basic Command
• gcc myProgram.c
• ./a.out

– More advanced options

• gcc –Wall –o myProgram myProgram.c
• ./myProgram

Run compiled program (executable)

16

C

Compiling your C code
• GCC : GNU Compiler Collection
• When you invoke GCC, it normally does

preprocessing, compilation, assembly and linking

– Basic Command
• gcc myProgram.c
• ./a.out

– More adva

• gcc –Wall –o myProgram myProgram.c
• ./myProgram

Run compiled program (executable)

Run compiled program (executable)

Display all types of
warnings, not only errors

Specify name of
the executable

17

C

Assignment

18

• Read PCP Ch 1

• Read PCP Ch 2, pages 11 to 15, 33

C

COMSW 1003-1

Introduction to Computer
Programming in C

Spring 2011

Instructor: Michele Merler

http://www1.cs.columbia.edu/~mmerler/comsw1003-1.html

Lecture 3

1

C

Today

2

• Computer Architecture (Brief Overview)

• “Hello World” in detail

• C Syntax

• Variables and Types

• Operators

• printf (if there is time)

C

Von Neumann Architecture

• Data
• Instructions

3

C

Computer Memory Architecture

4

C

Von Neumann Architecture

PC

Main
Memory

— Address 1
— Address 2

— Address N

The Program Counter (PC) points (= tells
the CPU) to the address in memory where
the next instruction to be executed resides

. . .
. . .

5

C

Von Neumann Architecture

PC

Main
Memory

— Address 1
— Address 2

—Address n

—Address n+1

— Address N

. . .
. . .

printf("Hello World\n");

return(0);

#include <stdio.h>

int main(){

printf("Hello World\n");

return(0);
}

Hello World

6

C

Von Neumann Architecture

PC

Main
Memory

— Address 1
— Address 2

—Address n

—Address n+1

— Address N

. . .
. . .

#include <stdio.h>

int main(){

printf("Hello World\n");

return(0);
}

printf("Hello World\n");

return(0);

Hello World

7

C

The Operating System

Operating
System (OS)

Program

Hardware

User

• Windows
• Unix
• Mac OS
• Android
• Linux
• Solaris
• Chrome OS

• Manages the hardware

• Allocates resources to programs

• Accommodates user requests

• First program to be executed when computer starts

(loaded from ROM)

8

C

Hello World

#include <stdio.h>

int main(){

printf("Hello World\n");

return(0);

}

Global
Definitions

Body of
function

Single statements

Function definition:
• It’s called main
• It does not take any input ()
• It returns an integer

External Header
(standard C library
containing functions
for Input/Output)

9

C

C Syntax

• Statements
– one line commands
– always end with ;
– can be grouped between { }
– spaces are not considered

• Comments
// single line comment

/* multiple lines comments
*/

10

C

Hello World + Comments
/*
* My first C program
*/

#include <stdio.h>

int main(){

printf("Hello World\n");

return(0); // return 0 to the OS = OK

}

11

C

Variables and types
• Variables are placeholders for values

int x = 2;

x = x + 3; // x value is 5 now

• In C, variables are divided into types,
according to how they are represented in
memory (always represented in binary)

– int

– float

– double

– char

12

C

Variables Declaration
• Before we can use a variable, we must declare (=

create) it
• When we declare a variable, we specify its type and its

name

int x;
float y = 3.2;

• Most of the time, the compiler also allocates memory
for the variable when it’s declared. In that case
declaration = definition

• There exist special cases in which a variable is declared
but not defined, and the computer allocates memory
for it only at run time (will see with functions and
external variables)

13

C

int
• No fractional part or decimal point (ex. +3, -100)

• Represented with 4 bytes (32 bits) in UNIX

• Sign
– unsigned : represents only positive values, all bites for

value
Range: from 0 to 2^32

– signed (default) : 1 bit for sign + 31 for actual value
Range: from -2^31 to 2^31

• Size
– short int : at least 16 bits
– long int : at least 32 bits
– long long int : at least 64 bits
– size(short) ≤ size(int) ≤ size(long)

int x = -12;

unsigned int x = 5;

short (int) x = 2;

14

C

float
• Single precision floating point value

• Fractional numbers with decimal point

• Represented with 4 bytes (32 bits)

• Range: -10^(38) to 10^(38)

• Exponential notation : - 0.278 * 10^3

12723

10 2)2()1(  ms fn

f: bit 23 is considered to be 1,
unless m is all zeros

m

f m

float x = 11.5;

15

C

double

• Double precision floating point

• Represented with 8 bytes (64 bits)

double x = 121.45;

16

C

char

• Character

• Single byte representation

• 0 to 255 values expressed in the ASCII table

char c = ‘w’;

17

C

ASCII Table

18

C

Extended ASCII Table

19

C

Casting
• Casting is a method to correctly use variables of different types

together
• It allows to treat a variable of one type as if it were of another

type in a specific context
• When it makes sense, the compiler does it for us automatically

• Implicit (automatic)

int x = 1;
float y = 2.3;
x = x + y;

• Explicit (non-automatic)

char c = ‘A’;
int x = (int) c;

x= 3 compiler automatically casted
(=converted) y to be an integer just for
this instruction

Explicit casting from char to int. The value of x
here is 65

20

C

Operators
• Assignment =

• Arithmetic * / % + -

• Increment ++ -- += -=

• Relational < <= > >= == !=

• Logical && || !

• Bitwise & | ~ ^ << >>

• Comma ,

21

C

Operators – Assignment
int x = 3;

x = 7;

int x, y = 5;

x = y = 7;

float y = 2.3, z = 3, q = 700;

int i,j,k;

k = (i=2, j=3);

printf(‚i = %d, j = %d, k = %d\n‛,i,j,k);

The comma operator allows
us to perform multiple
assignments/declarations

22

C

Operators - Arithmetic

• Arithmetic operators have a precedence

• We can use parentheses () to impose our precedence order

• % returns the module (or the remainder of the division)

• We have to be careful with integer vs. float division : remember
automatic casting!

int x;

x = 3 + 5 * 2 - 4 / 2;

int x;

x = (3 + 5) * (2 – 4) / 2;

int x;

x = 5 % 3; // x = 2

int x = 3;

float y;

y = x / 2; // y = 1.00

float y;

y = 1 / 2; // y = 0.00

23

* / % + -

C

• Arithmetic operators have a precedence

• We can use parentheses () to impose our precedence order

• % returns the module (or the remainder of the division)

• We have to be careful with integer vs. float division : remember
automatic casting!

int x;

x = 3 + 5 * 2 - 4 / 2;

int x;

x = (3 + 5) * (2 – 4) / 2;

int x;

x = 5 % 3; // x = 2

int x = 3;

float y;

y = x / 2; // y = 1.00

float y;

y = 1 / 2; // y = 0.00

24

Possible fixes:
1)float x = 3;
2)y = (float) x /2;
Then y = 1.50 Possible fix: y = 1.0/2;

Then y = 0.50

Operators - Arithmetic * / % + -

C

Operators - Increment

int x = 3, y, z;

x++;

++x;

y = ++x + 3; // x = x + 1; y = x + 3;

z = x++ + 3; // z = x + 3; x = x + 1;

x -= 2; // x = x - 2;

x is incremented at the end of statement

x is incremented at the beginning of statement

25

++ -- += -=

C

Operators - Relational

• Return 0 if statement is false, 1 if statement is true

int x = 3, y = 2, z, k, t;

z = x > y; // z = 1

k = x <= y; // k = 0

t = x != y; // t = 1

26

< <= > >= == !=

C

Operators - Logical

• A variable with value 0 is false, a variable with value !=0 is true

int x = 3, y = 0, z, k, t, q = -3;

z = x && y; // z = 0;

k = x || y; // k = 1;

t = !q; // t = 0;

27

x is true but y is false

x is true

q is true

&& || !

C

Review: Operators - Bitwise

• Work on the binary representation of data
• Remember: computers store and see data in binary

format!
int x, y, z , t, q, s, v;

x = 3;
y = 16;

z = x << 1;

t = y >> 3;

q = x & y;

s = x | y;

v = x ^ y;

equivalent to z = x · 21

equivalent to t = y · 2-3

00000000000000000000000000000011
00000000000000000000000000010000

00000000000000000000000000000110

00000000000000000000000000000010

00000000000000000000000000000000

00000000000000000000000000010011

00000000000000000000000000010011

XOR
28

C

printf

• printf is a function used to print to standard output (command line)

• Syntax:
printf(“format1 format2 …”, variable1, variable2,…);

• Format characters:
– %d or %i integer
– %f float
– %lf double
– %c char
– %u unsigned
– %s string

Format

% 0 n1 . n2 t

pad with zeros (optional)

number of digits before
the decimal point

number of digits after
the decimal point

type

29

C

printf
#include <stdio.h>

int main() {

int a,b;
float c,d;
a = 15;
b = a / 2;

printf("%d\n",b);
printf("%3d\n",b);
printf("%03d\n",b);

c = 15.3;
d = c / 3;
printf("%3.2f\n",d);

return(0);

}

Output:

7
7

007

5.10

30

C

printf

Escape sequences

\n newline
\t tab
\v vertical tab
\f new page
\b backspace
\r carriage return

31

C

Assignment

32

• Read PCP Chapter 3 and 4

C

COMSW 1003-1

Introduction to Computer
Programming in C

Spring 2011

Instructor: Michele Merler

http://www1.cs.columbia.edu/~mmerler/comsw1003-1.html

Lecture 4

1

C

Announcements

2

• HW 1 is due on Monday, February 14th at the
beginning of class, no exceptions

• Read so far: PCP Chapters 1 to 4

• Reading for next Wednesday: PCP Chapter 5

C

Review – Access CUNIX
http://www1.cs.columbia.edu/~bert/courses/1003/cunix.html

3

1) Enable windowing environment
- X11, Xming, X-Server

2) Launch SSH session (login with UNI and password)
- Terminal, Putty

3) Launch Emacs
$ emacs &

4) Open/create a file, than save it with .c extension

5) Compile source code into executable with gcc

http://www1.cs.columbia.edu/~bert/courses/1003/cunix.html
http://www1.cs.columbia.edu/~bert/courses/1003/cunix.html

C

Review - Compiling your C code
• GCC : GNU Compiler Collection
• When you invoke GCC, it normally does

preprocessing, compilation, assembly and linking

– Basic Command
• gcc myProgram.c
• ./a.out

– More advanced options

• gcc –Wall –o myProgram myProgram.c
• ./myProgram

Run compiled program (executable)

4

C

Review - Compiling your C code
• GCC : GNU Compiler Collection
• When you invoke GCC, it normally does

preprocessing, compilation, assembly and linking

– Basic Command
• gcc myProgram.c
• ./a.out

– More adva

• gcc –Wall –o myProgram myProgram.c
• ./myProgram

Run compiled program (executable)

Run compiled program (executable)

Display all types of
warnings, not only errors

Specify name of
the executable

5

C

Review: C Syntax

• Statements
– one line commands
– always end with ;
– can be grouped between { }

• Comments
// single line comment

/* multiple lines comments
*/

6

C

Review : Variables and types
• Variables are placeholders for values

int x = 2;

x = x + 3; // x value is 5 now

• In C, variables are divided into types,
according to how they are represented in
memory (always represented in binary)

– int 4 bytes, signed/unsigned

– float 4 bytes, decimal part + exponent

– double 8 bytes

– char 1 byte, ASCII Table

7

C

Review : Casting
• Casting is a method to correctly use variables of different types

together
• It allows to treat a variable of one type as if it were of another

type in a specific context
• When it makes sense, the compiler does it for us automatically

• Implicit (automatic)

int x =1;
float y = 2.3;
x = x + y;

• Explicit (non-automatic)

char c = ‘A’;
int x = (int) c;

x= 3 compiler automatically casted
(=converted) y to be an integer just for
this instruction

Explicit casting from char to int. The value of x
here is 65

8

C

Today

9

• Operators

• printf()

• Binary logic

C

Operators
• Assignment =

• Arithmetic * / % + -

• Increment ++ -- += -=

• Relational < <= > >= == !=

• Logical && || !

• Bitwise & | ~ ^ << >>

• Comma ,

10

C

Operators – Assignment and Comma

int x = 3;

x = 7;

int x, y = 5;

x = y = 7;

float y = 2.3, z = 3, q = 700;

int i,j,k;

k = (i=2, j=3);

printf(‚i = %d, j = %d, k = %d\n‛,i,j,k);

The comma operator allows
us to perform multiple
assignments/declarations

11

C

Operators - Arithmetic

• Arithmetic operators have a precedence

• We can use parentheses () to impose our precedence order

• % returns the module (or the remainder of the division)

• We have to be careful with integer vs. float division : remember
automatic casting!

int x;

x = 3 + 5 * 2 - 4 / 2;

int x;

x = (3 + 5) * (2 – 4) / 2;

int x;

x = 5 % 3; // x = 2

int x = 3;

float y;

y = x / 2; // y = 1.00

float y;

y = 1 / 2; // y = 0.00

12

* / % + -

C

• Arithmetic operators have a precedence

• We can use parentheses () to impose our precedence order

• % returns the module (or the remainder of the division)

• We have to be careful with integer vs. float division : remember
automatic casting!

int x;

x = 3 + 5 * 2 - 4 / 2;

int x;

x = (3 + 5) * (2 – 4) / 2;

int x;

x = 5 % 3; // x = 2

int x = 3;

float y;

y = x / 2; // y = 1.00

float y;

y = 1 / 2; // y = 0.00

13

Possible fixes:
1)float x = 3;
2)y = (float) x /2;
Then y = 1.50 Possible fix: y = 1.0/2;

Then y = 0.50

Operators - Arithmetic * / % + -

C

Operators – Increment/Decrement

int x = 3, y, z;

x++;

++x;

y = ++x + 3; // x = x + 1; y = x + 3;

z = x++ + 3; // z = x + 3; x = x + 1;

x -= 2; // x = x - 2;

x is incremented at the end of statement

x is incremented at the beginning of statement

14

++ -- += -=

C

Operators - Relational

• Return 0 if statement is false, 1 if statement is true

int x = 3, y = 2, z, k, t;

z = x > y; // z = 1

k = x <= y; // k = 0

t = x != y; // t = 1

15

< <= > >= == !=

C

Operators - Logical

• A variable with value 0 is false, a variable with value !=0 is true

int x = 3, y = 0, z, k, t, q = -3;

z = x && y; // z = 0;

k = x || y; // k = 1;

t = !q; // t = 0;

16

x is true but y is false

x is true

q is true

&& || !

C

Operators - Bitwise

• Work on the binary representation of data
• Remember: computers store and see data in binary

format!
int x, y, z , t, q, s, v;

x = 3;
y = 16;

z = x << 1;

t = y >> 3;

q = x & y;

s = x | y;

v = x ^ y;

equivalent to z = x · 21

equivalent to t = y · 2-3

00000000000000000000000000000011
00000000000000000000000000010000

00000000000000000000000000000110

00000000000000000000000000000010

00000000000000000000000000000000

00000000000000000000000000010011

00000000000000000000000000010011

XOR
17

C

printf

• printf is a function used to print to standard output (command line)

• Syntax:
printf(“format1 format2 …”, variable1, variable2,…);

• Format characters:
– %d or %i integer
– %f float
– %lf double
– %c char
– %u unsigned
– %s string

Format

% 0 n1 . n2 t

pad with zeros (optional)

number of digits before
the decimal point

number of digits after
the decimal point

type

18

C

printf
#include <stdio.h>

int main() {

int a,b;
float c,d;
a = 15;
b = a / 2;

printf("%d\n",b);
printf("%3d\n",b);
printf("%03d\n",b);

c = 15.3;
d = c / 3;
printf("%3.2f\n",d);

return(0);

}

Output:

7
7

007

5.10

19

C

printf

Escape sequences

\n newline
\t tab
\v vertical tab
\f new page
\b backspace
\r carriage return

20

C

Binary Logic
• 1 = true, 0 = false

• Decimal to binary conversion

• Binary to decimal conversion

110012 = 1x20 + 0x21 + 0x22 + 1x23 + 1x24 = 25

• AND
v = x & y

• OR
v = x | y

610 = 1102

C

Binary Logic
• 1 = true, 0 = false

• Decimal to binary conversion

• Binary to decimal conversion

110012 = 1x20 + 0x21 + 0x22 + 1x23 + 1x24 = 25

• AND
v = x & y

• OR
v = x | y

6 0

3 1

1 1

0

610 = 1102

remainder

Divide by 2

Least significant bitMost significant bit

base

C

Binary Logic

23

• 1 = true, 0 = false

• Decimal to binary conversion

• Binary to decimal conversion

110012 = 1x20 + 0x21 + 0x22 + 1x23 + 1x24 = 25

• AND
v = x & y

• OR
v = x | y

6 0

3 1

1 1

0

610 = 1102

remainder

Divide by 2

Least significant bitMost significant bit

base

C

Binary Logic

24

• 1 = true, 0 = false

• Decimal to binary conversion

• Binary to decimal conversion

110012 = 1x20 + 0x21 + 0x22 + 1x23 + 1x24 = 25

• AND
v = x & y

• OR
v = x | y

x y v

0 0 0

0 1 1

1 0 1

1 1 1

x v

0 1

1 0

x y v

0 0 0

0 1 1

1 0 1

1 1 0

x y v

0 0 0

0 1 0

1 0 0

1 1 1

• NOT
v = !x

• EXOR
v = x ^ y

6 0

3 1

1 1

0

610 = 1102

remainder

Divide by 2

Least significant bitMost significant bit

base

C

Homework 1 review

HOW TO COMPRESS/UNCOMPRESS folders in UNIX

• Compress folder ~/COMS1003/HW1 to HW1.tar.gz

tar -zcvf HW1.tar.gz ~/COMS1003/HW1

• Uncompress HW1.tar.gz to folder ~/COMS1003/HW1new

tar -zxvf HW1.tar.gz -C ~/COMS1003/HW1new

(note: ~/COMS1003/HW1new must exist already)

25

C

COMSW 1003-1

Introduction to Computer
Programming in C

Spring 2011

Instructor: Michele Merler

http://www1.cs.columbia.edu/~mmerler/comsw1003-1.html

Lecture 5

1

C

Announcements

2

• Exercise 1 solution out

• Exercise 2 out

• Read PCP Ch 6

C

Today

3

• Review of operators and printf()

• Binary Logic

• Arrays

• Strings

C

Review : printf

• printf is a function used to print to standard output (command line)

• Syntax:
printf(“format1 format2 …”, variable1, variable2,…);

• Format characters:
– %d or %i integer
– %f float
– %lf double
– %c char
– %u unsigned
– %s string

Format

% 0 n1 . n2 t

pad with zeros (optional)

number of digits before
the decimal point

number of digits after
the decimal point

type

4

C

Review : printf
#include <stdio.h>

int main() {

int a,b;
float c,d;
a = 15;
b = a / 2;

printf("%d\n",b);
printf("%3d\n",b);
printf("%03d\n",b);

c = 15.3;
d = c / 3;
printf("%3.2f\n",d);

return(0);

}

Output:

7
7

007

5.10

5

printfExample.c

C

Review : printf

Escape sequences

\n newline
\t tab
\v vertical tab
\f new page
\b backspace
\r carriage return

6

C

Binary Logic

7

• In binary logic, variables can have only 2
values:

– True (commonly associated with 1)
– False (commonly associated with 0)

• Binary Operations are defined through TRUTH
TABLES

x y v

0 0 0

0 1 1

1 0 1

1 1 1

x v

0 1

1 0

x y v

0 0 0

0 1 1

1 0 1

1 1 0

x y v

0 0 0

0 1 0

1 0 0

1 1 1

NOT
v = !x

EXOR
v = x ^ y

AND
v = x & y

OR
v = x | y

C

Binary Logic
• 1 = true, 0 = false

• Decimal to binary conversion

• Binary to decimal conversion

110012 = 1x20 + 0x21 + 0x22 + 1x23 + 1x24 = 25

• AND
v = x & y

• OR
v = x | y

610 = 1102

C

Binary Logic
• 1 = true, 0 = false

• Decimal to binary conversion

• Binary to decimal conversion

110012 = 1x20 + 0x21 + 0x22 + 1x23 + 1x24 = 25

• AND
v = x & y

• OR
v = x | y

6 0

3 1

1 1

0

610 = 1102

remainder

Divide by 2

Least significant bitMost significant bit

base

C

Binary Logic

10

• 1 = true, 0 = false

• Decimal to binary conversion

• Binary to decimal conversion

110012 = 1x20 + 0x21 + 0x22 + 1x23 + 1x24 = 25

• AND
v = x & y

• OR
v = x | y

6 0

3 1

1 1

0

610 = 1102

remainder

Divide by 2

Least significant bitMost significant bit

base

C

Binary Logic

11

• 1 = true, 0 = false

• Decimal to binary conversion

• Binary to decimal conversion

110012 = 1x20 + 0x21 + 0x22 + 1x23 + 1x24 = 25

• AND
v = x & y

• OR
v = x | y

x y v

0 0 0

0 1 1

1 0 1

1 1 1

x v

0 1

1 0

x y v

0 0 0

0 1 1

1 0 1

1 1 0

x y v

0 0 0

0 1 0

1 0 0

1 1 1

• NOT
v = !x

• EXOR
v = x ^ y

6 0

3 1

1 1

0

610 = 1102

remainder

Divide by 2

Least significant bitMost significant bit

base

C

Review: Operators

• Assignment =
• Arithmetic * / % + -
• Increment ++ -- += -=
• Relational < <= > >= == !=
• Logical && || !
• Bitwise & | ~ ^ << >>
• Comma ,

12

C

Operators - Bitwise

• Work on the binary representation of data
• Remember: computers store and see data in binary

format!
int x, y, z , t, q, s, v;

x = 3;
y = 16;

z = x << 1;

t = y >> 3;

q = x & y;

s = x | y;

v = x ^ y;

equivalent to z = x · 21

equivalent to t = y · 2-3

00000000000000000000000000000011
00000000000000000000000000010000

00000000000000000000000000000110

00000000000000000000000000000010

00000000000000000000000000000000

00000000000000000000000000010011

00000000000000000000000000010011

XOR
13

C

• Arithmetic operators have a precedence

• We can use parentheses () to impose our precedence order

• % returns the module (or the remainder of the division)

• We have to be careful with integer vs. float division : remember
automatic casting!

int x;

x = 3 + 5 * 2 - 4 / 2;

int x;

x = (3 + 5) * (2 – 4) / 2;

int x;

x = 5 % 3; // x = 2

int x = 3;

float y;

y = x / 2; // y = 1.00

float y;

y = 1 / 2; // y = 0.00

14

Possible fixes:
1)float x = 3;
2)y = (float) x /2;
Then y = 1.50 Possible fix: y = 1.0/2;

Then y = 0.50

Operators - Arithmetic * / % + -

C

Operators – Increment/Decrement

int x = 3, y, z;

x++;

++x;

y = ++x + 3; // x = x + 1; y = x + 3;

z = x++ + 3; // z = x + 3; x = x + 1;

x -= 2; // x = x - 2;

x is incremented at the end of statement

x is incremented at the beginning of statement

15

++ -- += -=

C

Operators - Relational

• Return 0 if statement is false, 1 if statement is true

int x = 3, y = 2, z, k, t;

z = x > y; // z = 1

k = x <= y; // k = 0

t = x != y; // t = 1

16

< <= > >= == !=

C

Operators - Logical

• A variable with value 0 is false, a variable with value !=0 is true

int x = 3, y = 0, z, k, t, q = -3;

z = x && y; // z = 0;

k = x || y; // k = 1;

t = !q; // t = 0;

17

x is true but y is false

x is true

q is true

&& || !

C

Arrays

18

• “A set of consecutive memory locations used to
store data” *PCP, Ch 5+

• Indexing starts at 0 !

• Be careful not to access uninitialized elements!

int X[4]; // a vector containing 4 integers

X[0] X[1] X[2] X[3]

Address n n+ 4 n + 8 n + 12

X[0] = 3;
X[2] = 7;

int c = X[7]; gcc will not complain about this, but the value
of x is going to be random!

C

Arrays

19

• Multidimensional arrays

• Indexing starts at 0 !

• Initialize arrays

int arr[4][3]; // a matrix containing 4x3 = 12 integers

arr[0][0] = 1;
arr[3][1] = 7;

arr[0][0] arr[0][1] arr[0][2]

arr[1][0] arr[1][1] arr[1][2]

arr[2][0] arr[2][1] arr[2][2]

arr[3][0] arr[3][1] arr[3][2]

int X[4] = { 3, 6, 7, 89};

int Y[2][4] = { {19, 2, 6, 99}, {55, 5, 555, 0} };

int Arr[] = { 3, 6, 77}; This automatically allocates memory
for an array of 3 integers

C

Strings

20

• Strings are arrays of char

• ‘\0’ is a special character that indicates the end of a
string

• Difference between string and char

char s[10] = “Hello”;

‘H’ ‘e’ ‘l’ ‘l’ ‘o’ ‘\0’

char s[6] = {‘H’, ’e’, ‘l’, ‘l’, ‘o’, ‘\0’};

‘H’ ‘e’ ‘l’ ‘l’ ‘o’ ‘\0’

We need 6 characters because there is ‘\0’

char c = ‘a’;

char s[2] = ‚a‛; ‘a’ ‘\0’

‘a’

char s[6];
s[0] = ‘H’;
s[1] = ‘e’;
s[2] = ‘l’;
s[3] = ‘l’;
s[4] = ‘o’;
s[5] = ‘\0’;

C

Strings functions

char s[6];
s = “Hello”;

Illegal ! String assignment can be
done only at declaration!

String specific functions are included in the library string.h

#include <string.h>

• strcpy() : copy a string to another

char s[6];
strcpy(s, “Hello”);

strcpy(string1 , string2); Copy string2 to string1

21

C

String functions

22

• strcmp() : compare two strings

char s1[] = “Hi”;
char s2[] = “Him”;
char s3[3];
strcpy(s3, s1);
int x = strcmp(s1, s2); // x != 0
int y = strcmp(s1, s3); // y = 0

strcmp(string1 , string2); Returns :
0 if string1 and string2 are the same
value != 0 otherwise

String specific functions are included in the library string.h

C

Strings functions

23

String specific functions are included in the library string.h

• strcat() : concatenate two strings

• strlen() : returns the length of a string (does not count ‘\0’)

char s1[] = “Hello ”;
char s2[] = “World!”;
strcat(s1, s2);

strcat(string1 , string2); Concatenate string2 at the
end of string1

‘H’ ‘e’ ‘l’ ‘l’ ‘o’ ‘ ‘ ‘W’ ‘o’ ‘r’ ‘l’ ‘d’ ‘\0’

char s1[] = “Hello”;
int x = strlen(s1); // x = 5

strlen(string);

C

• fgets() : get string from standard input (command line)

• sizeof() : returns the size (number of bytes occupied in memory)
of a variable (for strings it counts the number of elements,
including ‘\0’)

Reading Strings

24

Use functions from library stdio.h

char s1[100];
fgets(s1, sizeof(s1), stdin);

fgets(name , sizeof(name), stdin); Reads a maximum of
sizeof(name) characters
of a string from stdin
and saves them into
string name

‘H’ ‘e’ ‘l’ ‘l’ ‘o’ ‘\n’

NOTE: fgets() reads the newline character ‘\n’, so we should
substitute it with ‘\0’;

name[strlen(name)-1] = ‘\0’;
‘H’ ‘e’ ‘l’ ‘l’ ‘o’ ‘\0’

C

Reading numbers – Option 1

25

• First, read a string
• Then, convert string to number
• sscanf() : get string from standard input (command line)

25

char s1[100];
int x, y;
printf(“Please enter two numbers separated by a space\n”)
fgets(s1, sizeof(s1), stdin);

sscanf(s1, “%d %d”, &x, &y);

// x = 3; y = 18;

sscanf(string, “format”, &var1, …, &varN);

User enters: 3 18

C

Reading numbers – Option 2

26

• Read directly the number
• scanf() : get string from standard input (command line) and

automatically convert into a number

26

int x, y;
printf(“Please enter two numbers separated by a space\n”)

scanf(“%d %d”, &x, &y);

// x = 3; y = 18;

scanf(“format”, &var1, …, &varN);

User enters: 3 18

C

Strings functions - recap

27

• strcmp(s1, s2)

• strcpy(s1, s2)

• strcat(s1, s2)

• strlen(s)

• sizeof(s)

• fgets(s, sizeof(s1), stdin)

• sscanf(s, “%d”, &var)

char s1[] = “Hello”; char s2[] = “He”; int x; char c;

x = strcmp(s1, s2) // x != 0

strcpy(s2, s1); // s2 = “Hello”

strcat(s2, s1); //s2 = “HelloHello”

x = strlen(s1); // x = 5;

x = sizeof(s1); // x = 6;

fgets(s1, sizeof(s1), stdin);

sscanf(s1, “%d%c”, &x, &c);
// x = 7; c = ‘R’;

User enters “7R”

sumNums.c

C

Read PCP Ch 6

28

C

Homework 1 review

HOW TO COMPRESS/UNCOMPRESS folders in UNIX

• Compress folder ~/COMS1003/HW1 to HW1.tar.gz

tar -zcvf HW1.tar.gz ~/COMS1003/HW1

• Uncompress HW1.tar.gz to folder ~/COMS1003/HW1new

tar -zxvf HW1.tar.gz -C ~/COMS1003/HW1new

(note: ~/COMS1003/HW1new must exist already)

29

C

COMsW 1003-1

Introduction to Computer
Programming in C

Spring 2011

Instructor: Michele Merler

http://www1.cs.columbia.edu/~mmerler/comsw1003-1.html

Lecture 6

1

C

Announcements

2

Homework 1 is due next Monday

Exercise 2 is out

C

Today

3

• Strings

• Control Flow

• Loops (if time permits)

C

Review - arrays

4

• Multidimensional arrays

• Indexing starts at 0 !

• Initialize says

int X[4][3]; // a matrix containing 4x3 = 12 integers

X[0][0] = 1;
X[3][1] = 7;

X[0][0] X[0][1] X[0][2]

X[1][0] X[1][1] X[1][2]

X[2][0] X[2][1] X[2][2]

X[3][0] X[3][1] X[3][2]

int arr[4] = { 3, 6, 7, 89};

int arr2[2][4] = { {19, 2, 6, 99}, {55, 5, 555, 0} };

int arr[] = { 3, 6, 77}; This automatically allocates memory
for an array of 3 integers

C

Strings

5

• Strings are arrays of char

• ‘\0’ is a special character that indicates the end of a
string

• Difference between string and char

char s[10] = “Hello”;

‘H’ ‘e’ ‘l’ ‘l’ ‘o’ ‘\0’

char s[6] = {‘H’, ’e’, ‘l’, ‘l’, ‘o’, ‘\0’};

‘H’ ‘e’ ‘l’ ‘l’ ‘o’ ‘\0’

We need 6 characters because there is ‘\0’

char c = ‘a’;

char s[2] = ‚a‛; ‘a’ ‘\0’

‘a’

char s[6];
s[0] = ‘H’;
s[1] = ‘e’;
s[2] = ‘l’;
s[3] = ‘l’;
s[4] = ‘o’;
s[5] = ‘\0’;

C

Strings functions

char s[6];
s = “Hello”;

Illegal ! String assignment can be
done only at declaration!

String specific functions are included in the library string.h

#include <string.h>

• strcpy() : copy a string to another

char s[6];
strcpy(s, “Hello”);

strcpy(string1 , string2); Copy string2 to string1

6

C

String functions

7

• strcmp() : compare two strings

char s1[] = “Hi”;
char s2[] = “Him”;
char s3[3];
strcpy(s3, s1);
int x = strcmp(s1, s2); // x != 0
int y = strcmp(s1, s3); // y = 0

strcmp(string1 , string2); Returns :
0 if string1 and string2 are the same
value != 0 otherwise

String specific functions are included in the library string.h

C

Strings functions

8

String specific functions are included in the library string.h

• strcat() : concatenate two strings

• strlen() : returns the length of a string (does not count ‘\0’)

char s1[] = “Hello ”;
char s2[] = “World!”;
strcat(s1, s2);

strcat(string1 , string2); Concatenate string2 at the
end of string1

‘H’ ‘e’ ‘l’ ‘l’ ‘o’ ‘ ‘ ‘W’ ‘o’ ‘r’ ‘l’ ‘d’ ‘\0’

char s1[] = “Hello”;
int x = strlen(s1); // x = 5

strlen(string);

C

• fgets() : get string from standard input (command line)

• sizeof() : returns the size (number of bytes occupied in memory)
of a variable (for strings it counts the number of elements,
including ‘\0’)

Reading Strings

9

Use functions from library stdio.h

char s1[100];
fgets(s1, sizeof(s1), stdin);

fgets(name , sizeof(name), stdin); Reads a maximum of
sizeof(name) characters
of a string from stdin
and saves them into
string name

‘H’ ‘e’ ‘l’ ‘l’ ‘o’ ‘\n’

NOTE: fgets() reads the newline character ‘\n’, so we should
substitute it with ‘\0’;

s1[strlen(s1)-1] = ‘\0’;
‘H’ ‘e’ ‘l’ ‘l’ ‘o’ ‘\0’

C

Reading numbers – Option 1

10

• First, read a string
• Then, convert string to number
• sscanf() : get string from standard input (command line)

10

char s1[100];
int x, y;
printf(“Please enter two numbers separated by a space\n”)
fgets(s1, sizeof(s1), stdin);

sscanf(s1, “%d %d”, &x, &y);

// x = 3; y = 18;

sscanf(string, “format”, &var1, …, &varN);

User enters: 3 18

C

Reading numbers – Option 2

11

• Read directly the number
• scanf() : get string from standard input (command line) and

automatically convert into a number

11

int x, y;
printf(“Please enter two numbers separated by a space\n”)

scanf(“%d %d”, &x, &y);

// x = 3; y = 18;

scanf(“format”, &var1, …, &varN);

User enters: 3 18

C

Strings functions - recap

12

• strcmp(s1, s2)

• strcpy(s1, s2)

• strcat(s1, s2)

• strlen(s)

• sizeof(s)

• fgets(s, sizeof(s1), stdin)

• sscanf(s, “%d”, &var)

char s1[] = “Hello”; char s2[] = “He”; int x; char c;

x = strcmp(s1, s2) // x != 0

strcpy(s2, s1); // s2 = “Hello”

strcat(s2, s1); //s2 = “HelloHello”

x = strlen(s1); // x = 5;

x = sizeof(s1); // x = 6;

fgets(s1, sizeof(s1), stdin);

sscanf(s1, “%d%c”, &x, &c);
// x = 7; c = ‘R’;

User enters “7R”

sumNums.c

C

Example – sumNums.c

13

C

Control Flow

14

• So far we have seen linear programs,
statements are executed in the order in which
they are written

• What if we want to skip some instructions, or
execute them only under certain conditions?

• Solution: control flow

C

Control flow – General syntax

15

keyword (condition) {

body statement 1;

body statement n;

}

. . .
keyword (condition)

body statement 1;

If the body of the control flow has only one statement, we can optionally
not use the { }

The body is executed
only if the condition
is true!

C

Control flow – if

16

• To execute a particular body of statements only if a
particular condition is satisfied

. . .

int x = 3, y;

if (x > 2) {

x++;
y = x;

}

printf(“y = %d\n”,y);

Example
if (condition) {

body statement 1;

body statement n;

}

. . .

C

int x = 3, y;

if (x > 2) {

x++;
y = x;

}
else {

y = 2 * x;

}

printf(“y = %d\n”,y);

Control flow - else

17

• To execute a particular body of statements only if a
particular condition is not satisfied

. . .

Example
if (condition) {

body statement 1;

body statement n;

}
else {

body statement 1;

body statement m;

}
. . .

. . .

C

Control Flow – if/else example

18

int x = 3, y = 1;

if(x > 2)
if(x == 4)

y = x;
else

y = 2 * x;

printf(“y = %d\n”,y);

C

Control Flow – if/else example

19

int x = 3, y = 1;

if(x > 2)
if(x == 4)

y = x;
else

y = 2 * x;

printf(“y = %d\n”,y);

else refers always to the last if that
was not already closed by another else

C

Control Flow – if/else example

20

int x = 3, y = 1;

if(x > 2) {

if(x == 4) {
y = x;

}
else {

y = 2 * x;
}

}

printf(“y = %d\n”,y);

This is why we need
brackets and indentation!

C

Control Flow – if/else example

21

int x = 3, y = 1;

if(x > 2) {

if(x == 4) {
y = x;

}
}
else {

y = 2 * x;
}

printf(“y = %d\n”,y);

Using brackets we can
change the if to which the
else refers

C

Control flow - Switch

22

int i,j;

switch(i) {

case 1:
j = i + 1;
break;

case 10:
j = i – 1;

default:
j = 1;

}

Example

switch (variable) {

case val1:
statement 1;

break;

case val2:
statement 1;

/* fall through */

default:
statement 1;

break;
}

. . .

Equivalent to a series of if/else statements

. . .

. . .

. . .

C

Control flow - Switch

23

int i,j;

switch(i) {

case 1:
j = i + 1;
break;

case 10:
j = i – 1;

default:
j = 1;

}

Example

switch (variable) {

case val1:
statement 1;

break;

case val2:
statement 1;

/* fall through */

default:
statement 1;

break;
}

. . .

Equivalent to a series of if/else statements

. . .

. . .

. . .
If variable has value different
from all other cases

i j

1 2

10 1

Any other
number

1

These
values are
CONSTANT

C

Control flow - Switch

24

int i,j;

switch(i) {

case 1:
j = i + 1;
break;

case 10:
j = i – 1;

default:
j = 1;

}

Example

switch (variable) {

case val1:
statement 1;

break;

case val2:
statement 1;

/* fall through */

default:
statement 1;

break;
}

. . .

Equivalent to a series of if/else statements

. . .

. . .

. . .
If variable has value different
from all other cases

These
values are
CONSTANT

After last case I can
avoid using break

C

Switch

25

int i,j;

switch(i) {

case 1:
j = i + 1;
break;

case 10:
j = i – 1;

default:
j = 1;

}

Example

switch (variable) {

case val1:
statement 1;

break;

case val2:
statement 1;

/* fall through */

default:
statement 1;

break;
}

. . .

Equivalent to a series of if/else statements

. . .

. . .

. . .
variable can only be char or int !

float i = 2;

switch(i) {

C

Control Flow - Loops

26

• What if we want to perform the same operation
multiple times?

• Example: we want to initialize all elements in a 100
dimensional array of integers to the value 7

int arr[100];

arr[0] = 7;
arr[1] = 7;
arr[2] = 7;
arr[3] = 7;

arr[99] = 7;

. . .

This is crazy!

C

Loops - while

27

int i = 0;
int arr[100];

while(i < 100) {

arr[i] = 7;
i++;

}

27

• To execute a particular body of statements only until
a particular condition is satisfied

. . .

Example
while (condition) {

body statement 1;

body statement n;

}

. . .

C

Loops – do/while

28

int i = 10,
int j = 0;

while(i < 10)
{

j++;
i++;

}

28

• First execute body statements, then check if
condition is satisfied

. . .

Example
do {

body statement 1;

body statement n;

} while (condition);

. . .

int i = 10;
int j = 0;

do
{

j++;
i++;

} while(i < 10);

Example

j = ?

C

Loops – do/while

29

int i = 10,
int j = 0;

while(i < 10)
{

j++;
i++;

}

29

• First execute body of statements, then check if
condition is satisfied

. . .

Example
do {

body statement 1;

body statement n;

} while (condition);

. . .

int i = 10;
int j = 0;

do
{

j++;
i++;

} while(i < 10);

Example

j = 0 j = 1

C

When break is
reached, the
statements after
it are ignored
and the program
exits the loop

Loops - break

30

• To interrupt a loop once a certain condition different
from the one in the loop declaration

int i = 0;
char s[10] = “hi”;

while(i < 10)
{

if(s[i]==‘\0’)
break;

printf(“%c”,s[i]);

i++;

}

. . .

Example
while(condition1){

body statement 1;

if(condition2)
break;

body statement n;

}

. . .
. . .

C

When continue
is reached, the
statements after
it are ignored,
and the loop
continues

Loops - continue

31

• To ignore the following instructions in a loop

int i = 0, sum = 0;
int s[3] = {7, 5, 9};

while(i < 3)
{

if(s[i] < 6)
continue;

sum += s[i];
}

. . .

Example
while(condition1){

body statement 1;

if(condition2)
continue;

body statement n;

}
. . .

. . .

C

break vs. continue

32

int x = 0, y = 0;

while(x < 10) {

x++;

if(x == 3) {

continue;
}

y++;
}

y = ?

int x = 0, y = 0;

while(x < 10) {

x++;

if(x == 3) {

break;
}

y++;
}

C

break vs. continue

33

int x = 0, y = 0;

while(x < 10) {

x++;

if(x == 3) {

continue;
}

y++;
}

y = 9

int x = 0, y = 0;

while(x < 10) {

x++;

if(x == 3) {

break;
}

y++;
}

y = 2

C

Loops - for

34

int i;
int arr[100];

for(i = 0; i < 100 ; i++) {

arr[i] = 7;

}

Example

for (initial state ; condition ; state change) {

body statement 1;

body statement n;

}

. . .

int i = 0;
int arr[100];

while(i < 100) {

arr[i] = 7;
i++;

}

C

Homework 1 review

HOW TO COMPRESS/UNCOMPRESS folders in UNIX

• Compress folder ~/COMS1003/HW1 to HW1.tar.gz

tar -zcvf HW1.tar.gz ~/COMS1003/HW1

• Uncompress HW1.tar.gz to folder ~/COMS1003/HW1new

tar -zxvf HW1.tar.gz -C ~/COMS1003/HW1new

(note: ~/COMS1003/HW1new must exist already)

35

C

COMsW 1003-1

Introduction to Computer
Programming in C

Spring2011

Instructor: Michele Merler

http://www1.cs.columbia.edu/~mmerler/comsw1003-1.html

Lecture 7

1

C

Today

2

• Loops (from Lec6)

• Scope of variables

• Functions

C

Scope of Variables

3

• Scope is the portion of program in which a variable is valid

• Depends on where the variable is declared

• Variables can be

 Global : valid everywhere
 Local : valid in a specific portion of the program

included in { }

C

Scope of Variables

4

• Scope is the portion of program in which a variable is valid
• Depends on where the variable is declared
• Variables can be

#include <stdio.h>

double x = 3; /* global variable */

int main() {

double y = 7.2;

if(x > 2){

double z = x / 2;

}

return(0);
}

Scope of x
Scope of y

 Global : valid everywhere
 Local : valid in a specific portion of the program included in { }

Scope of z

C

Scope of variables

5

#include <stdio.h>

double z = 1;

int main() {

printf("z1 = %lf\n", z); // z1 = 1.0000000

double z = 7;

if(z > 2){

double z = 0.5;

printf("z2 = %lf\n", z); // z2 = 0.5000000

}

printf("z3 = %lf\n", z); // z3 = 7.0000000

{
double z = 11;
printf("z4 = %lf\n",z); // z4 = 11.0000000

}

printf("z5 = %lf\n",z); // z5 = 7.0000000

return(0);

}

C

Scope of variables

6

#include <stdio.h>

double z = 1;

int main() {

printf("z1 = %lf\n", z); // z1 = 1.0000000

double z = 7;

if(z > 2){

double z = 0.5;

printf("z2 = %lf\n", z); // z2 = 0.5000000

}

printf("z3 = %lf\n", z); // z3 = 7.0000000

{
double z = 11;
printf("z4 = %lf\n",z); // z4 = 11.0000000

}

printf("z5 = %lf\n",z); // z5 = 7.0000000

return(0);

}

C

Class of Variables

7

• A variable can be either

– Temporary : allocated in stack at beginning of block (if too
many local variables allocated, stack overflow)

– Permanent : allocated before the program starts

• Global variables are always permanent

• Local variables are temporary unless they are declared
static

Stack: First In Last Out
(FILO) type of memory

poppush

C

Variables – Scope and Class

8

Declared Scope Class initialized

Outside all blocks Global Permanent Once

Static outside all blocks Global Permanent Once

Inside a block Local Temporary Each time block is entered

Static inside a block Local Permanent Once

From PCP Ch 9
#include <stdio.h>

int z = 0;
static int b;

int main() {

int g = 0;

while(z < 3){

int y = 0;
static int x = 0;

y++;
x++;
z++;

printf(“x = %d, y = %d, z = %d\n", x, y, z);

}
return(0);

}

x = 1, y = 1, z = 1
x = 2, y = 1, z = 2
x = 3, y = 1, z = 3

y is initialized every time

C

Functions

9

returnType functionName(parameters) {

/* body of function */

return();
}

• Functions allow to write and reuse pieces of code that
accomplish a task

• Help keeping large codes ordered

inputoutput

C

Functions - Example

10

double sumTwoNumbers(double n1, double n2) {

double s;

s = n1 + n2;

return(s);
}

The function sumTwoNumbers takes two numbers as input
and returns their sum.

C

Functions - Example

11

double sumTwoNumbers(double n1, double n2) {

double s;

s = n1 + n2;

return(s); // return s;
}

The function sumTwoNumbers takes two numbers as input
and returns their sum.

Returned
type must
be
consistent!

These two notations are equivalent

C

Functions – Example

12

#include <stdio.h>

double sumTwoNumbers(double n1, double n2){

double s;

n1++;

s = n1 + n2;

return(s);
}

int main() {

double x, y, z;

x = 2;
y = 2;

z = sumTwoNumbers(x, y);

printf(“%f + %f = %f\n”, x, y, z);

return(0);

}

Scope of n1 and n2

is scope of function!

2 + 2 = 5 !

Function
Declaration
must happen
BEFORE its use
in the main()
function

sumNumbers.c

C

Functions - void

13

• If a function does not take any input

• If a function does not return any value

/* function to print an arrow to command line */
void printArrow(void){

/* function body */

return;
}

/* function to print multiple arrows to command line */
void printMultipleArrows(int nTimes){

int i;

for(i = 0; i < nTimes; i++){

printArrow();
}

return;
}

int main() {

int x = 3;

printMultipleArrows(x);

return(0);

}

printArrow.c

C

/* function to print an arrow to command line */
void printArrow(void){

/* function body */

return;
}

/* function to print multiple arrows to command line */
void printMultipleArrows(int nTimes){

int i;

for(i = 0; i < nTimes; i++){

printArrow();
}

return;
}

int main() {

int x = 3;

printMultipleArrows(x);

return(0);

}

Functions - void

14

• If a function does not take any input

• If a function does not return any value

Function invoked
without passing
any parameter ()

Function does not
return anything

printArrow.c

C

/* function to print an arrow to command line */
void printArrow(void){

/* function body */

return;
}

/* function to print multiple arrows to command line */
void printMultipleArrows(int nTimes){

int i;

for(i = 0; i < nTimes; i++){

printArrow();
}

return;
}

int main() {

int x = 3;

printMultipleArrows(x);

return(0);

}

Functions - void

15

• If a function does not take any input

• If a function does not return any value

Function is
declared before
being used

Return can be
viewed as
equivalent of break
for functions

printArrow.c

C

Functions – Passing Arrays

16

/* function to compute the length of a string*/
int length(char s[]){

int size = 0;

while(s[size] != ‘\0’){
size++;

}

return size;
}

/* function to copy a string*/
char[] copyString(char s[]){

char s2[100];

strcpy(s2, s);

return s2;
}

length.c

C

Functions – Passing Arrays

17

/* function to compute the length of a string*/
int length(char s[]){

int size = 0;

while(s[size] != ‘\0’){
size++;

}

return size;
}

/* function to copy a string*/
char[] copyString(char s[]){

char s2[100];

strcpy(s2, s);

return s2;
}

length.c

C

Functions – exit()

18

int length(char s[]){

int size = 0;

while(s[size] != ‘\0’){

if(s[size] == ‘m’)
exit(-1);

size++;
}

return size;
}

exit() is used to exit (=terminate) the program

Different from return, which simply exits the function

Exit() is defined inside the library stdlib.h

#include <stdlib.h>

C

COMsW 1003-1

Introduction to Computer
Programming in C

Spring 2011

Instructor: Michele Merler

http://www1.cs.columbia.edu/~mmerler/comsw1003-1.html

Lecture 8

1

C

Announcements

2

Homework 1 correction out this afternoon

Homework 2 is out

– Due Monday, February 28th

– Start early (especially Exercise 2)!

C

Today

3

• Functions

• Recursion

• Debugging (if time)

C

Infinite Loops

4

while (1){

/* body modifies x */

if(x!= 0) {
break;

}

}

• Loops where the condition is always TRUE

• Will stop only with:
• break
• modification of the condition variables

C

Infinite Loops

5

• Loops where the condition is always TRUE

• Will stop only with:
• break
• modification of the condition variables

while (1 != 0)

while (1 is true)

Always!

while (1){

/* body modifies x */

if(x!= 0) {
break;

}

}

C

Operators - Logical

• A variable with value 0 is false, a variable with value !=0 is true

int x = 3, y = 0, z, k, t, q = -3;

z = x && y; // z = 0;

k = x || y; // k = 1;

t = !q; // t = 0;

6

x is true but y is false

x is true

q is true

C

Infinite Loops

7

int cond = 7;

while (cond){

/* body */
if(x[3][5] != 7){

cond = 0;
}

}

• Loops where the condition is always TRUE

• Will stop only with:
• break
• modification of the condition variables

while (cond != 0)

while (cond is true)

Until we set cond to 0!

C

Functions Example

8

• Simple calculator

• Program that computes one basic
arithmetic operation between 2 numbers

calculator.c

C

Functions - Recursion

9

• What if a function calls itself? Recursion

C

Functions - Recursion

10

• A recursive function must have two
properties:

– Ending point (i.e. a terminating condition)

– Simplify the problem (every call is to a simpler
input)

C

Example: Fibonacci sequence

11

int i = 0;
int fib[100];

fib[0] = 0;
fib[1] = 1;

for(i = 2; i < 100 ; i++) {

fib[i] = fib[i-1] + fib[i-2];

}

Code to compute the first 100 Fibonacci numbers:

21   nnn FFFcan be computed with recurrence00 F 11 F

In mathematics, famous numbers following the sequence

0 1 1 2 3 5 8 13 21 34 55 89 …

Given ,

C

Functions - Recursion

12

• What if a function calls itself? Recursion
• What is the value of the number at position num in

the Fibonacci sequence?

/* Fibonacci value of a given position in the sequence */
int fib (int num) {

switch(num) {
case 0:

return(0);

case 1:
return(1);

default: /* Including recursive calls */
return(fib(num - 1) + fib(num - 2));

}
}

Why are there no
breaks ?

recursiveFib.c

C

Functions - Recursion

13

• What if a function calls itself? Recursion
• What is the value of the number at position num in

the Fibonacci sequence?

/* Fibonacci value of a given position in the sequence */
int fib (int num) {

switch(num) {
case 0:

return(0);

case 1:
return(1);

default: /* Including recursive calls */
return(fib(num - 1) + fib(num - 2));

}
}

Ending Points

recursiveFib.c

Simplify problem

C

Debugging

14

C

Debugging

15

• Debugging consists basically in finding and correcting
run-time errors in your program

• Multiple ways of doing it

• Manual runs (for small programs)

• Insert printf() in key lines

• There also exist INTERACTIVE debugging tools

• We will now see a basic one for UNIX: gdb

C

gdb

16

1. In order to use gdb on a program, we must use the –g option when
compiling it

2. Then, we can use the gdb command to start the interactive
debugging environment

gcc –g program.c –Wall –o nameOfExecutable

gdb nameOfExecutable

1.
2.

C

gdb commands

17

• run : run executable (program)currently watched.

(gdb) run

• kill : kill current execution of program

(gdb) kill

• list : show program source code

(gdb) list 2,8 : shows lines 2 to 8 from source program

• print : print value of a variable or expression at the current point

(gdb) print buf

C

gdb commands

18

• break : insert breakpoint in program. Debugging run will stop at
the breakpoint

(gdb) break nameSource.c : lineNumber

(gdb) break test.c: 12

• next : step to the next line (execute current line)

(gdb) next

• continue : continue with execution until next breakpoint or end
of program

(gdb) continue

• Quit : exit gdb

(gdb) quit

C

Graphical GDB

19

• gdb can be run from Emacs

• Press M-x (in Windows Esc-x)

• Insert gdb

• Insert executableName

• Visual debugger

C 20

Can enable
breakpoints
with a click

C

COMsW 1003-1

Introduction to Computer
Programming in C

Spring 2011

Instructor: Michele Merler

http://www1.cs.columbia.edu/~mmerler/comsw1003-1.html

Lecture 9

1

C

Are Computers Smarter than Humans?

2http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-
over-humans-in-round-2.html

Link

http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-over-humans-in-round-2.html
http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-over-humans-in-round-2.html
http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-over-humans-in-round-2.html
http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-over-humans-in-round-2.html
http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-over-humans-in-round-2.html
http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-over-humans-in-round-2.html
http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-over-humans-in-round-2.html
http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-over-humans-in-round-2.html
http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-over-humans-in-round-2.html
http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-over-humans-in-round-2.html
http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-over-humans-in-round-2.html
http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-over-humans-in-round-2.html
http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-over-humans-in-round-2.html
http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-over-humans-in-round-2.html
http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-over-humans-in-round-2.html
http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-over-humans-in-round-2.html
http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-over-humans-in-round-2.html
http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-over-humans-in-round-2.html
http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-over-humans-in-round-2.html
http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-over-humans-in-round-2.html
http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-over-humans-in-round-2.html
http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-over-humans-in-round-2.html
http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-over-humans-in-round-2.html
http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-over-humans-in-round-2.html
http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-over-humans-in-round-2.html
http://www.youtube.com/watch?v=dr7IxQeXr7g

C

Today

3

• Homework 1 Correction

• Debugging (from Lecture 8)

• C Preprocessor

C

Conditional Assignment

4

• Another way of embedding if - else in a single statement

• Uses the ? : operators

int x = 7, y;

y = (x > 5) ? x : 5;

variable = (condition) ? val1 : val2 ;

int x = 7, y;

if(x > 5) {
y = x;

}
else{

y = 5;
}

y= 7

If condition is true, we
assign val1 to variable

If condition is false, we
assign val2 to variable

C

The comma operator

5

• In C statements can also be separated by , not only ;

int x = 2, char c = ‘m’;

int x = 2, y;

Be careful with declarations!

V Same type, OK

Different types, NO

int x = 2;
int y;

x++, y = x/3, y += 2;

int x = 2;
int y;

x++;
y = x/3;
y = y+2;

C

The comma operator

6

Special case, the for loop statement

int i, flag = 1;

char word[100] = “radar”;

for(i=0 , j=strlen(word)-1 ; i < strlen(word)/2 ; i++ , j--) {

if(word[i] != word[j]) {
flag = 0;
break;

}
}

Example: the palindrome word checking. Check if a word is the
same when read right to left

C

The comma operator

7

Special case, the for loop statement

for(i=0 , j=strlen(word)-1 ; i < strlen(word)/2 ; i++ , j--) {

if(word[i] != word[j]) {
flag = 0;
break;

}
}

Example: the palindrome word checking

Initial conditions
change
conditions

C

Advanced Types - Const

8

const defines a variable whose value cannot be changed

const double PI = 3.14;

double r = 5, circ;

circ = 2 * PI * r;

PI = 7;

C

Advanced Types - Const

9

const defines a variable whose value cannot be changed

const double PI = 3.14;

double r = 5, circ;

circ = 2 * PI * r;

PI = 7; Once it’s initialized, a const
variable cannot change value

C

C Preprocessor

10

C

C Preprocessor

11

Preprocessor is a facility to handle
– Header files
– Macros

Independent from C itself, it’s basically a text editor
that modifies your code before compiling

Preprocessor statements begin with # and do not end
with ;

C

C Preprocessor

12

. . .
. . .

myFile .c (program) myFile (executable)

Compiler

0100101010021
0101001010000
11110011…

…010010100001
1110001110101

. . .

C

C Preprocessor

13

. . .
. . .

myFile.c (program)

. . .

myFile.c
(preprocessor code)

Preprocessor

myFile (executable)

. . .

0100101010021
0101001010000
11110011…

…010010100001
1110001110101

. . .

Compiler

C

View Preprocessor Code

14

• gcc has a special option that allows to run
only the preprocessor

gcc -E myFile.c

We can send output to a file using the UNIX > operator

gcc -E myFile.c > outFile.txt

Saves gcc’s output to outFile.txt

C

Header files

15

• Header files are fundamentally libraries

• Their extension is .h

• They contain function definitions, variables
declarations, macros

• In order to use them, the preprocessor uses the
following code

• So far, we have used predefined C header files,
but we can create our own! (more on this in
upcoming Lectures)

#include <nameOfHeader.h>

#include “nameOfHeader.h”

For standard C libraries

For user defined headers

C

Header files

16

. . .
. . .

myFile.c myFile.c

Preprocessor

#include <stdio.h>

. . .

stdio.h

C

Macros

17

• A macro is a piece of code c which has been given a
name n

• Every time we use that n in our program, it gets
replaced with c

• The preprocessor allows you to declare them with
#define

• Two types:
– Object-like macros
– Function-like macros

C

Object like macros

18

• Constants, usually defined on top of
programs

#define name text_to_substitute

#define SIZE 10

#define FOR_ALL for(i=0; i< SIZE; i++)

macros.c

C

Object like macros

19

#define SIZE 10

/* main function */
int main(){

int arr[SIZE];

return(0);
}

From now on, every time we
write SIZE inside our program it
is going to be replaced by 10

macros.c

C

Object like macros

20

• Some compilers do not allow you to
declare arrays with a variable as size

int size1 = 10;
int arr1[size1]; /* should always cause error */

const int size2=10;
int arr2[size2]; /* causes errors in many compilers */

#define SIZE 10
int arr3[SIZE]; /* OK in any C compiler */

macros.c

C

Function-like macros

21

• Macros that can take parameters like functions

• Parameters MUST be included in parentheses in
the macro name, without spaces

• It is a good habit to include parameters in
parentheses also in the text to be substituted

macros.c

#define SQR(x) ((x) * (x))

#define MAX(x,y) ((x) > (y) ? (x) : (y))

C

Conditional Compilation

22

• Allows to use or not certain parts of a
program based on definitions of macros

condComp.c

#ifdef var

#ifndef var

#else

#endif

#undef var

if var is defined, consider the following code

if var is not defined, consider the following code

close if(n)def

undefine var (opposite of #define)

C

Conditional Compilation

23

condComp.c

#define DEBUG

#ifdef DEBUG

printf(“The value of x is %d\n”, x);

#endif

.
.
.

If DEBUG was defined earlier in the program, then the
statement printf(…); is considered, otherwise the
preprocessor does not copy it to the file to be compiled

C

COMSW 1003-1

Introduction to Computer
Programming in C

Spring 2011

Instructor: Michele Merler

http://www1.cs.columbia.edu/~mmerler/comsw1003-1.html

Lecture 10

1

C

Announcements

2

Change in Office Hours this week

1 hour Wednesday, Feb 23rd, 12pm-1pm

1 hour Saturday, Feb 26th, 11am-12pm

C

Today

3

• Preprocessor (from Lecture 9)

• Advanced C Types

C

Advanced Types - Struct

4

• Arrays group variables of the same type
• Structs group variables of different types

struct structName {

fieldType fieldNameval1;
fieldType fieldNameval2;

fieldType fieldNamevalN;
};

Struct definition

Once we define the struct, we can use structName as if
were a type, to create variables!

. . .

students.c

C

Advanced Types - Struct

5

Example: we want to build a database with the name, age and grade
of the students in the class

Student 1
Name:
Age:
Grade:

Student 2
Name:
Age:
Grade:

Student N
Name:
Age:
Grade:

. . .

struct student {

char name[100];
int age;
double grade;

};

struct student st1;

st1 is a variable of
type struct!

C

Advanced Types - Struct

6

In order to access struct fields, we need to use the
. operator

struct student {

char name[100];
int age;
double grade;

};

struct student st1, st2;

st1.age = 3;
st2.age = st1.age – 10;

st1.age is a variable
of type int, I can
use it as a regular
variable !

C

Advanced Types - Struct

7

We can initialize a struct variable at declaration time,
just like with arrays

struct student {

char name[100];
int age;
double grade;

};

struct student st1 = {“mike”, 22, 77.4};

The initialization fields must
be consistent with the fields
types !

char int double

C

Advanced types - Typedef

8

typedef is used to define a new type

typedef type nameOfNewType;

typedef int myInt;

myInt c = 3;

typedef int myIntArray[7];

myIntArray arr;

for(c=0; c<7; c++){
arr[c] = 1;

}

C is of type myInt, which
is equivalent to int

arr is of type myIntArray,
which is equivalent to an array of
7 int

C

Advanced types - Typedef

9

typedef is used to define a new type

struct student {

char name[100];
int age;
double grade;

};

struct student st1, st2;

st1.age = 3;
st2.age = st1.age – 10;

struct student {

char name[100];
int age;
double grade;

};

typedef struct student stud;
stud st1, st2;

st1.age = 3;
st2.age = st1.age – 10;

C

Advanced Types - Union

10

• Similar to struct, but all fields share same memory

• Same location can be given many different field
names

struct value{

int iVal;
float fVal;

};

union value{

int iVal;
float fVal;

};

iVal

fVal

iVal / fVal

unions.c

We can use the fields of the
union only one at a time!

C

Advanced Types - Enum

11

• Designed for variables containing only a limited set of values

• Defines a set of named integer constants, starting from 0

enum name{ item1, item2, … , itemN};

enum dwarf { BASHFUL, DOC, DOPEY, GRUMPY, HAPPY, SLEEPY, SNEEZY};

enum dwarf myDwarf = SLEEPY;

myDwarf = 1 + HAPPY; // myDwarf = SLEEPY = 5;

int x = GRUMPY + 1; // x = 4;

printf("dwarf %d\n",BASHFUL); // ‘dwarf 0’

0 1 2 3 4 5 6

C

Advanced Types - Const

12

const defines a variable whose value cannot be changed

const double PI = 3.14;

double r = 5, circ;

circ = 2 * PI * r;

PI = 7;

circ.c

C

Advanced Types - Const

13

const defines a variable whose value cannot be changed

const double PI = 3.14;

double r = 5, circ;

circ = 2 * PI * r;

PI = 7; Once it’s initialized, a const
variable cannot change value

circ.c

C

Advanced Types - Const

14

const defines a variable whose value cannot be changed

double computeCirc(const double r, const double PI){

r++; PI++;

return(2 * r * PI);

}

/* main function */
int main(){

const double PI = 3.14;

double r = 5, circ, circ2;

circ = 2 * PI * r;
circ2 = computeCirc(r, PI);

return 0;

}

circ.c

C

Advanced Types - Const

15

const defines a variable whose value cannot be changed

double computeCirc(double r, const double PI){

r++;

PI++;

return(2 * r * PI);

}

/* main function */
int main(){

const double PI = 3.14;

double r = 5, circ, circ2;

circ = 2 * PI * r;
circ2 = computeCirc(r, PI);

return 0;

}

circ.c

V

C

Advanced Types - Const

16

const defines a variable whose value cannot be changed

double computeCirc(double r, double PI){

r++;

PI++;

return(2 * r * PI);

}

/* main function */
int main(){

const double PI = 3.14;

double r = 5, circ, circ2;

circ = 2 * PI * r;
circ2 = computeCirc(r, PI);

return 0;

}

circ.c

V
V

C

COMsW 1003-1

Introduction to Computer
Programming in C

Spring 2011

Instructor: Michele Merler

http://www1.cs.columbia.edu/~mmerler/comsw1003-1.html

Lecture 11

1

C

Announcements

2

• Grades for Homework 1 posted on
Coursewors

• Homework 2 is due next Monday at the
beginning of class

• Bring the printout to class!

C

Pointers

3

C

Pointers

4

Remember what happens when we declare a variable:
the computer allocates memory for it.

int x; Main
memory

Address
033727FA88

4 bytes (=32 bits)

Value chosen by the
computer

C

Pointers

5

When we assign a value to a variable, the computer stores that
value at the address in memory that was previously allocated for
that variable.

int x;
x = 3;

Main memory

00000000 00000000 00000000 00000011Address
033727FA88

4 bytes (=32 bits)

x *= 3; // x = 9 Main memory

00000000 00000000 00000000 00001001

C

Pointers

6

Pointers are variables for memory addresses.

They are declared using the * operator.

They are called pointers because they point to the place in memory
where other variables are stored.

How can we know what the address in memory of a variable is?
The & operator.

int x;
x = 3;

int *y;

y = &x;

Main memory

00000000 00000000 00000000 00000011y

C

Pointers - Syntax

7

When we declare a pointer, we must specify the type of variable it will be
pointing to

type *ptrName;

y

int x;
x = 3;

int *y;

y = &x;

If we want to set a pointer to point to a variable, we must use the &
operator

ptrName = &varName;

Main memory

00000000 00000000 00000000 00000011

C

Pointers : operators * and &

8

ptr

int x = 3;

int *ptr;

ptr = &x;

*ptr = 5; // x = 5;

* dereference operator : gives the value in the memory pointed by a pointer
(returns a value)

& reference operator: gives the address in memory of a variable
(returns a pointer)

Make ptr point to
the address of x

Modify the
value in address
pointed by ptr

Main memory

00000000 00000000 00000000 00000011

C

Pointers : operators * and &

9

int x = 3;

int *ptr;

ptr = &x;

*ptr = 5; // x = 5;

* dereference operator : gives the value in the memory pointed by a pointer
(returns a value)

& reference operator: gives the address in memory of a variable
(returns a pointer)

Make ptr point to
the address of x

Modify the
value in address
pointed by ptr

Code Meaning

x Variable of type int

ptr Pointer to an element of
type int

&x Pointer to x

*ptr Variable of type int

C

Pointers : operators * and &

10

&ptr // pointer to a pointer

*x // x is not a pointer

* dereference operator : gives the value in the memory pointed by a pointer
(returns a value)

& reference operator: gives the address in memory of a variable
(returns a pointer)

int x;

int *ptr;

&x

*ptr

V

C

Pointers : operators * and &

11

&ptr // pointer to a pointer

*x // x is not a pointer

* dereference operator : gives the value in the memory pointed by a pointer
(returns a value)

& reference operator: gives the address in memory of a variable
(returns a pointer)

int x;

int *ptr;

&x

*ptr

V

This is weird but actually ok,
we will see its meaning later

C

Pointers

12

Multiple pointers can point to the same address

int x = 3, y = 2;

int *ptr = &x;

int *ptr2 = ptr;

*ptr = 7; // x = 7;
*ptr2 = *ptr2 + 1; // x = 8;

Main
memory

0000 0000 0000 0011ptr
ptr2

NOTE: first 4 bits
omitted to save space

x

0000 0000 0000 0010 y

C

Pointers

13

Multiple pointers can point to the same address

int x = 3, y = 2;

int *ptr = &x;

int *ptr2 = ptr;

*ptr = 7; // x = 7;

Main
memory

0000 0000 0000 0111ptr
ptr2

NOTE: first 4 bits
omitted to save space

x

0000 0000 0000 0010 y

C

Pointers

14

Multiple pointers can point to the same address

int x = 3, y = 2;

int *ptr = &x;

int *ptr2 = ptr;

*ptr = 7; // x = 7;
*ptr2 = *ptr2 + 1; // x = 8;

Main
memory

0000 0000 0000 1000ptr
ptr2

NOTE: first 4 bits
omitted to save space

x

0000 0000 0000 0010 y

C

Pointers

15

Multiple pointers can point to the same address

int x = 3, y;

int *ptr = &x;

int *ptr2 = ptr;

*ptr = 7; // x = 7;
*ptr2 = *ptr2 + 1; // x = 8;

ptr = &y;

*ptr2 = 10; // x = 10;

ptr

ptr2

Ptr2 is still pointing to x,
even if ptr changed

Main
memory

0000 0000 0000 1010 x

0000 0000 0000 0010 y

C

Pointers

16

Be careful when using incremental operators!

int x = 3;

int *ptr = &x;

*ptr++; // x = ?

Main
memory

0000 0000 0000 0011

ptr

In this case I am incrementing ptr, NOT the value
of the variable pointed by it!

C

Pointers

17

Be careful when using incremental operators!

int x = 3;

int *ptr = &x;

(*ptr)++; // x = 4;

Main
memory

0000 0000 0000 0100ptr

C

Pointers and Arrays

18

• When set a pointer to an array, the pointer points to the
first element in the array

• C automatically keeps pointer arithmetic in terms of the
size of the variable type being pointed to

float arr[3] = {1, 2, 5};
float *pa;

pa = arr;
pa = &arr[0];

arr[0] *pa
arr[1] *(pa+1)
arr[2] pa[2]

These two notations are equivalent

C

Pointers and Arrays

19

• When set a pointer to an array, the pointer points to the
first element in the array

• C automatically keeps pointer arithmetic in terms of the
size of the variable type being pointed to

float arr[3] = {1, 2, 5};
float *pa;

pa = arr;
pa = &arr[0];

arr[0] *pa
arr[1] *(pa+1)
arr[2] pa[2]

These two notations are equivalent

Once we have set a pointer to the
beginning of one array, we can use it
as if it were the array itself!

C

Pointers and Arrays

20

When set a pointer to an array, the pointer points to the first
element in the array

float arr[3] = {1, 2, 5};

float *p = arr;

*p = 5; // arr[0] = 5;

Main
memory

0000 0000 0000 0001p

0010 0010 0000 0010

0000 0000 0000 0101

arr[0]

arr[1]

arr[2]

C

Pointers and Arrays

21

When set a pointer to an array, the pointer points to the first
element in the array

float arr[3] = {1, 2, 5};

float *p = arr;

*p = 5; // arr[0] = 5;

p++;

*p = 3; // arr[1] = 3;

Main
memory

0000 0000 0000 0001

p 0010 0010 0000 0011

0000 0000 0000 0101

arr[0]

arr[1]

arr[2]

C

Pointers and Arrays

22

When set a pointer to an array, the pointer points to the first
element in the array

float arr[3] = {1, 2, 5};

float *p = arr;

*p = 5; // arr[0] = 5;

p++;

*p = 3; // arr[1] = 3;

Note that for arrays, we do not
need the reference & operator

Main
memory

0000 0000 0000 0001

p 0010 0010 0000 0011

0000 0000 0000 0101

arr[0]

arr[1]

arr[2]Remember: an array is a set of
elements of the same type allocated
contiguously in memory!

p jumps in memory a block
of 4 bytes (size of a float)

C

Pointers and Arrays

23

char *wPtrStart = word;
char *wPtrEnd = wPtrStart + strlen(word)-1;

for(i=0 ; (i < strlen(word)/2) && (flag == 1) ; i++){

if(*wPtrStart != *wPtrEnd){
flag = 0;

}

wPtrStart++;
wPtrEnd--;

}

palindrome.c

word ‘R’ ‘A’ ‘D’ ‘A’ ‘R’ ‘\0’

wPtrStart wPtrEnd

word[0] word[1] word[2] word[3] word[4] word[5]

wPtrStart
+1

wPtrStart
+2

C

Pointers and Arrays

24

char *wPtrStart = word;
char *wPtrEnd = wPtrStart + strlen(word)-1;

for(i=0 ; (i < strlen(word)/2) && (flag == 1) ; i++){

if(*wPtrStart != *wPtrEnd){
flag = 0;

}

wPtrStart++;
wPtrEnd--;

}

palindrome.c

word ‘R’ ‘A’ ‘D’ ‘A’ ‘R’ ‘\0’

wPtrStart wPtrEnd

word[0] word[1] word[2] word[3] word[4] word[5]

wPtrStart
+1

wPtrStart
+2

When we increment or decrement,
the pointers move by 1 byte
(pointers to char)

C

Pointers : operators * and &

25

Now we know exactly what happens in sscanf !

sscanf(string, “format”, &var1, …, &varN);

Pointers to the addresses in memory
where var1,..,varN are stored !

C

Functions
Passing arguments by value/reference

26

• Pass by value (what we have seen so far): the value of the
variable used at invocation time is copied into a local
variable inside the function

• Pass by reference : a pointer to the variable used at
invocation time is passed to the function. We can modify
the variable’s value inside the function

C

Functions
Passing arguments by value/reference

27

• Pass by value (what we have seen so far): the value of the
variable used at invocation time is copied into a local
variable inside the function

double computeCirc(double rad){

rad = 2;

return(2 * rad * 3.14);

}

int main(){

double r = 5, circ;

circ = computeCirc(r);

return 0;

}

5

C

Functions
Passing arguments by value/reference

28

• Pass by value (what we have seen so far): the value of the
variable used at invocation time is copied into a local
variable inside the function

double computeCirc(double rad){

rad = 2;

return(2 * rad * 3.14);

}

int main(){

double r = 5, circ;

circ = computeCirc(r);

return 0;

}

r is not affected by
anything we do inside
the function

C

Functions
Passing arguments by value/reference

29

• Pass by reference : a pointer to the variable used at
invocation time is passed to the function. We can modify
the variable’s value inside the function

double computeCirc(double *rad){

*rad = 2;

return(2 * (*rad) * 3.14);

}

int main(){

double r = 5, circ;

circ = computeCirc(&r);

return 0;

}

Address of r

C

Functions
Passing arguments by value/reference

30

• Pass by reference : a pointer to the variable used at
invocation time is passed to the function. We can modify
the variable’s value inside the function

double computeCirc(double *rad){

*rad = 2;

return(2 * (*rad) * 3.14);

}

int main(){

double r = 5, circ;

circ = computeCirc(&r);

return 0;

}

r has been modified!

circPointer.c

C

COMsW 1003-1

Introduction to Computer
Programming in C

Spring 2011

Instructor: Michele Merler

http://www1.cs.columbia.edu/~mmerler/comsw1003-1.html

Lecture 12

1

C

Announcements

2

Homework 3 is out

• Due on Monday, 03/21/11 at the beginning of class,
no exceptions

Midterm
• In class on Wednesday, 03/09/11

• Will cover everything up to Lecture 13 (included)

• Open books, open notes

• Closed electronic devices

C

Today

3

• Passing arguments to function by value vs.
by reference (from Lec 11)

• Functions returning pointers

• Pointers of pointers

C

Functions Returning Pointers

4

• Naturally, a function can return a pointer

• This is a way to return an array, but must be careful
about what has been allocated in memory

NULL is the equivalent of zero for pointers

NOTE

returnType * functionName(parmeters)

C

Functions Returning Pointers

5

Example: using pointers to return a string

Given a string of the type “firstNAme/lastName”
We want to split it into two separate entities to print

splitString.c

C

Functions Returning Pointers

6

splitString.c

‘J’ ‘o’ ‘h’ ‘n’ ‘/’ ‘S’ ‘m’ ‘i’ ‘t’ ‘h’ ‘\0’

firstName

lastName

‘J’ ‘o’ ‘h’ ‘n’ ‘/’ ‘S’ ‘m’ ‘i’ ‘t’ ‘h’ ‘\0’

firstName

lastName

‘J’ ‘o’ ‘h’ ‘n’ ‘\0’ ‘S’ ‘m’ ‘i’ ‘t’ ‘h’ ‘\0’

firstName

lastName

‘J’ ‘o’ ‘h’ ‘n’ ‘\0’ ‘S’ ‘m’ ‘i’ ‘t’ ‘h’ ‘\0’

firstName

POINT 1

POINT 2

POINT 3

POINT 4

C

Const pointers

7

When we try to declare a pointer to be a constant like this, it means
that the value at the address in memory it points cannot be modified

This does NOT mean that the pointer is constant, it can be changed!

int x = 7, y = 3;

const int *ptr = &x;

*ptr = 11;

x = 8;

ptr = &y;

*ptr = 9;

printf("x = %d, y = %d\n",x,*ptr);

point.c

const type *

Main
memory

0000 0000 0000 0111ptr x

0000 0000 0000 0011 y

C

Const pointers

8

When we try to declare a pointer to be a constant like this, it means
that the value at the address in memory it points cannot be modified

This does NOT mean that the pointer is constant, it can be changed!

int x = 7, y = 3;

const int *ptr = &x;

*ptr = 11;

x = 8;

ptr = &y;

*ptr = 9;

printf("x = %d, y = %d\n",x,*ptr);

point.c

V

const type *

Main
memory

0000 0000 0000 1000ptr x

0000 0000 0000 0011 y

C

Const pointers

9

When we try to declare a pointer to be a constant like this, it means
that the value at the address in memory it points cannot be modified

This does NOT mean that the pointer is constant, it can be changed!

int x = 7, y = 3;

const int *ptr = &x;

*ptr = 11;

x = 8;

ptr = &y;

*ptr = 9;

printf("x = %d, y = %d\n",x,*ptr);

point.c

V

V

const type *

Main
memory

0000 0000 0000 1000

ptr

x

0000 0000 0000 0011 y

C

Const pointers

10

When we try to declare a pointer to be a constant like this, it means
that the value at the address in memory it points cannot be modified

This does NOT mean that the pointer is constant, it can be changed!

int x = 7, y = 3;

const int *ptr = &x;

*ptr = 11;

x = 8;

ptr = &y;

*ptr = 9;

printf("x = %d, y = %d\n",x,*ptr);

point.c

V

V

const type *

Main
memory

0000 0000 0000 1000

ptr

x

0000 0000 0000 0011 y

C

Const pointers

11

This is the declaration of a constant pointer. In this case, the pointer is
fixed, but the value at the address it points to can be modified

int x = 7, y = 3;

int * const ptr2 = &x;

*ptr2 = 9;

ptr2++;

ptr2 = &y;

printf("x = %d, x = %d\n", x, *ptr2);

point.c

V

type * const

Main
memory

0000 0000 0000 1001ptr2 x

0000 0000 0000 0011 y

C

Arrays of strings

12

• An array Arr of 3 strings of variable length

• Arr is an array of 3 elements. Each element in Arr is
of type pointer to char.

char *Arr[3]={ “Hello”, ”World”, ”Wonderful” };

Arr[2] Arr+2 // ”Wondeful”

stringArrays.c

char *

char *

char *

Arr

Arr[0]

Arr[1]

Arr[2]

‘H’ ‘e’ ‘l’ ‘l’ ‘o’ ‘\0’

‘W’ ‘o’ ‘r’ ‘l’ ‘d’ ‘\0’

‘W’ ‘o’ ‘n’ ‘d’ ‘e’ ‘r’ ‘f’ ‘u’ ‘l’ ‘\0’

C

Arrays of strings

13

• An array Arr of 3 strings of variable length

• An array Arr of 3 strings of maximum length = 15

char *Arr[3]={ “Hello”, ”World”, ”Wonderful” };

Arr[2] Arr+2 // ”Wondeful”

char Arr2[3][15] = { “Hello2”, ”World2”, ”Wonderful2” };

Arr2[0] Arr2 // ”Hello2”

Arr2[1] Arr2+1 // ”World2”

stringArrays.c

C

Pointers of pointers

14

stringArrays.c

‘H’ ‘e’ ‘l’ ‘l’ ‘o’ ‘\0’

‘W’ ‘o’ ‘r’ ‘l’ ‘d’ ‘\0’

‘W’ ‘o’ ‘n’ ‘d’ ‘e’ ‘r’ ‘f’ ‘u’ ‘l’ ‘\0’

‘H’ ‘e’ ‘l’ ‘l’ ‘o’ ‘2’ ‘\0’

‘W’ ‘o’ ‘r’ ‘l’ ‘d’ ‘2’ ‘\0’

‘W’ ‘o’ ‘n’ ‘d’ ‘e’ ‘r’ ‘f’ ‘u’ ‘l’ ‘2’ ‘\0’

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 1 2 3 4 5 6 7 8 9

0

1

2

0

1

2

Arr

Arr2

C

Pointers of pointers

15

• A pointer can point to another pointer

• In a sense, it’s the equivalent of matrices!

int x = 3;

int *p = &x;

int **p2 = &p;

x = 2; *p = 2; **p2 = 2;

char *Arr[3]={ “Hello”, ”World”, ”Wonderful” };

char **ptr;

ptr = Arr;

stringArrays.c

C

Pointers of pointers

16

stringArrays.c

‘H’ ‘e’ ‘l’ ‘l’ ‘o’ ‘\0’

‘W’ ‘o’ ‘r’ ‘l’ ‘d’ ‘\0’

‘W’ ‘o’ ‘n’ ‘d’ ‘e’ ‘r’ ‘f’ ‘u’ ‘l’ ‘\0’

‘H’ ‘e’ ‘l’ ‘l’ ‘o’ ‘2’ ‘\0’

‘W’ ‘o’ ‘r’ ‘l’ ‘d’ ‘2’ ‘\0’

‘W’ ‘o’ ‘n’ ‘d’ ‘e’ ‘r’ ‘f’ ‘u’ ‘l’ ‘2’ ‘\0’

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 1 2 3 4 5 6 7 8 9

0

1

2

0

1

2

Arr

Arr2

ptr
ptr + 1

C

Pointers of pointers

17

stringArrays.c

((ptr+1)+2)

char *Arr[3]={ “Hello”, ”World”, ”Wonderful” };
char **ptr;
ptr = Arr;

?

C

Pointers of pointers

18

stringArrays.c

‘H’ ‘e’ ‘l’ ‘l’ ‘o’ ‘\0’

‘W’ ‘o’ ‘r’ ‘l’ ‘d’ ‘\0’

‘W’ ‘o’ ‘n’ ‘d’ ‘e’ ‘r’ ‘f’ ‘u’ ‘l’ ‘\0’

0 1 2 3 4 5 6 7 8 9

0

1

2

ptr + 1

((ptr+1)+2)

1 . ptr+1

char *Arr[3]={ “Hello”, ”World”, ”Wonderful” };
char **ptr;
ptr = Arr;

ptr+1 points to
the whole line

‘H’ ‘e’ ‘l’ ‘l’ ‘o’ ‘\0’

‘W’ ‘o’ ‘r’ ‘l’ ‘d’ ‘\0’

‘W’ ‘o’ ‘n’ ‘d’ ‘e’ ‘r’ ‘f’ ‘u’ ‘l’ ‘\0’

0 1 2 3 4 5 6 7 8 9

0

1

2

*(ptr + 1)

2 . *(ptr+1)

*(ptr+1)
points to the
first element
of the line

C

Pointers of pointers

19

stringArrays.c

‘H’ ‘e’ ‘l’ ‘l’ ‘o’ ‘\0’

‘W’ ‘o’ ‘r’ ‘l’ ‘d’ ‘\0’

‘W’ ‘o’ ‘n’ ‘d’ ‘e’ ‘r’ ‘f’ ‘u’ ‘l’ ‘\0’

0 1 2 3 4 5 6 7 8 9

0

1

2

*(ptr + 1)+2

((ptr+1)+2)

3 . *(ptr+1)+2

char *Arr[3]={ “Hello”, ”World”, ”Wonderful” };
char **ptr;
ptr = Arr;

*(ptr+1)+2
points to the
third element
of the line

‘H’ ‘e’ ‘l’ ‘l’ ‘o’ ‘\0’

‘W’ ‘o’ ‘r’ ‘l’ ‘d’ ‘\0’

‘W’ ‘o’ ‘n’ ‘d’ ‘e’ ‘r’ ‘f’ ‘u’ ‘l’ ‘\0’

0 1 2 3 4 5 6 7 8 9

0

1

2

((ptr+1)+2)

2 . *(*(ptr+1)+2)

Now we get
the value
stored at the
address we
pint

C

Pointers of pointers

20

stringArrays.c

‘H’ ‘e’ ‘l’ ‘l’ ‘o’ ‘\0’

‘W’ ‘o’ ‘r’ ‘l’ ‘d’ ‘\0’

‘W’ ‘o’ ‘n’ ‘d’ ‘e’ ‘r’ ‘f’ ‘u’ ‘l’ ‘\0’

0 1 2 3 4 5 6 7 8 9

0

1

2

((ptr+1)+2)

char *Arr[3]={ “Hello”, ”World”, ”Wonderful” };
char **ptr;
ptr = Arr;

Avoid this notation!
ptr[1][2] is much better!

C

Pointers vs. Arrays

21

int x[5];

int y[2][3];

int* z[2]={{1,2},{2,1}};

char c[] = “mike”;

int *xPtr;

int **yPtr;

int **zPtr;

char *cPtr;

Space has been
allocated in memory
for the arrays

Space has been allocated in memory only for
the pointers variables, NOT for the arrays they
will point to.
The DIMENSIONS of the arrays are UNKNOWN

1D array of 5 int

2D array of 6 int
2x3 matrix

2D array of 4 int
2x2 matrix

1D array of 5 char
string

Arrays Pointers

C

Multidimensional Arrays

22

M[0]

M[1]

M M[0][0] M[0][1] M[0][2]

M[1][0] M[1][1] M[1][2]

double ** double * double

2x3 matrix of double

double M0[2][3];

double *M1[2] = M0;

double **M = M0;

C

Multidimensional Arrays

23

M[0]

M[1]

M M[0][0] M[0][1] M[0][2]

M[1][0] M[1][1] M[1][2]

double ** double * double

2x3 matrix of double

double M0[2][3];

double *M1[2] = M0;

double **M = M0;

The difference between M0, M1 and M
is that
M1 and M can have ANY SIZE !

C

COMsW 1003-1

Introduction to Computer
Programming in C

Spring 2011

Instructor: Michele Merler

http://www1.cs.columbia.edu/~mmerler/comsw1003-1.html

Lecture 13

1

C

Today

2

• Finish pointers (from Lecture 12)

• FILE I/O

C

Pointers of pointers

3

float A[2] = { 1, 2 };
float B[3] = { 7, 1, 5};

float *p1[2];
p1[0] = A;
p1[1] = B;

float **p2;
p2[0] = A;
p2[1] = B;
p2[3] = A;

float f1 = p2[0][2]; // f1 = A[2] =
float f2 = p2[1][2]; // f2 = B[2] = 5
float f3 = p2[2][1]; // f3 = A[1] = 2

B

A
A[0]

A[1]

B[0]

B[1]

B[2]

C

Pointers of pointers

4

float A[2] = { 1, 2 };
float B[3] = { 7, 1, 5};

float *p = B;float *p1[2];
p1[0] = A;
p1[1] = B;

float **p2;
p2[0] = A;
p2[1] = B;
p2[3] = A;

float f1 = p2[0][2]; // f1 = A[2] =
float f2 = p2[1][2]; // f2 = B[2] = 5
float f3 = p2[2][1]; // f3 = A[1] = 2

B

A
A[0]

A[1]

B[0]

B[1]

B[2]

p

C

Pointers of pointers

5

float A[2] = { 1, 2 };
float B[3] = { 7, 1, 5};

float *p = B;float

float *p1[2];
p1[0] = A; // p1[0] is a pointer to float
p1[1] = B; // p1[1] is a pointer to float

float **p2;
p2[0] = A;
p2[1] = B;
p2[3] = A;

float f1 = p2[0][2]; // f1 = A[2] =
float f2 = p2[1][2]; // f2 = B[2] = 5
float f3 = p2[2][1]; // f3 = A[1] = 2

B

A
A[0]

A[1]

B[0]

B[1]

B[2]

p1 p1[0]

p1[1]

p

C

Pointers of pointers

6

float A[2] = { 1, 2 };
float B[3] = { 7, 1, 5};

float *p = B;float

float *p1[2];
p1[0] = A; // p1[0] is a pointer to float
p1[1] = B; // p1[1] is a pointer to float

float **p2;
p2[0] = A;
p2[1] = B;
p2[3] = A;

float f1 = p2[0][2]; // f1 = A[2] =
float f2 = p2[1][2]; // f2 = B[2] = 5
float f3 = p2[2][1]; // f3 = A[1] = 2

B

A
A[0]

A[1]

B[0]

B[1]

B[2]

p1 p1[0]

p1[1]

p

C

Pointers of pointers

7

float A[2] = { 1, 2 };
float B[3] = { 7, 1, 5};

float *p = B;float

float *p1[2];
p1[0] = A;
p1[1] = B;

float **p2 = p1;

float f1 = p2[0][2]; // f1 = A[2] =
float f2 = p2[1][2]; // f2 = B[2] = 5
float f3 = p2[0][1]; // f3 = A[1] = 2

B

A
A[0]

A[1]

B[0]

B[1]

B[2]

p1

p2

p1[0]

p1[1]

p

C

Pointers of pointers

8

float A[2] = { 1, 2 };
float B[3] = { 7, 1, 5};

float *p = B;float

float *p1[2];
p1[0] = A;
p1[1] = B;

float **p2 = p1;

float f1 = p2[0][2]; // f1 = A[2] =
float f2 = p2[1][2]; // f2 = B[2] = 5
float f3 = p2[0][1]; // f3 = A[1] = 2

B

A
A[0]

A[1]

B[0]

B[1]

B[2]

p1

p2

p1[0]

p1[1]

p

C

Files Input/Output

9

C

Files I/O

10

• So far we have seen functions to read/write to
command line (standard input/output)

• The same functions can be used to read/write to files

• (f)printf(), (f)scanf(), fgets()

• All those functions are included in the <stdio.h>
library

C

Files I/O Pipeline

11

• Files have a special type of variable associated with them:
FILE *

• In order to read/write to a file, we must first OPEN it

• After we are done, we must CLOSE the file

Create file variable

Open file Read/write Close file

C

Files I/O

12

FILE *fVar;

fVar = fopen(fileName, mode);

/* read, write or append */

fclose(fVar);

• Files have a special type of variable associated with them:
FILE *

• In order to read/write to a file, we must first OPEN it

• After we are done, we must CLOSE the file

Create file variable

Open file

Read/write

Close file

C

fopen()

13

FILE * fopen(char *fileName, char *mode);

• fileName is a regular string with the name of the file

• mode determines the type of I/O we want to do

• “r” : read

• “w” : write, fileName is created if it did not exist

• “a” : append, write to existing file, starting at the end

• “b” : file is binary (associated with other modes, for example “wb”

means write binary, “rb” read binary, etc.)

• “r+” : read and write

• “w+” : read and write , fileName is created if it did not exist

• In case of failure (for example trying to read from a non-existing file)

fopen() returns NULL

C

fclose()

14

int fclose(FILE *fVar);

• fVar is a file variable (type FILE *)

• fclose() returns

• 0 on success

• non-zero for error

C

Stdin, stdout, stderr

15

• C provides 3 files (or filestreams) which are always open:

– stdin : standard input, read from command line

– stdout : standard output, write to command line

– stderr : standard error, write to command line

• They are used as default values for various I/O functions

C

Read Functions

16

• fgetc() : read a single character

• fgets() : read a string, one line at a time

int fgetc(FILE *fVar)

Returns the special flag EOF if it has reached the end of
the file

char* fgets(char* string, size_t size, FILE *fVar)

Returns string if successful, NULL is error or found EOF

inOut.c

C

Read Functions

17

• fscanf() : read a formatted line

int fscanf(FILE *fVar,“format1 … formatN”, &var1,…,&varN)

Reads one line from a file

Returns the number of variables successfully converted

inOut.c

C

Write Functions

18

• fputc() : write a single character

• fputs() : write a string

int fputc(char ch, FILE *fVar)

Returns ch if successful , the special flag EOF if there is an error

int fputs (const char *string, FILE *fVar)

Returns a nonzero number if successful, EOF if there is an error

inOut.c

C

Write Functions

19

• fprintf() : print to file a formatted line

int fprintf(FILE *fVar,“format1 … formatN”, var1,…,varN)

Prints one line to a file

Returns the number of variables successfully converted

inOut.c

C

Read/Write to Files

20

• C has an internal pointer to the current
position in the opened file

• After each read/write operation the
pointer is updated

this is a file to read\n
can we do it?\n
2 * 3\n

this is a file to read\n
can we do it?\n
2 * 3\n

inOut.c

data.txt

data.txt

FILE *inFile = fopen("data.txt","r");

int ch = fgetc(inFile);

ch = ‘t’

C

feof()

21

• feof() checks if we reached the end of a file,
without having to use fget(), fscanf() etc.

int feof(FILE *fVar)

Returns a value different from zero if reached end of file ,
zero otherwise

while(1) {

int ch = fgetc(inFile);

if(ch == EOF){
break;

}
}

while(!feof(inFile)) {

int ch = fgetc(inFile);

}

FILE *inFile = fopen(“data.txt”,”r”);

C

Summary of Functions

22

Name Input Output

fprintf() formatted text + args file

printf() formatted text + args stdout

sprintf() formatted text + args string

fputc(), fputs() char,string file

fscanf() file formatted text + args

scanf() stdin formatted text + args

sscanf() string formatted text + args

fgetc(), fgets() file (char) int, string

C

Buffered Output

23

• The OS does not write directly to a file stream

• For efficiency, it first prints to a buffer (= local place-
holder in main memory)

• When the buffer is full, it prints it all to the file stream

• If we want to write in a specific moment, without
buffering, we can us the function fflush()

int fflush(FILE *fVar)

Returns 0 if successful, EOF in the case of error

C

Buffered Output

24

printf(“starting\n”);

do_step1();
printf(“done with 1\n”);

do_step2();
printf(“done with 2\n”);

do_step3();
printf(“done with 3\n”);

printf(“starting\n”);
fflush(stdout);

do_step1();
printf(“done with 1\n”);
fflush(stdout);

do_step2();
printf(“done with 2\n”);
fflush(stdout);

do_step3();
printf(“done with 3\n”);
fflush(stdout);

Prints to buffer, after last
printf() prints to stdout

After each printf() prints to
stdout

C

File Formatting

25

• It is a good habit to create data files with HEADERS,
especially when dealing with large amount of data

• HEADERS are one or two lines at the beginning of a file
specifying the size of the data and some other info

• With headers, a program knows how to properly read a
file

VectorTable
cols 7
rows 3
0 2 5 7 8 22 16
10 66 52 7 8 82 6
99 1 34 34 87 22 97

C

File Formatting

26

• It is a good habit to create data files with HEADERS,
especially when dealing with large amount of data

• HEADERS are one or two lines at the beginning of a file
specifying the size of the data and some other info

• With headers, a program knows how to properly read a
file

VectorTable
cols 7
rows 3
0 2 5 7 8 22 16
10 66 52 7 8 82 6
99 1 34 34 87 22 97

header

C

File Formatting

27

• Ideally, format should be readable by humans and by
computer programs

• Computer programs are not very robust, so must be
specific (i.e. tab versus spaces)

• When you have huge amounts of data, you can give up
on human-readability and use BINARY format for
efficiency

• Example: color_histogram table

C

Binary Files

28

size_t fread(void *ptr, size_t s, size_t n, FILE *f);

size_t fwrite(const void *ptr, size_t s, size_t n, FILE *f);

In order to read/write to binary files, we must use the “rb” /
“wb” flags in the option of fopen()

size_t is a C type to indicate the size (in bytes) of an element . You
can think of it as a special integer.
For example, sizeof() returns a variable of type size_t

• ptr = (pointer) array where we want to store the data we read/
we want to write

• s = size of each element in the array ptr
• n = number of elements in the array ptr
• f = file to read from/write to

C

COMsW 1003-1

Introduction to Computer
Programming in C

Spring 2011

Instructor: Michele Merler

http://www1.cs.columbia.edu/~mmerler/comsw1003-1.html

Lecture 14

1

C

Announcements

2

Homework 4 out on Wednesday, due o n
Monday April 11th

Homework 3 solution out later today

C

Today

3

• Midterm Solution

• Finish FILE I/O (from Lecture 13)

• C standard libraries

C

Midterm Solution

4

Midterm Solution uploaded to Shared Files in
Courseworks

Midterm Statistics

• Average grade: 72
• Standard deviation: 17

C

C Standard Libraries

5

• C provides a series of useful functions already
implemented in standard libraries

• We have already seen some (stdio.h, string.h)

• In order to use the functions in a library, we
must include the library header

#include <libraryName.h>

C

C Standard Libraries

6

C

C Standard Libraries

7

• stdio.h : input/output

• string.h : functions on strings

• stdlib.h : utility functions

• math.h : mathematical functions

• ctype.h : character class test

• assert.h : diagnostics

• limits.h and float.h : implementation-defined limits

• time.h : date and time functions

• A few more

C

C Standard Libraries

8

• stdio.h : input/output

• string.h : functions on strings

• stdlib.h : utility functions

• math.h : mathematical functions

• ctype.h : character class test

• assert.h : diagnostics

• limits.h and float.h : implementation-defined limits

• time.h : date and time functions

• A few more

C

stdio.h

9

• Standard input and output

• Input/output from command line (keyborad)

– fprintf(), fgets(), sscanf()

• Input/output from files

– FILE, fopen(), fclose()

testLibraries.c

C

string.h

10

Operations involving strings

string s1, s2;
char c;

• int n = strcmp(s1, s2) : compare s1 and s2, if(s1==s2) -> n = 0

• int len = strlen(s1) : return length of s1

• char *pc = strchr(s1, c): return pointer to first occurrence of c in s1

• char *ps = strstr(s1, s2): return pointer to first occurrence of string

s2 in s1, or NULL if not present

• char *strcpy(s1, s2) : copy string s2 into s1, return s1

• char *strcat(s1, s2) : append s2 to s1 (concatenate), return s1

• char *strtok(s1, s2) : split long strings into pieces, or tokens

testLibraries.c

C

stdlib.h

11

Number conversions

• int n = rand() : returns a (pseudo) random int between 0 and
constant RAND_MAX

• void srand(unsigned int n) : seeds rand generator

• system(string s) : runs s in OS

• float nf = atof(const char *s) : converts string s to float

• int n = atoi(const char * s) : convert string s to int

Memory allocation
malloc(), free() : memory management

Other utilities

testLibraries.c

C

math.h

12

• Mathematical functions
• Often needs to be specially linked when compiling because takes

advantage of specialized math hardware in processor

gcc -lm –Wall -o myProgram myProgram.c

• sin(x), cos(x), tan(x)

• exp(x), log(x), log10(x) : ex , natural and base-10 logarithm

• pow(x,y) : xy

• sqrt(x) : square root

• ceil(x), floor(x) : closest int above or below

• y = fabs(x) : absolute value , if x = -3.2, y will be 3.2

double functionName(double c)

testLibraries.c

C

ctype.h

13

Utility functions to check for types of char

• isalpha(c) : check if c is an alphabet character ‘a’-’z’, ‘A’-’Z’

• isdigit(c) : check if c is digit ‘0’-’9’

• isalnum(c) : isalpha(c) or isdigit(c)

• iscntrl(c) : control char (i.e. \n, \t, \b)

• islower(c) , isupper(c) : lowercase/uppercase

int functionName(unsigned char c)

Return value is 0 if false , != 0 if true

testLibraries.c

C

ctype.h

14

Utility functions to convert from lower case to upper case

• d = tolower(c) : if c is ‘T’, d will be ‘t’

• d = toupper(c) : if c is ‘m’ , d will be ‘M’

char functionName(char c)

testLibraries.c

C

limits.h and float.h

15

Contain various important constants such as the minimum
and maximum possible values for certain types, sizes of
types, etc.

• CHAR_BIT (bits in a char)

• INT_MAX, CHAR_MAX, LONG_MAX

(maximum value of int, char, long int)

• INT_MIN, CHAR_MIN, LONG_MIN

• FLT_DIG (decimal digits of precision)

• FLT_MIN, FLT_MAX (min. and max. value of float)

• DBL_MIN, DBL_MAX (and of double precision float)

testLibraries.c

C

time.h

16

Provides new type to represent time, time_t

• time_t time(NULL) : returns current time

• time_t clock() : returns processor time used by
program since beginning of execution

• strftime(A, sizeof(A), “formatted text”, time struct) :

format text with placeholders:

%a weekday
%b month
%c date and time
%d day of month
%H hour

testLibraries.c

C

assert.h

17

• Provides a macro to check if critical conditions
are met during your program

• Nice way to test programs

assert(expression)

If the expression is false, the program will print to command line:

Assertion failed: expression , file filename , line lineNumber

testLibraries.c

C

More

18

• stdarg.h : allows you to create functions with
variable argument lists

• signal.h - provides constants and utilities for
standardized error codes for when things go
wrong

C

COMsW 1003-1

Introduction to Computer
Programming in C

Spring 2011

Instructor: Michele Merler

http://www1.cs.columbia.edu/~mmerler/comsw1003-1.html

Lecture 15

1

C

Announcements

2

Homework 4 out, due April 11th at the
beginning of class

Read CPL Chapter 5

C

Today

3

• Finish C Standard Libraries

• Pointers to void

• Begin Dynamic Memory Allocation

C

Review : operators * and &

4

ptr

int x = 3;

int *ptr;

ptr = &x;

*ptr = 5; // x = 5;

* dereference operator : gives the value in the memory pointed by a pointer
(returns a value)

& reference operator: gives the address in memory of a variable
(returns a pointer)

Make ptr point to
the address of x

Modify the
value in address
pointed by ptr

Main memory

00000000 00000000 00000000 00000011

C

Review : Pointers of pointers

5

• A pointer can point to another pointer

• In a sense, it’s the equivalent of matrices!

int x = 3;

int *p = &x;

int **p2 = &p;

x = 2; *p = 2; **p2 = 2;

char *Arr[3]={ “Hello”, ”World”, ”Wonderful” };

char **ptr;

ptr = Arr;

C

Review: Pointers vs. Arrays

6

int x[5];

int y[2][3];

int* z[2]={{1,2},{2,1}};

char c[] = “mike”;

int *xPtr;

int **yPtr;

int **zPtr;

char *cPtr;

Space has been
allocated in memory
for the arrays

Space has been allocated in memory only for
the pointers variables, NOT for the arrays they
will point to.
The DIMENSIONS of the arrays are UNKNOWN

1D array of 5 int

2D array of 6 int
2x3 matrix

2D array of 4 int
2x2 matrix

1D array of 5 char
string

Arrays Pointers

C

Multidimensional Arrays

7

M[0]

M[1]

M M[0][0] M[0][1] M[0][2]

M[1][0] M[1][1] M[1][2]

double ** double * double

2x3 matrix of double

double M0[2][3];

double *M1[2] = M0;

double **M = M0;

C

Multidimensional Arrays

8

M[0]

M[1]

M M[0][0] M[0][1] M[0][2]

M[1][0] M[1][1] M[1][2]

double ** double * double

2x3 matrix of double

double M0[2][3];

double *M1[2] = M0;

double **M = M0;

The difference between M0, M1 and M
is that
M1 and M can have ANY SIZE !

C

Review : Pointers and Arrays

9

char word[8] = “RADAR”;

char *wPtrStart = word;

word ‘R’ ‘A’ ‘D’ ‘A’ ‘R’ ‘\0’

wPtrStart wPtrEnd

word[0] word[1] word[2] word[3] word[4] word[5]

wPtrStart
+1

wPtrStart
+2

char* is a string

C

Pointers vs. Arrays

10

• Arrays represent actual memory
allocated space

int myArr[10];

• Pointers point to a place in memory

int *myPtr;

myArr

myPtr

myArr

C

Pointers vs. Arrays

11

• Arrays represent actual memory
allocated space

int myArr[10];

• Pointers point to a place in memory

int *myPtr;
myPtr = myArr;

myArr

myPtr

myArr

C

sizeof()

12

• So far, we have been using sizeof() to determine the
length of a string (including ‘\0’)

• sizeof() is a more general function, that returns the
size, measured in bytes, of a variable or a type

• size_t can be used (implicitly casted) as an integer

size_t sizeof(var)

C

Void *

13

void * means a pointer of ANY type
Sometimes functions can use void * as argument and
return type.

This allows the programmer to specify the type of pointer
to use at invocation time

This is a form of function overloading (popular in C++)

void *function_name(void *arg1, … , void *argN)

voidFun.c

C

Void *

14

int i;
double d;
int *pi;
double *pd;

void *pv;

pi = &d; // Compiler warning

pd = &i; // Compiler warning

pv = &i; // OK

printf("%d\n", *pv); // Compiler error

printf("%d\n", *(int *)pv); // OK

pv = &d; // OK

printf("%f\n", *pv); // Compiler error

printf("%f\n", *(double *)pv); // OK

pv = &i; // OK

d = *(double *)pv; // Runtime error

C

Void *

15

Example

void *pointElement(void *A, int ind, int type){

if(type == 1){
return(A + sizeof(int) * ind);

}
}

int main(){

int M[3] = {1 , 2, 3};
int element = 1;

int *M2 = (int *) pointElement(M , element, 1);

}

voidFun.c

C

Void *

16

Example

void *pointElement(void *A, int ind, int type){

if(type == 1){
return(A + sizeof(int) * ind);

}
}

int main(){

int M[3] = {1 , 2, 3};
int element = 1;

int *M2 = (int *) pointElement(M , element, 1);

}

voidFun.c

Explicit cast

C

Dynamic Memory Allocation

17

Functions related to DMA are in the library stdlib.h

void *malloc(size_t numBytes)

void *calloc(size_t numElements, size_t size)

Allocates numBytes bytes in memory (specificaly, in a part of memory

called heap)

The elements in the allocated memory are not initialized

Returns a pointer to the allocated memory on success, or NULL on failure

Allocates size*numElements bytes in memory

All elements in the allocated memory are set to zero

Returns a pointer to the allocated memory on success, or NULL on failure

C

Dynamic Memory Allocation

18

• Malloc()
Example

• Calloc()
Example

int *myArr = (int *) malloc(10 * sizeof(int));

int *myArr = (int *) calloc(10 , sizeof(int));

Example: create an array of 10 integers int myArr[10];

C

Dynamic Memory Allocation

19

Changes the size of the allocated memory block pointed by ptr
to size
Returns a pointer to the allocated memory on success, or NULL
on failure

De-allocates (frees) the space in memory pointed by ptr

Functions related to DMA are in the library stdlib.h

void *realloc(void *ptr, size_t size)

void free(void *ptr)

C

Dynamic Memory Allocation

20

1) int *myArr = (int *) malloc(10 * sizeof(int));

2) myArr = realloc(myArr, 15 * sizeof(int));

3) free(myArr);

Example: create an array of 10 integers, resize it to 15,
then free the space in memory

myArr

1) 2) 3)

C

Dynamic Memory Allocation

21

Example: reading an indefinitely long command
line

So far we have been reading strings from
command line using an array

char line[100];
fgets(line, sizeof(line), stdin);

commandLine.c

What if the user enters a command with 105 characters?

C

Dynamic Memory Allocation

22

M[0]

M[1]

M M[0][0] M[0][1] M[0][2]

M[1][0] M[1][1] M[1][2]

double ** double * double

Multidimensional Arrays

2x3 matrix of double

C

Dynamic Memory Allocation

23

double** M = (double**) malloc(2 * sizeof(double *));

int i;
for (i = 0 ; i<2; i++){

M[i] = malloc(3 * sizeof(int));
}

/* use M as a regular 2-dimensional array */

for (i = 0 ; i<2; i++){
free(M[i]);

}
free(M);

Multidimensional Arrays

2x3 matrix of double

C

Memory Leaks

24

Space in the heap is LIMITED, therefore we must be careful
and free memory

There are two cases in whish freeing memory becomes

impossible:

• when we move a pointer after allocating memory

int N = 40000;

char *str = “Hello”;

char *giantString = malloc(N*sizeof(char));

giantString = str; Now we cannot find anymore the
location of the block of allocated
memory

C

Memory Leaks

25

Space in the heap is LIMITED, therefore we must be careful
and free memory

There are two cases in whish freeing memory becomes

impossible:

• if we reallocate memory using the same pointer

int N = 40000;

char *giantString = malloc(N*sizeof(char));

/* do something */

giantString = malloc(N*sizeof(char));

giantString now
points to a newly allo-
cated block of memo-
ry, the location of the
previous one is lost

C

COMSW 1003-1

Introduction to Computer
Programming in C

Spring 2011

Instructor: Michele Merler

http://www1.cs.columbia.edu/~mmerler/comsw1003-1.html

Lecture 17

1

C

Review - Arrays of strings

2

• An array Arr of 3 strings of variable length

• An array Arr of 3 strings of maximum length = 15

char *Arr[3]={ “Hello”, ”World”, ”Wonderful” };

Arr[2] = Arr+2 // ”Wondeful”

char Arr2[3][15] = { “Hello2”, ”World2”, ”Wonderful2” };

Arr2[0] = Arr2 // ”Hello2”

Arr2[1] = Arr2+1 // ”World2”

C

Program’s Inputs

3

• When we run a program, sometimes we want to pass
some input arguments to it

• This can be done by writing them in the command line,
immediately after the program name

• The program’s inputs must be separated by spaces

Example
The program sumTwoNumbers sums two numbers.

We can pass the two input numbers directly when we invoke the program’s
executable (instead of the usual I/O operations, such as printing to command
line the message “please insert two numbers:”, followed by fgets() etc.)

./sumTwoNumbers 3 5

C

Command Line Arguments

4

• Input parameters of the function main()

• argc, argv

int main(int argc, char* argv[])

argc

argv

• Integer

• Specifies the number of arguments on the command
line (including the program name)

• Array of strings

• Contains the actual arguments on the command line

• First element is the name of the program

Clarguments.c

C

Command line arguments

5

It is a good habit, especially when a program takes input
arguments, to specify in a header on the top of the main file:

• Program name and purpose

• Program usage: syntax to use to invoke (run) the program

with input arguments

• Description of input arguments

• Description of output from the program

It is common to add a –help option to print the relevant
information about program usage and input arguments

C

Command line arguments

6

Example

Program calculator, reads two numbers, the operator, and
prints the result

calculator.c

C

Linux Wildcard Characters

7

* all items (directories and files) - with or without a suffix

r* items beginning with the letter "r"

boot* items beginning with "boot"

mem all items contain "mem" anywhere in the name

*.png items having the suffix of ".png" - that end in ".png"

We must be very careful when we use wildcard characters as input,
because argc and argv recognize them!

Linux has a series of wildcard characters * ? []

* Represents strings of arbitrary length containing any possible character

C

Linux Wildcard Characters

8

We must be very careful when we use wildcard characters as input,
because argc and argv recognize them!

Linux has a series of wildcard characters * ? []

?.txt items starting with only one character and ending in ".txt"
Examples: b.txt and 3.txt

memo?.sxw items beginning with "memo", having a single character after "memo",
and having the suffix of ".sxw"
Examples: memo1.sxw and memoh.sxw - not memo23.sxw

memo??.sxw items beginning with "memo", having a two characters (only) after
"memo", and having the suffix of ".sxw"
Examples: memo21.sxw and memok9.sxw - not memos.sxw

? Represents one single character which has any possible value

C

Linux Wildcard Characters

9

We must be very careful when we use wildcard characters as input,
because argc and argv recognize them!

Linux has a series of wildcard characters * ? []

[a-z]* items that begin with any lower case letter and end in any other characters

[A-Z]-list.dat items that begin with any upper case letter and end in "-list.dat"

[a-zA-Z]report.sxc items that begin with any lower case or upper case letter and end in
"report.sxc“

[e-t].c items that begin with any lower case letter between ‘e’ and ‘t’ and end in “.c”

[] Represents intervals of characters values

C

Homework 3 Solution

10

C

COMsW 1003-1

Introduction to Computer
Programming in C

Spring 2011

Instructor: Michele Merler

http://www1.cs.columbia.edu/~mmerler/comsw1003-1.html

Lecture 18

1

C

Modular Programming

2

C

Review - Header files

3

• Header files are fundamentally libraries

• Their extension is .h

• They contain function definitions, variables
declarations, macros

• In order to use them, the preprocessor uses the
following code

• So far, we have used predefined C header files,
but we can create our own! (more on this next
week)

#include <nameOfHeader.h>

#include “nameOfHeader.h”

For standard C libraries

For user defined headers

C

Modular Programming

4

• So far we have seen only small programs, in
one single file

• What about bigger programs? Need to keep
them organized, especially if multiple people
work on the same project

• They are organized in multiple, organized
parts : MODULES

C

Modules

5

• A module is “a collection of functions that perform
related tasks” [PCP Ch18]

• A module is basically a user defined library

• Two parts:

– Public : tells the user how to use the functions in the
module. Contains declaration of data structures and
functions

– Private : implements the functions in the module

C

Modules

6

• Two parts:

– Public : tells the user how to use the functions in the module.
Contains definition of data structures and functions

– Private : implements the functions in the module

HEADER

#include “myModule.h”

Public

Private

myProgram.c

myModule.h

myModule.c

C

Header

7

• A header should contain:

– A section describing what the module does

– Common constants

– Common structures

– Public functions declarations

– Extern declarations for public variables

C

Function Declaration vs. Definition

8

• All identifiers in C need to be declared before they are
used, including functions

• Function declaration needs to be done before the first call
of the function

• The declaration (or prototype) includes
– return type
– number and type of the arguments

• The function definition is the actual implementation of
the function

• Function definition can be used as implicit declaration

C

Modules

9

function
operator()
declaration

function
operator()
definition

#include “calculator.h”

Call to function operator()

Public

Private

mainProgram.c
calculator.h
calculator.c

mainProgram.c

calculator.h

calculator.c

C

Compile modules together

10

• We need a way to “glue” the modules
together

• We need to compile not only the main
program file, but also the user defined
modules that the program uses

• Solution : makefile

C

Makefile

11

• make routine offered in UNIX (but also in
other environments)

• make looks at the file named Makefile in
the same folder and invokes the compiler
according to the rules in Makefile

C

Makefile – Single file

12

#---#
Makefile for UNIX system
using a GNU C compiler (gcc)
#---#

this is a comment

oldCalculator: oldCalculator.c
gcc –Wall -o oldCalculator oldCalculator.c

C

Makefile – Single file

13

Rule: gcc command we are used to

The second statement MUST
start with a TAB!

Comments start with a # sign

#---#
Makefile for UNIX system
using a GNU C compiler (gcc)
#---#

this is a comment

oldCalculator: oldCalculator.c
gcc –Wall -o oldCalculator oldCalculator.c

C

Makefile – Single file

14

#---#
Makefile for UNIX system
using a GNU C compiler (gcc)
#---#

CC=gcc
CFLAGS=-Wall

oldCalculator: oldCalculator.c
$(CC) $(CFLAGS) -o oldCalculator oldCalculator.c

C

#---#
Makefile for UNIX system
using a GNU C compiler (gcc)
#---#

CC=gcc
CFLAGS=-Wall

oldCalculator: oldCalculator.c
$(CC) $(CFLAGS) -o oldCalculator oldCalculator.c

Makefile – Single file

15

macros

Rule: gcc command we are used to

The second statement MUST
start with a TAB!

C

Makefile

16

• Macros

• Rules

name=data
$(name) data

Whenever $(name) is found, it gets
substituted with data
Same as object-type macros for
Preprocessor

target: source [source2] [source3] …
command
command2
command3

…

UNIX compiles target from source using command

Default command is $(CC) $(CFLAGS) –c source

Predefined by make

C

#---#
Makefile for UNIX system
using a GNU C compiler (gcc)
#---#

CC=gcc
CFLAGS=-Wall

oldCalculator: oldCalculator.c
$(CC) $(CFLAGS) -o oldCalculator oldCalculator.c

clean:
rm -f oldCalculator

Makefile – Single file

17

C

Makefile – Single file

18

macros

Rule: gcc command we are used to

The second statement MUST
start with a TAB!

Rule: Clean up files

#---#
Makefile for UNIX system
using a GNU C compiler (gcc)
#---#

CC=gcc
CFLAGS=-Wall

oldCalculator: oldCalculator.c
$(CC) $(CFLAGS) -o oldCalculator oldCalculator.c

clean:
rm -f oldCalculator

C

Makefile

19

• If I have multiple rules, I can use the name of
the target to execute only the rule I want

• By default, make executes only the first rule

Example

$make clean

C

Makefile – Multiple Modules

20

#---#
Makefile for UNIX system
using a GNU C compiler (gcc)
#---#

CC=gcc
CFLAGS=-Wall

mainCalc : mainProgram.c calculator.o
$(CC) $(CFLAGS) -o mainCalc mainProgram.c calculator.o

calculator.o : calculator.c calculator.h
$(CC) $(CFLAGS) -c calculator.c

clean:
rm -f calculator.o mainProgram

C

Makefile – Multiple Modules

21

#---#
Makefile for UNIX system
using a GNU C compiler (gcc)
#---#

CC=gcc
CFLAGS=-Wall

mainCalc : mainProgram.c calculator.o
$(CC) $(CFLAGS) -o mainCalc mainProgram.c calculator.o

calculator.o : calculator.c calculator.h
$(CC) $(CFLAGS) -c calculator.c

clean:
rm -f calculator.o mainCalc

We must use the –c option
to compile a module instead
of an executable!

C

Makefile

22

• Rules
target: source [source2] [source3] …

command
command2
command3

…

UNIX compiles target from source using command

Default command is $(CC) $(CFLAGS) –c source

make is smart: it compiles only modules that need it

If target has already been compiled and source did not
change, make will skip this rule

target:
command

This rule instead is ALWAYS
executed by the compiler,
because source is not
specified in the first line

C

Extern/Static Variables

23

• Extern is used to specify that a variable or function
is defined outside the current file

When same variable is used by different modules,
extern is a way to declare a global variable which can
be used in all modules

• Static is used to specify that a variable is local to
the current file (for global variables)

Remember the use for local variables (Lec7): local static
means permanent

calculator.h
calculator.c

C

COMSW 1003-1

Introduction to Computer
Programming in C

Spring 2011

Instructor: Michele Merler

http://www1.cs.columbia.edu/~mmerler/comsw1003-1.html

Lecture 19

1

C

Basic Data Structures

2

C

Basic Data Structures

3

• So far, the only data structures we have seen to
store data have been arrays (and structs)

• There are other (and potentially more useful) data
structures that can be used
– Lists
– Trees

• Benefits:
– Dynamically grow and shrink is easy
– Search is faster

C

Linked Lists

4

• A chain of elements

• First element is called HEAD

• Each element (called NODE) points to the next

• The last node does not point to anything

• Like a treasure hunt with clues leading one to
another

Node 1
(HEAD)

Node 2 Node N-1 Node N
(LAST)

. . .

C

Pointers to structs

5

• Pointers can point to any type, including structs

• There is a particular way of accessing fields in a
struct through a pointer: the > operator

struct person {

int age;

char *name;

}

struct person p1 = {15, “Luke”};

struct person *ptr = &p1;

ptr->age = 20; // (*ptr).age = 20;

printf(“%s\n”, ptr->name);

structPoint.c

C

Linked Lists

6

• Structure declaration for a node of a linked list

struct ll_node {

int value;

struct ll_node *next;

};

typedef struct ll_node node;

next

value

Node 2

next

value

Node n+1

next

value

Node 1

next

value

Node n+1

. . . NULL

linkedList.c

C

Linked Lists
Initialization

7

node *head = (node *) malloc(sizeof(node));

head->value = 0;

head->next = NULL;

struct ll_node {

int value;

struct ll_node *next;

};

• First node (HEAD) of the list is just a pointer to the list, it
not counted as an actual node in the list

• Value set to 0 (could be any number, maybe a counter)

• The list is still empty, there is only HEAD, so next is NULL
(end of the list)

C

Linked Lists
Initialization

8

node *head = (node *) malloc(sizeof(node));

head->value = 0;

head->next = NULL;

• First node (HEAD) of the list is just a pointer to the list, it
not counted as an actual node in the list

• Value set to 0 (could be any number, maybe a counter)

• The list is still empty, there is only HEAD, so next is NULL
(end of the list)

0

head

NULL

C

Linked Lists
Insert node in front

9

int addNodeFront(int val, node *head){

node *newNode = (node *) malloc(sizeof(node));

newNode->value = val;

newNode->next = head->next;

head->next = newNode;

return 0;

}

struct ll_node {

int value;

struct ll_node *next;

};

C

Linked Lists - Insert node in front

10

int addNodeFront(int val, node *head){

1) node *newNode = (node *) malloc(sizeof(node));

2) newNode->value = val;

3) newNode->next = head->next;

4) head->next = newNode;

return 0;

}

0

head

NULL

value

newNode

1 4

7

2

3

newNode

0

head

7

NULL

newNode

7

newNode

addNodeFront(7, head);

C

Linked Lists - Insert node in front

11

int addNodeFront(int val, node *head){

1) node *newNode = (node *) malloc(sizeof(node));

2) newNode->value = val;

3) newNode->next = head->next;

4) head->next = newNode; return 0;

}

4

5

1-2

3

newNode

0

head

7

NULL

5

newNode

0

head

7

NULL

5

newNode

addNodeFront(7, head);

addNodeFront(5, head);

C

Linked Lists
Insert node at position N

12

int addNode(int val, node *head, int pos){

node *newNode = (node*) malloc(sizeof(node));

newNode->value = val;

int i;

node *tmp = head;

for(i=0 ; i<pos; i++)

tmp = tmp->next;

newNode->next = tmp->next;

tmp->next = newNode;

return 0;

}

struct ll_node {

int value;

struct ll_node *next;

};

C

Linked Lists - Insert node at position N

130

head

7

NULL

54

1

newNode

2

3

tmp

int addNode(int val, node *head, int pos){

1) node *newNode = (node*) malloc(sizeof(node));

newNode->value = val;

2) node *tmp = head;

for(i=0 ; i<pos; i++)

tmp = tmp->next;

3) newNode->next = tmp->next;

4) tmp->next = newNode;

return 0;

} addNode(4, head, 2);

C

Linked Lists - Insert node at position N

14

3

4

newNode

0

head

7

NULL

53

tmp

int addNode(int val, node *head, int pos){

2) node *tmp = head;

for(i=0 ; i<pos; i++)

tmp = tmp->next;

3) newNode->next = tmp->next;

4) tmp->next = newNode;

return 0;

} addNode(4, head, 2);

C

Linked Lists - Insert node at position N

15

int addNode(int val, node *head, int pos){

node *tmp = head;

2) for(i=0 ; i<pos; i++)

tmp = tmp->next;

3) newNode->next = tmp->next;

4) tmp->next = newNode;

return 0;

}

4

4

newNode

0

head

7

NULL

53

tmp

addNode(4, head, 2);

C

Linked Lists
Delete Node

16

int removeNodePosition(node *head, int pos){

int i;

node *tmp = head;

for(i=0 ; i<pos; i++)

tmp = tmp->next;

node* tmp2 = tmp->next;

tmp->next = tmp->next->next;

free(tmp2);

return 0;

}

struct ll_node {

int value;

struct ll_node *next;

};

C

Linked Lists - Delete Node

17

int removeNodePosition(node *head, int pos){

int i;

1) node *tmp = head;

for(i=0 ; i<pos; i++)

tmp = tmp->next;

2) node* tmp2 = tmp->next;

tmp->next = tmp->next->next;

3) free(tmp2);

return 0;

}

40

head

7

NULL

3 5

tmp

removeNode(head, 1);

1

C

Linked Lists - Delete Node

18

int removeNode(node *head, int pos){

int i;

1) node *tmp = head;

for(i=0 ; i<pos; i++)

tmp = tmp->next;

2) node* tmp2 = tmp->next;

tmp->next = tmp->next->next;

3) free(tmp2);

return 0;

}

2

40

head

7

NULL

3 5

tmp tmp2

removeNode(head, 1);

C

Linked Lists - Delete Node

19

int removeNode(node *head, int pos){

int i;

1) node *tmp = head;

for(i=0 ; i<pos; i++)

tmp = tmp->next;

2) node* tmp2 = tmp->next;

tmp->next = tmp->next->next;

3) free(tmp2);

return 0;

}

3

40

head

7

NULL

3

tmp

removeNode(head, 1);

C

Linked Lists
Delete Whole List

20

int destroyList(node **head){

node *tmp;

while((*head)->next != NULL){

tmp = (*head);

(*head) = (*head)->next;

free(tmp);

}

return 0;

}

struct ll_node {

int value;

struct ll_node *next;

};

destroyList(&head);

C

Linked Lists
Delete Whole List

21

int destroyList(node **head){

node *tmp;

while((*head)->next != NULL){

tmp = (*head);

(*head) = (*head)->next;

free(tmp);

}

return 0;

}

struct ll_node {

int value;

struct ll_node *next;

};

destroyList(&head);

I need to pass head by
reference,
because I am changing it
within the function

C

Doubly linked lists

22

• Pointer to next AND previous node

• Faster backtracking

struct dll_node {

int value;

struct dll_node *prev;

struct dll_node *next;

};

value value value value

NULL
NULL

C

Binary Trees

23

• Like lists, but each node has a pointer to
two elements:

– Left has a value < current node

– Right has a value > current node

• First node is called ROOT

struct t_node {

int value;

struct t_node *left;

struct t_node *right;

};

value

left right

C

Binary Trees

24

– Left has a value < current node

– Right has a value > current node

struct t_node {

int value;

struct t_node *left;

struct t_node *right;

};value

value value

value
valuevalue

NULL

C

Binary Trees

25

– Left has a value < current node

– Right has a value > current node

struct t_node {

int value;

struct t_node *left;

struct t_node *right;

};value

value value

value
valuevalue

NULL

LEVEL 0

LEVEL 1

LEVEL 2

C

Binary Trees

26

– Left has a value < current node

– Right has a value > current node

value

value value

value
valuevalue

NULL

LEVEL 0

LEVEL 1

LEVEL 2

struct t_node {

int value;

struct t_node *left;

struct t_node *right;

};

Nodes at the bottom level or without
children are called LEAVES

C

Binary Trees

27

Inserting number x into a Binary Tree:

1. Start at root

2. if (current node is NULL)
create new node and set node’s value to x

3. else

if (x >= current node’s value)
follow right pointer

else
follow left pointer

Go to 1

C

Binary Trees

28

Example: [1 12 6 23 17 90 8]

1

12

236

908 17

NULL

NULL

NULL NULL NULL NULL NULL NULL

C

Binary Trees

29

Example: [1 12 6 23 17 90 8]

1

12

236

908 17

NULL

NULL

Find all elements < 10

NULL NULL NULL NULL NULL NULL

C

Binary Trees

30

Example: [1 12 6 23 17 90 8]

1

12

236

908 17

NULL

NULL

Find all elements < 10

Binary tree requires 4 checks

C

Binary Trees

31

Example: [1 12 6 23 17 90 8]

1

12

236

908 17

NULL

NULL

Find all elements < 10

Binary tree requires 4 checks

Standard array or linked list
require 7 checks

NULL NULL NULL NULL NULL NULL

C

Trees Definitions

32

• Root : node with no parents. Leaf : node with no children

• Depth (of a node) : path from root to node

• Level: set of nodes with same depth

• Height or depth (of a tree) : maximum depth

• Size (of a tree) : total number of nodes

• Balanced binary tree : depth of all the leaves differs by at most 1.

Level 0

Level 1

Level 2

Level 3

Height of tree = 3
Size = n = 15

C

Read PCP Chapter 17

33

C

COMSW 1003-1

Introduction to Computer
Programming in C

Spring 2011

Instructor: Michele Merler

http://www1.cs.columbia.edu/~mmerler/comsw1003-1.html

Lecture 20

1

C

Announcements

2

• HW5 out this Wednesday,

– Due on Wednesday, April 27th before class

• Final on Monday May 9th, from 9am to
12pm, in class

– Same format as Midterm

C

Today

3

• Quick review of linked lists

• Binary Trees

• Complexity Analysis

C

Introduction to
Complexity Analysis

4

C

Measuring Algorithms

5

• In Computer Science, we are interested in finding a
function that defines the quantity of some resource
consumed by a particular algorithm

• This function is often referred to as a complexity of
the algorithm

• The resources we usually investigate are
– running time
– memory requirements

C

Measuring Algorithms

6

• We want to express complexity in the most
general way possible

• Running time and space typically depend
on input size

• Algorithms run on different machines

For varying input sizes, we can write time and
space requirements as functions of n.

For varying implementation, we use a description
independent from constant factors.

C

Example

7

• What is the running time (RT) of an algorithm
that sums the elements in the array?

• How much space (SP) in memory is used by that
algorithm?

7 1 44 2 34 9 12 7 33 12

Given an array X of 10 elements of type int

X

int X[10];
int i, sum = X[0];

for(i=1; i<10;i++){
sum += X[i];

}

Complexity analysis

C

Example

8

• What is the running time (RT) of an algorithm
that sums the elements in the array?

• How much space (SP) in memory is used by that
algorithm?

7 1 44 2 34 9 12 7 33 12X

Machine 1

Addition 2 seconds
int  4 bytes

Machine 2

Addition 3 seconds
int  8 bytes

Machine 2

Addition 2 seconds
int  8 bytes

. . .

RT = 9 * 2 = 18
SP = 10*4 + 2*4 = 48

RT = 9 * 3 = 27
SP = 10*8 + 2*8 = 96

RT = 9 * 2 = 18
SP = 10*8 + 2*8 = 96

Complexity analysis int X[10];
int i, sum = X[0];

for(i=1; i<10;i++){
sum += X[i];

}

Given an array X of 10 elements of type int

C

Example

9

• What is the running time (RT) of an algorithm
that sums the elements in the array?

• How much space (SP) in memory is used by that
algorithm?

7 1 44 2 34 9 12 7 33 12

Given an array of 10 elements of type int

X

Machine 1

Addition 2 seconds
int  4 bytes

Machine 2

Addition 3 seconds
int  8 bytes

Machine 2

Addition 2 seconds
int  8 bytes

. . .

RT = 9 * 2 = 18
SP = 10*4 + 2*4 = 48

RT = 9 * 3 = 27
SP = 10*8 + 2*8 = 96

RT = 9 * 2 = 18
SP = 10*8 + 2*8 = 96

Complexity analysis int X[10];
int i, sum = X[0];

for(i=1; i<10;i++){
sum += X[i];

}This is not general!
Performance of machines, not of algorithm!
What if array has n elements?

We want to express complexity of algorithm in terms of
— n : number of elements in array (variable)
— c : number of seconds to execute addition (constant)
— b : number of bytes to store elements (constant)

C

Example

10

• What is the running time (RT) of an algorithm
that sums the elements in the array?

• How much space (SP) in memory is used by that
algorithm?

7 1 44 2 34 9 12 7 33 12

Given an array of 10 elements of type int

X

RT = c(n-1)

SP = b(n+2)

Complexity analysis int X[10];
int i, sum = X[0];

for(i=1; i<10;i++){
sum += X[i];

}

We want to express complexity of algorithm in terms of
— n : number of elements in array (variable)
— c : number of seconds to execute addition (constant)
— b : number of bytes to store elements (constant)

C 11

GOAL: estimate the order of the function f(n) that
represents RT or SP in terms of n

Big – O Notation

f(n) = O(g(n))

0)()(

0

))(()(

nnngCnf

C

ngOnf
n










0nand :

C 12

GOAL: estimate the order of the function f(n) that
represents RT or SP in terms of n

Big – O Notation

f(n) = O(g(n))

f(n) equals oh of g(n) as n tends to infinity

0)()(

0

))(()(

nnngCnf

C

ngOnf
n










if and only if

there exists a positive constant C
and a value n0 such that

0nand :

for all n greater than n0,
the absolute value of f(n)
is smaller than C times the
absolute value of g(n)

C 13

GOAL: estimate the order of the function f(n) that
represents RT or SP in terms of n

Big – O Notation

f(n) =O(g(n))

0)()(

0

))(()(

nnngCnf

C

ngOnf
n










In other words, big-O means less than some constant scaling
When analyzing complexity with big-O notation, we always
consider the WORST CASE SCENARIO

0nand :

C

• c

Big-O notation: Examples

14

• What is the running time (RT) of an algorithm
that sums n elements in an array?

C(n-1) = O(n-1) = O(n)

85738573

8573)(

2424

24





nnnnnn

nnnnf

4444 8573 nnnn 
423n

f(n) = O(n4)

|f(n)| ≤ C|g(n)|

C

Big – O : common cases

15

• The algorithm requires the same fixed number of steps
regardless of the size of the task

• Example: insert an element in front of a linked list

O(1) - constant time

int addNodeFront(int val, node *head){

1) node *newNode = malloc(sizeof(node));

2) newNode->value = val;

3) newNode->next = head->next;

4) head->next = newNode;

}

No matter how long the list is, this
operation always requires 4 steps
O(4) = O(1)

C

Big – O : common cases

16

• The algorithm requires the same fixed number of steps
regardless of the size of the task

• Example: insert an element in front of a linked list

O(1) - constant time

int addNodeFront(int val, node *head){

1) node *newNode = malloc(sizeof(node));

2) newNode->value = val;

3) newNode->next = head->next;

4) head->next = newNode;

}

No matter how long the list is, this
operation always requires 4 steps
RT = O(4) = O(1)

if c<<n
O(c) = O(1)

C

Big – O : common cases

17

• The algorithm requires a number of steps proportional
to the size of the task

• Examples:
– Travers a linked list or an array with n elements;
– Find the maximum and minimum element in a list or array

O(n) - linear time

RT = O(2n) = O(n)

SP = O(n+2) = O(n)

for(i=0 ; i < n; i++){

if(arr[i] < minVal)

minVal = arr[i];

if(arr[i] > maxVal)

maxVal = arr[i];

}

C

Big – O : common cases

• The number of operations is proportional to the size of the
task squared.

• Example: Finding duplicates in an unsorted list of n elements

O(n2) - quadratic time

for(i=0 ; i < n; i++){

for(j=0 ; j < n; j++){

if((i!=j) && arr[i] == arr[j])

dup[i][j] = 1;

}

}

RT = O(4n2+n) = O(n2)

increment i
increment j
check i!=j

check arr[i]==arr[j]
dup[i][j]=1

n times
n2 times
n2 times
n2 times
(n-1)*(n-1) times

C 19

• Example: Find operation in a balanced binary tree
with n nodes

Big – O : common cases

O(log(n)) - logarithmic time

7

n = 15
height of tree = 3 =

RT = log2(n)+1 = O(log2(n))

 (n)log2

C 20

• Examples: sorting algorithms (will see in next
class)

– quicksort
– mergesort

Big – O : common cases

O(n log(n)) – “n log(n)” time

C 21

• Example: Recursive Fibonacci implementation

Big – O : common cases

O(an) – exponential time

int fib(int n) {

switch(n) {
case 0:
return(0);

case 1:
return(1);

default:
return(fib(n-1) + fib(n-2));

}

a > 1

How many times is fib() called?

Cost of fib() without return
statement = 2 = O(1)

RT(n) = RT(n-1) + RT(n-2) + O(1)

RT = O(an)

6.1
2

51

12

21








 

a

aa

aaa nnn

C

Big–O : Relationship among common cases

22

Example : big-O when a function is the sum of several statements

O(1) < O(log n) < O(n) < O(n log n) < O(n2) < O(n3) < O(an)

int i=0;

for(i=0 ; i < n; i++){

for(j=0 ; j < n; j++){

if((i!=j) && arr[i] == arr[j])

dup[i][j] = 1;

}

}

RT = O(4n2+n) = O(n2)

increment i
increment j
check i!=j
check arr[i]==arr[j]
dup[i][j] = 1

Longest operation dominates (worst case)

C

COMSW 1003-1

Introduction to Computer
Programming in C

Spring 2011

Instructor: Michele Merler

http://www1.cs.columbia.edu/~mmerler/comsw1003-1.html

Lecture 21

1

C

Big–O : Relationship among common cases

2

Example : big-O when a function is the sum of several statements

O(1) < O(log n) < O(n) < O(n log n) < O(n2) < O(n3) < O(an)

int i=0;

for(i=0 ; i < n; i++){

for(j=0 ; j < n; j++){

if((i!=j) && arr[i] == arr[j])

dup[i][j] = 1;

}

}

RT = O(4n2+n) = O(n2)

increment i
increment j
check i!=j
check arr[i]==arr[j]
dup[i][j] = 1

Longest operation dominates (worst case)

C

Sorting

3

C

Sorting

4

• Given a set of N elements, put them in order according to some
criteria (alphabetical, relevance, date, smallest to largest, etc.)

• One of the most studied problems in Computer Science

• Everybody uses it every day

Columbia University

Michele

C

Sorting

5

• Given a set of N elements, put them in order according to
some criteria

• Compare pairs of elements

• Many algorithms, some of the most famous are:

– Bubble sort

– Selection sort

– Insertion sort

– Merge sort

– Counting sort

• In following examples, we’ll see smallest to biggest sorting

C

Bubble Sort

6

1. Start with the first two elements

2. If first element > second element

• Swap

3. Iterate for all following pairs

4. Repeat steps 1 to 3 until no swaps are necessary

Complexity = O(n2)
Count number of
comparisons and swaps

C

Bubble Sort

7

9 5 1 7 2

5 9 1 7 2

5 1 9 7 2

5 1 7 9 2

5 1 7 2 9

1 5 7 2 9

1 5 7 2 9

1 5 2 7 9

1 5 2 7 9

1 2 5 7 9

1 5 2 7 9

C

5 9 1 7 2

5 1 9 7 2

5 1 7 9 2

5 1 7 2 9

1 5 7 2 9

1 5 7 2 9

1 5 2 7 9

1 5 2 7 9

1 2 5 7 9

1 5 2 7 9

Bubble Sort

8

9 5 1 7 2

n-1
checks

n-1
checks

. . .

C

Selection Sort

9

• Smarter algorithm, but same complexity
(worst case)

1. Find smallest unsorted element

2. Swap with first unsorted element

3. Repeat steps 1 and 2 until no more unsorted
elements

Complexity = O(n2)

C

Selection Sort

10

9 5 1 7 2

1 5 9 7 2

1 2 9 7 5

1 2 5 7 9

First unsorted element

1 2 5 7 9

n-1
checks

n-2
checks

n checks
to find
minimum

. . .

C

Insertion Sort

11

• Main idea: keep 2 separate sets (one sorted, one unsorted),
and move elements from unsorted to sorted set one at a time

• Better performance in case many elements are already sorted,
quadratic in worst case

1) Initialize 2 sets
– One set of sorted elements (contains only first element in the

array)
– One set of unsorted elements (all the other elements in the

array)

2) A) Take first element in unsorted set and
B) Insert it into sorted set at proper position

3) Repeat steps 2A) and 2B) until unsorted set is empty

Complexity = O(n2)

C 12

9 5 3 4 1

5 9 3 4 1

Unsorted setSorted set

5 3 9 4 1

3 4 5 9 1

1 3 4 5 9

3 5 9 4 1

5 9 3 4 1

3 5 9 4 1

3 5 4 9 1

3 4 5 9 1

. . .

9 5 3 4 1

Insertion sort

1)

2A)

2B)

2A)

2A)

2A)

2B)

2B)

2B)

1 check
1 swap

2 checks
2 swaps

n-2 checks
n-3 swaps

n-1 checks
n-1 swaps

C

Merge Sort

13

• One of the fastest algorithms, divide and conquer principle

• Uses recursion

• Sorting small sets is faster than sorting large sets

• Merging 2 sets into a sorted union is faster if the sets are already
sorted

1. If set H has 1 element, stop

2. else

– Split set into 2 halves H1 and H2 of (approximately) same size

– Sort H1 and H2 with merge sort

– Merge the sorted H1 and H2 into a sorted set

Complexity = O(n log(n))

recursion

C

Merge Sort

14

9 5 1 7 2

7 25 9 1

15 9 7 2

5 9
2 7

5 9

1 5 9

1 2 5 7 9

C

Merge Sort

15

9 5 1 7 2

7 25 9 1

15 9 7 2

5 9
2 7

5 9

1 5 9

1 2 5 7 9

Similar to trees, we perform log2(n) splits and merges

Each merge takes O(n) in the worst case

C

Merge Sort

16

2 71 5 9

1 2 5 7 9

int c1=0, c2=0;
for (i=0; i<n; i++){

if((c1<n1) && ((H1[c1] < H2[c2]) || (c2==n2))){
H[i] = H1[c1];
c1++;

}
else{

H[i] = H2[c2];
c2++;

}
}

Similar to trees, we perform log2(n) splits
and merges
Each merge takes O(n) in the worst case

Merge routine:

Given H1 and H2 of size n1 and n2 respectively, create H of length n = n1 + n2

C

Counting sort

17

• Intuition: exploit range k of values in set

• Efficient if k is not much larger than n

1. Find biggest and smallest values in the set
(k = maxVal – minVal+1)

2. Create an array C of k elements

3. Count occurrences C(i) of each value i in the set

4. Fill ordered set by inserting C(i) elements of value i, for
each value in range k

Complexity = O(n + k)

C

Counting sort

18

2 5 1 1 2 2 5

Example: range of values in set is [1, 5], k = 5

2 3 0 0 2C

i = 1 2 3 4 5

O(n)

1 1 2 2 2 5 5

1)

2-3)

4)

O(k) + O(n)

O(n)

To create C

C

Homework 4 Solution

19

