
C

COMsW 1003-1

Introduction to Computer
Programming in C

Spring 2011

Instructor: Michele Merler

http://www1.cs.columbia.edu/~mmerler/comsw1003-1.html

Lecture 9

1

C

Are Computers Smarter than Humans?

2http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-
over-humans-in-round-2.html

Link

http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-over-humans-in-round-2.html
http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-over-humans-in-round-2.html
http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-over-humans-in-round-2.html
http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-over-humans-in-round-2.html
http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-over-humans-in-round-2.html
http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-over-humans-in-round-2.html
http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-over-humans-in-round-2.html
http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-over-humans-in-round-2.html
http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-over-humans-in-round-2.html
http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-over-humans-in-round-2.html
http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-over-humans-in-round-2.html
http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-over-humans-in-round-2.html
http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-over-humans-in-round-2.html
http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-over-humans-in-round-2.html
http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-over-humans-in-round-2.html
http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-over-humans-in-round-2.html
http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-over-humans-in-round-2.html
http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-over-humans-in-round-2.html
http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-over-humans-in-round-2.html
http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-over-humans-in-round-2.html
http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-over-humans-in-round-2.html
http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-over-humans-in-round-2.html
http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-over-humans-in-round-2.html
http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-over-humans-in-round-2.html
http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-over-humans-in-round-2.html
http://www.youtube.com/watch?v=dr7IxQeXr7g

C

Today

3

• Homework 1 Correction

• Debugging (from Lecture 8)

• C Preprocessor

C

Conditional Assignment

4

• Another way of embedding if - else in a single statement

• Uses the ? : operators

int x = 7, y;

y = (x > 5) ? x : 5;

variable = (condition) ? val1 : val2 ;

int x = 7, y;

if(x > 5) {
y = x;

}
else{

y = 5;
}

y= 7

If condition is true, we
assign val1 to variable

If condition is false, we
assign val2 to variable

C

The comma operator

5

• In C statements can also be separated by , not only ;

int x = 2, char c = ‘m’;

int x = 2, y;

Be careful with declarations!

V Same type, OK

Different types, NO

int x = 2;
int y;

x++, y = x/3, y += 2;

int x = 2;
int y;

x++;
y = x/3;
y = y+2;

C

The comma operator

6

Special case, the for loop statement

int i, flag = 1;

char word[100] = “radar”;

for(i=0 , j=strlen(word)-1 ; i < strlen(word)/2 ; i++ , j--) {

if(word[i] != word[j]) {
flag = 0;
break;

}
}

Example: the palindrome word checking. Check if a word is the
same when read right to left

C

The comma operator

7

Special case, the for loop statement

for(i=0 , j=strlen(word)-1 ; i < strlen(word)/2 ; i++ , j--) {

if(word[i] != word[j]) {
flag = 0;
break;

}
}

Example: the palindrome word checking

Initial conditions
change
conditions

C

Advanced Types - Const

8

const defines a variable whose value cannot be changed

const double PI = 3.14;

double r = 5, circ;

circ = 2 * PI * r;

PI = 7;

C

Advanced Types - Const

9

const defines a variable whose value cannot be changed

const double PI = 3.14;

double r = 5, circ;

circ = 2 * PI * r;

PI = 7; Once it’s initialized, a const
variable cannot change value

C

C Preprocessor

10

C

C Preprocessor

11

Preprocessor is a facility to handle
– Header files
– Macros

Independent from C itself, it’s basically a text editor
that modifies your code before compiling

Preprocessor statements begin with # and do not end
with ;

C

C Preprocessor

12

. . .
. . .

myFile .c (program) myFile (executable)

Compiler

0100101010021
0101001010000
11110011…

…010010100001
1110001110101

. . .

C

C Preprocessor

13

. . .
. . .

myFile.c (program)

. . .

myFile.c
(preprocessor code)

Preprocessor

myFile (executable)

. . .

0100101010021
0101001010000
11110011…

…010010100001
1110001110101

. . .

Compiler

C

View Preprocessor Code

14

• gcc has a special option that allows to run
only the preprocessor

gcc -E myFile.c

We can send output to a file using the UNIX > operator

gcc -E myFile.c > outFile.txt

Saves gcc’s output to outFile.txt

C

Header files

15

• Header files are fundamentally libraries

• Their extension is .h

• They contain function definitions, variables
declarations, macros

• In order to use them, the preprocessor uses the
following code

• So far, we have used predefined C header files,
but we can create our own! (more on this in
upcoming Lectures)

#include <nameOfHeader.h>

#include “nameOfHeader.h”

For standard C libraries

For user defined headers

C

Header files

16

. . .
. . .

myFile.c myFile.c

Preprocessor

#include <stdio.h>

. . .

stdio.h

C

Macros

17

• A macro is a piece of code c which has been given a
name n

• Every time we use that n in our program, it gets
replaced with c

• The preprocessor allows you to declare them with
#define

• Two types:
– Object-like macros
– Function-like macros

C

Object like macros

18

• Constants, usually defined on top of
programs

#define name text_to_substitute

#define SIZE 10

#define FOR_ALL for(i=0; i< SIZE; i++)

macros.c

C

Object like macros

19

#define SIZE 10

/* main function */
int main(){

int arr[SIZE];

return(0);
}

From now on, every time we
write SIZE inside our program it
is going to be replaced by 10

macros.c

C

Object like macros

20

• Some compilers do not allow you to
declare arrays with a variable as size

int size1 = 10;
int arr1[size1]; /* should always cause error */

const int size2=10;
int arr2[size2]; /* causes errors in many compilers */

#define SIZE 10
int arr3[SIZE]; /* OK in any C compiler */

macros.c

C

Function-like macros

21

• Macros that can take parameters like functions

• Parameters MUST be included in parentheses in
the macro name, without spaces

• It is a good habit to include parameters in
parentheses also in the text to be substituted

macros.c

#define SQR(x) ((x) * (x))

#define MAX(x,y) ((x) > (y) ? (x) : (y))

C

Conditional Compilation

22

• Allows to use or not certain parts of a
program based on definitions of macros

condComp.c

#ifdef var

#ifndef var

#else

#endif

#undef var

if var is defined, consider the following code

if var is not defined, consider the following code

close if(n)def

undefine var (opposite of #define)

C

Conditional Compilation

23

condComp.c

#define DEBUG

#ifdef DEBUG

printf(“The value of x is %d\n”, x);

#endif

.
.
.

If DEBUG was defined earlier in the program, then the
statement printf(…); is considered, otherwise the
preprocessor does not copy it to the file to be compiled

