CS

CU
COMsW 1003-1
Introduction to Computer
Programming in G
Lecture 9 Spring 2011

Instructor: Michele Merler

c http://www1.cs.columbia.edu/~mmerler/comsw1003-1.html

Are Computers Smarter than Humans?

IBM's Watson on 'Jeopardy': Computer takes big lead
over humans in Round 2
February 15,2011 | 9:20 pm Y o B - Comments (0)

On Tuesday night's "Jeopardy" episode, Watson, the IBM supercomputer, steamrollered to a
commanding lead over his human competitors.

http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-ta kes-big-lead-
over-humans-in-round-2.html

http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-over-humans-in-round-2.html
http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-over-humans-in-round-2.html
http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-over-humans-in-round-2.html
http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-over-humans-in-round-2.html
http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-over-humans-in-round-2.html
http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-over-humans-in-round-2.html
http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-over-humans-in-round-2.html
http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-over-humans-in-round-2.html
http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-over-humans-in-round-2.html
http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-over-humans-in-round-2.html
http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-over-humans-in-round-2.html
http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-over-humans-in-round-2.html
http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-over-humans-in-round-2.html
http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-over-humans-in-round-2.html
http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-over-humans-in-round-2.html
http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-over-humans-in-round-2.html
http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-over-humans-in-round-2.html
http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-over-humans-in-round-2.html
http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-over-humans-in-round-2.html
http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-over-humans-in-round-2.html
http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-over-humans-in-round-2.html
http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-over-humans-in-round-2.html
http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-over-humans-in-round-2.html
http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-over-humans-in-round-2.html
http://latimesblogs.latimes.com/technology/2011/02/ibms-watson-on-jeopardy-computer-takes-big-lead-over-humans-in-round-2.html
http://www.youtube.com/watch?v=dr7IxQeXr7g

Today

e Homework 1 Correction
* Debugging (from Lecture 8)

* C Preprocessor

Conditional Assignment

* Another way of embedding 1 f - else in asingle statement

e Usesthe ? : operators

variable = (condition) 7?7 wvall : wval2 ;

| |
v v

p
If condition is true, we | | If condition is false, weJ

assign vall to variable @ | assign val2 to variable

int x =7, vy;

<:> if(x > 5) |
y = (x>5)17x:5; v = X;

The comma operator

* |n Cstatements can also be separated by, not only ;

int x = 2;
int vy,

x++, v = x/3,

y += 2;

(Be careful with declarations! J

int x = 2,

int x = 2, vy,

V Same type, OK

int x = 2;
int vy

X++;
y = x/3;
y = y+2;

char ¢ = 'm’; & Different types, NO

The comma operator

Special case, the for loop statement

Example: the palindrome word checking. Check if a word is the
same when read right to left

int i, flag = 1;
char word[100] = “radar”;

for(i=0 , j=strlen(word)-1 ; 1 < strlen(word)/2 ; i++ , j--

if(word[i] '= word[]j]) {
flag = 0;
break;

The comma operator

Special case, the for loop statement

Example: the palindrome word checking

change
Initial conditions conditions
A A
4 N\ 4 N\
for(:kﬂ)()j=strlen(word)-1 ;1 < strlen(word)/2 ; r++()j--) |
if(word[i] != word[j]) {
flag = 0;

break;

Advanced Types - Const

const defines a variable whose value cannot be changed

const double PI = 3.14;
double r = 5, circ;
circ = 2 * PI * r;

PI = 7;

Advanced Types - Const

const defines a variable whose value cannot be changed

const double PI = 3.14;
double r = 5, circ;

circ = 2 * PI * r;

Once it’s initialized, a const
variable cannot change value

C Preprocessor

C Preprocessor

Preprocessor is a facility to handle
— Header files
— Macros

Independent from C itself, it’s basically a text editor
that modifies your code before compiling

Preprocessor statements begin with # and do not end
with ;

C Preprocessor

myFile .c (program)

Compiler

myFile (executable)

0100101010021
0101001010000
11110011...

...010010100001
1110001110101

myFile.c (program)

C Preprocessor

Preprocessor

myFile.c
(preprocessor code)

Compiler

myFile (executable)

0100101010021
0101001010000
11110011...

...010010100001
1110001110101

View Preprocessor Code

gcc has a special option that allows to run
only the preprocessor

gcc -E myFile.c

We can send output to a file using the UNIX > operator
gcc -E myFile.c > outFile.txt

Saves gcc’s output to outFile.txt

Header files

* Header files are fundamentally libraries

 Their extension is .h

* They contain function definitions, variables

declarations, macros

* In order to use them, the preprocessor uses the

following code

#include <nameOfHeader.h>

#include “nameOfHeader.h”

——> For standard C libraries

——> For user defined headers

* So far, we have used predefined C header files,
but we can create our own! (more on this in

c upcoming Lectures)

Header files

myFile.c

stdio.h

#include <stdio.h>

Preprocessor

myFile.c

16

Macros

* A macro is a piece of code ¢ which has been given a
name n

* Every time we use that n in our program, it gets
replaced with ¢

* The preprocessor allows you to declare them with
#define

* Two types:
— Object-like macros
— Function-like macros

Object like macros

e Constants, usually defined on top of
programs

Macros.c

#define name text _to substitute

#define SIZE 10

#define FOR_ALL for(i=0; i< SIZE; i++)

Macros.c

Object like macros

(- .
From now on, every time we

write SIZE inside our program it

is going to be replaced by 10
/* main function */ SeI P Y J

int main() {

#define SIZE 10 >

int arr[SIZE];

return(0) ;

19

Object like macros MRS

* Some compilers do not allow you to
declare arrays with a variable as size

int sizel = 10;
int arri1[sizel1]; /* should always cause error */

const int size?2=10;
int arr2[size2]; /* causes errors in many compilers */

#define SIZE 10
int arr3[SIZE]; /* OK in any C compiler */

Macros.c

Function-like macros

* Macros that can take parameters like functions

#define SOR(x) ((x) * (x))

#define MAX(x,y) ((x) > (y) 7 (x) : (y))

* Parameters MUST be included in parentheses in

the macro name, without spaces

* Itis agood habit to include parameters in
parentheses also in the text to be substituted

condComp.c

Conditional Compilation

* Allows to use or not certain parts of a
program based on definitions of macros

#ifdef var if var is defined, consider the following code
#1ifndef wvar ifvaris notdefined, consider the following code
#else

#endif close if(n)def

#undef var undefine var (opposite of #define)

condComp.c

Conditional Compilation

#define DEBUG

#1fdef DEBUG
printf (“"The value of x 1is %d\n”, x);

#endif

If DEBUG was defined earlier in the program, then the
statement printf (..); isconsidered, otherwise the
preprocessor does not copy it to the file to be compiled

