
C

COMSW 1003-1

Introduction to Computer
Programming in C

Spring 2011

Instructor: Michele Merler

http://www1.cs.columbia.edu/~mmerler/comsw1003-1.html

Lecture 4

1

C

Announcements

2

• HW 1 is due on Monday, February 14th at the
beginning of class, no exceptions

• Read so far: PCP Chapters 1 to 4

• Reading for next Wednesday: PCP Chapter 5

C

Review – Access CUNIX
http://www1.cs.columbia.edu/~bert/courses/1003/cunix.html

3

1) Enable windowing environment
- X11, Xming, X-Server

2) Launch SSH session (login with UNI and password)
- Terminal, Putty

3) Launch Emacs
$ emacs &

4) Open/create a file, than save it with .c extension

5) Compile source code into executable with gcc

http://www1.cs.columbia.edu/~bert/courses/1003/cunix.html
http://www1.cs.columbia.edu/~bert/courses/1003/cunix.html

C

Review - Compiling your C code
• GCC : GNU Compiler Collection
• When you invoke GCC, it normally does

preprocessing, compilation, assembly and linking

– Basic Command
• gcc myProgram.c
• ./a.out

– More advanced options

• gcc –Wall –o myProgram myProgram.c
• ./myProgram

Run compiled program (executable)

4

C

Review - Compiling your C code
• GCC : GNU Compiler Collection
• When you invoke GCC, it normally does

preprocessing, compilation, assembly and linking

– Basic Command
• gcc myProgram.c
• ./a.out

– More adva

• gcc –Wall –o myProgram myProgram.c
• ./myProgram

Run compiled program (executable)

Run compiled program (executable)

Display all types of
warnings, not only errors

Specify name of
the executable

5

C

Review: C Syntax

• Statements
– one line commands
– always end with ;
– can be grouped between { }

• Comments
// single line comment

/* multiple lines comments
*/

6

C

Review : Variables and types
• Variables are placeholders for values

int x = 2;

x = x + 3; // x value is 5 now

• In C, variables are divided into types,
according to how they are represented in
memory (always represented in binary)

– int 4 bytes, signed/unsigned

– float 4 bytes, decimal part + exponent

– double 8 bytes

– char 1 byte, ASCII Table

7

C

Review : Casting
• Casting is a method to correctly use variables of different types

together
• It allows to treat a variable of one type as if it were of another

type in a specific context
• When it makes sense, the compiler does it for us automatically

• Implicit (automatic)

int x =1;
float y = 2.3;
x = x + y;

• Explicit (non-automatic)

char c = ‘A’;
int x = (int) c;

x= 3 compiler automatically casted
(=converted) y to be an integer just for
this instruction

Explicit casting from char to int. The value of x
here is 65

8

C

Today

9

• Operators

• printf()

• Binary logic

C

Operators
• Assignment =

• Arithmetic * / % + -

• Increment ++ -- += -=

• Relational < <= > >= == !=

• Logical && || !

• Bitwise & | ~ ^ << >>

• Comma ,

10

C

Operators – Assignment and Comma

int x = 3;

x = 7;

int x, y = 5;

x = y = 7;

float y = 2.3, z = 3, q = 700;

int i,j,k;

k = (i=2, j=3);

printf(‚i = %d, j = %d, k = %d\n‛,i,j,k);

The comma operator allows
us to perform multiple
assignments/declarations

11

C

Operators - Arithmetic

• Arithmetic operators have a precedence

• We can use parentheses () to impose our precedence order

• % returns the module (or the remainder of the division)

• We have to be careful with integer vs. float division : remember
automatic casting!

int x;

x = 3 + 5 * 2 - 4 / 2;

int x;

x = (3 + 5) * (2 – 4) / 2;

int x;

x = 5 % 3; // x = 2

int x = 3;

float y;

y = x / 2; // y = 1.00

float y;

y = 1 / 2; // y = 0.00

12

* / % + -

C

• Arithmetic operators have a precedence

• We can use parentheses () to impose our precedence order

• % returns the module (or the remainder of the division)

• We have to be careful with integer vs. float division : remember
automatic casting!

int x;

x = 3 + 5 * 2 - 4 / 2;

int x;

x = (3 + 5) * (2 – 4) / 2;

int x;

x = 5 % 3; // x = 2

int x = 3;

float y;

y = x / 2; // y = 1.00

float y;

y = 1 / 2; // y = 0.00

13

Possible fixes:
1)float x = 3;
2)y = (float) x /2;
Then y = 1.50 Possible fix: y = 1.0/2;

Then y = 0.50

Operators - Arithmetic * / % + -

C

Operators – Increment/Decrement

int x = 3, y, z;

x++;

++x;

y = ++x + 3; // x = x + 1; y = x + 3;

z = x++ + 3; // z = x + 3; x = x + 1;

x -= 2; // x = x - 2;

x is incremented at the end of statement

x is incremented at the beginning of statement

14

++ -- += -=

C

Operators - Relational

• Return 0 if statement is false, 1 if statement is true

int x = 3, y = 2, z, k, t;

z = x > y; // z = 1

k = x <= y; // k = 0

t = x != y; // t = 1

15

< <= > >= == !=

C

Operators - Logical

• A variable with value 0 is false, a variable with value !=0 is true

int x = 3, y = 0, z, k, t, q = -3;

z = x && y; // z = 0;

k = x || y; // k = 1;

t = !q; // t = 0;

16

x is true but y is false

x is true

q is true

&& || !

C

Operators - Bitwise

• Work on the binary representation of data
• Remember: computers store and see data in binary

format!
int x, y, z , t, q, s, v;

x = 3;
y = 16;

z = x << 1;

t = y >> 3;

q = x & y;

s = x | y;

v = x ^ y;

equivalent to z = x · 21

equivalent to t = y · 2-3

00000000000000000000000000000011
00000000000000000000000000010000

00000000000000000000000000000110

00000000000000000000000000000010

00000000000000000000000000000000

00000000000000000000000000010011

00000000000000000000000000010011

XOR
17

C

printf

• printf is a function used to print to standard output (command line)

• Syntax:
printf(“format1 format2 …”, variable1, variable2,…);

• Format characters:
– %d or %i integer
– %f float
– %lf double
– %c char
– %u unsigned
– %s string

Format

% 0 n1 . n2 t

pad with zeros (optional)

number of digits before
the decimal point

number of digits after
the decimal point

type

18

C

printf
#include <stdio.h>

int main() {

int a,b;
float c,d;
a = 15;
b = a / 2;

printf("%d\n",b);
printf("%3d\n",b);
printf("%03d\n",b);

c = 15.3;
d = c / 3;
printf("%3.2f\n",d);

return(0);

}

Output:

7
7

007

5.10

19

C

printf

Escape sequences

\n newline
\t tab
\v vertical tab
\f new page
\b backspace
\r carriage return

20

C

Binary Logic
• 1 = true, 0 = false

• Decimal to binary conversion

• Binary to decimal conversion

110012 = 1x20 + 0x21 + 0x22 + 1x23 + 1x24 = 25

• AND
v = x & y

• OR
v = x | y

610 = 1102

C

Binary Logic
• 1 = true, 0 = false

• Decimal to binary conversion

• Binary to decimal conversion

110012 = 1x20 + 0x21 + 0x22 + 1x23 + 1x24 = 25

• AND
v = x & y

• OR
v = x | y

6 0

3 1

1 1

0

610 = 1102

remainder

Divide by 2

Least significant bitMost significant bit

base

C

Binary Logic

23

• 1 = true, 0 = false

• Decimal to binary conversion

• Binary to decimal conversion

110012 = 1x20 + 0x21 + 0x22 + 1x23 + 1x24 = 25

• AND
v = x & y

• OR
v = x | y

6 0

3 1

1 1

0

610 = 1102

remainder

Divide by 2

Least significant bitMost significant bit

base

C

Binary Logic

24

• 1 = true, 0 = false

• Decimal to binary conversion

• Binary to decimal conversion

110012 = 1x20 + 0x21 + 0x22 + 1x23 + 1x24 = 25

• AND
v = x & y

• OR
v = x | y

x y v

0 0 0

0 1 1

1 0 1

1 1 1

x v

0 1

1 0

x y v

0 0 0

0 1 1

1 0 1

1 1 0

x y v

0 0 0

0 1 0

1 0 0

1 1 1

• NOT
v = !x

• EXOR
v = x ^ y

6 0

3 1

1 1

0

610 = 1102

remainder

Divide by 2

Least significant bitMost significant bit

base

C

Homework 1 review

HOW TO COMPRESS/UNCOMPRESS folders in UNIX

• Compress folder ~/COMS1003/HW1 to HW1.tar.gz

tar -zcvf HW1.tar.gz ~/COMS1003/HW1

• Uncompress HW1.tar.gz to folder ~/COMS1003/HW1new

tar -zxvf HW1.tar.gz -C ~/COMS1003/HW1new

(note: ~/COMS1003/HW1new must exist already)

25

