
C

COMSW 1003-1

Introduction to Computer
Programming in C

Spring 2011

Instructor: Michele Merler

http://www1.cs.columbia.edu/~mmerler/comsw1003-1.html

Lecture 3

1

C

Today

2

• Computer Architecture (Brief Overview)

• “Hello World” in detail

• C Syntax

• Variables and Types

• Operators

• printf (if there is time)

C

Von Neumann Architecture

• Data
• Instructions

3

C

Computer Memory Architecture

4

C

Von Neumann Architecture

PC

Main
Memory

— Address 1
— Address 2

— Address N

The Program Counter (PC) points (= tells
the CPU) to the address in memory where
the next instruction to be executed resides

. . .
. . .

5

C

Von Neumann Architecture

PC

Main
Memory

— Address 1
— Address 2

—Address n

—Address n+1

— Address N

. . .
. . .

printf("Hello World\n");

return(0);

#include <stdio.h>

int main(){

printf("Hello World\n");

return(0);
}

Hello World

6

C

Von Neumann Architecture

PC

Main
Memory

— Address 1
— Address 2

—Address n

—Address n+1

— Address N

. . .
. . .

#include <stdio.h>

int main(){

printf("Hello World\n");

return(0);
}

printf("Hello World\n");

return(0);

Hello World

7

C

The Operating System

Operating
System (OS)

Program

Hardware

User

• Windows
• Unix
• Mac OS
• Android
• Linux
• Solaris
• Chrome OS

• Manages the hardware

• Allocates resources to programs

• Accommodates user requests

• First program to be executed when computer starts

(loaded from ROM)

8

C

Hello World

#include <stdio.h>

int main(){

printf("Hello World\n");

return(0);

}

Global
Definitions

Body of
function

Single statements

Function definition:
• It’s called main
• It does not take any input ()
• It returns an integer

External Header
(standard C library
containing functions
for Input/Output)

9

C

C Syntax

• Statements
– one line commands
– always end with ;
– can be grouped between { }
– spaces are not considered

• Comments
// single line comment

/* multiple lines comments
*/

10

C

Hello World + Comments
/*
* My first C program
*/

#include <stdio.h>

int main(){

printf("Hello World\n");

return(0); // return 0 to the OS = OK

}

11

C

Variables and types
• Variables are placeholders for values

int x = 2;

x = x + 3; // x value is 5 now

• In C, variables are divided into types,
according to how they are represented in
memory (always represented in binary)

– int

– float

– double

– char

12

C

Variables Declaration
• Before we can use a variable, we must declare (=

create) it
• When we declare a variable, we specify its type and its

name

int x;
float y = 3.2;

• Most of the time, the compiler also allocates memory
for the variable when it’s declared. In that case
declaration = definition

• There exist special cases in which a variable is declared
but not defined, and the computer allocates memory
for it only at run time (will see with functions and
external variables)

13

C

int
• No fractional part or decimal point (ex. +3, -100)

• Represented with 4 bytes (32 bits) in UNIX

• Sign
– unsigned : represents only positive values, all bites for

value
Range: from 0 to 2^32

– signed (default) : 1 bit for sign + 31 for actual value
Range: from -2^31 to 2^31

• Size
– short int : at least 16 bits
– long int : at least 32 bits
– long long int : at least 64 bits
– size(short) ≤ size(int) ≤ size(long)

int x = -12;

unsigned int x = 5;

short (int) x = 2;

14

C

float
• Single precision floating point value

• Fractional numbers with decimal point

• Represented with 4 bytes (32 bits)

• Range: -10^(38) to 10^(38)

• Exponential notation : - 0.278 * 10^3

12723

10 2)2()1(  ms fn

f: bit 23 is considered to be 1,
unless m is all zeros

m

f m

float x = 11.5;

15

C

double

• Double precision floating point

• Represented with 8 bytes (64 bits)

double x = 121.45;

16

C

char

• Character

• Single byte representation

• 0 to 255 values expressed in the ASCII table

char c = ‘w’;

17

C

ASCII Table

18

C

Extended ASCII Table

19

C

Casting
• Casting is a method to correctly use variables of different types

together
• It allows to treat a variable of one type as if it were of another

type in a specific context
• When it makes sense, the compiler does it for us automatically

• Implicit (automatic)

int x = 1;
float y = 2.3;
x = x + y;

• Explicit (non-automatic)

char c = ‘A’;
int x = (int) c;

x= 3 compiler automatically casted
(=converted) y to be an integer just for
this instruction

Explicit casting from char to int. The value of x
here is 65

20

C

Operators
• Assignment =

• Arithmetic * / % + -

• Increment ++ -- += -=

• Relational < <= > >= == !=

• Logical && || !

• Bitwise & | ~ ^ << >>

• Comma ,

21

C

Operators – Assignment
int x = 3;

x = 7;

int x, y = 5;

x = y = 7;

float y = 2.3, z = 3, q = 700;

int i,j,k;

k = (i=2, j=3);

printf(‚i = %d, j = %d, k = %d\n‛,i,j,k);

The comma operator allows
us to perform multiple
assignments/declarations

22

C

Operators - Arithmetic

• Arithmetic operators have a precedence

• We can use parentheses () to impose our precedence order

• % returns the module (or the remainder of the division)

• We have to be careful with integer vs. float division : remember
automatic casting!

int x;

x = 3 + 5 * 2 - 4 / 2;

int x;

x = (3 + 5) * (2 – 4) / 2;

int x;

x = 5 % 3; // x = 2

int x = 3;

float y;

y = x / 2; // y = 1.00

float y;

y = 1 / 2; // y = 0.00

23

* / % + -

C

• Arithmetic operators have a precedence

• We can use parentheses () to impose our precedence order

• % returns the module (or the remainder of the division)

• We have to be careful with integer vs. float division : remember
automatic casting!

int x;

x = 3 + 5 * 2 - 4 / 2;

int x;

x = (3 + 5) * (2 – 4) / 2;

int x;

x = 5 % 3; // x = 2

int x = 3;

float y;

y = x / 2; // y = 1.00

float y;

y = 1 / 2; // y = 0.00

24

Possible fixes:
1)float x = 3;
2)y = (float) x /2;
Then y = 1.50 Possible fix: y = 1.0/2;

Then y = 0.50

Operators - Arithmetic * / % + -

C

Operators - Increment

int x = 3, y, z;

x++;

++x;

y = ++x + 3; // x = x + 1; y = x + 3;

z = x++ + 3; // z = x + 3; x = x + 1;

x -= 2; // x = x - 2;

x is incremented at the end of statement

x is incremented at the beginning of statement

25

++ -- += -=

C

Operators - Relational

• Return 0 if statement is false, 1 if statement is true

int x = 3, y = 2, z, k, t;

z = x > y; // z = 1

k = x <= y; // k = 0

t = x != y; // t = 1

26

< <= > >= == !=

C

Operators - Logical

• A variable with value 0 is false, a variable with value !=0 is true

int x = 3, y = 0, z, k, t, q = -3;

z = x && y; // z = 0;

k = x || y; // k = 1;

t = !q; // t = 0;

27

x is true but y is false

x is true

q is true

&& || !

C

Review: Operators - Bitwise

• Work on the binary representation of data
• Remember: computers store and see data in binary

format!
int x, y, z , t, q, s, v;

x = 3;
y = 16;

z = x << 1;

t = y >> 3;

q = x & y;

s = x | y;

v = x ^ y;

equivalent to z = x · 21

equivalent to t = y · 2-3

00000000000000000000000000000011
00000000000000000000000000010000

00000000000000000000000000000110

00000000000000000000000000000010

00000000000000000000000000000000

00000000000000000000000000010011

00000000000000000000000000010011

XOR
28

C

printf

• printf is a function used to print to standard output (command line)

• Syntax:
printf(“format1 format2 …”, variable1, variable2,…);

• Format characters:
– %d or %i integer
– %f float
– %lf double
– %c char
– %u unsigned
– %s string

Format

% 0 n1 . n2 t

pad with zeros (optional)

number of digits before
the decimal point

number of digits after
the decimal point

type

29

C

printf
#include <stdio.h>

int main() {

int a,b;
float c,d;
a = 15;
b = a / 2;

printf("%d\n",b);
printf("%3d\n",b);
printf("%03d\n",b);

c = 15.3;
d = c / 3;
printf("%3.2f\n",d);

return(0);

}

Output:

7
7

007

5.10

30

C

printf

Escape sequences

\n newline
\t tab
\v vertical tab
\f new page
\b backspace
\r carriage return

31

C

Assignment

32

• Read PCP Chapter 3 and 4

