
C

COMSW 1003-1

Introduction to Computer
Programming in C

Spring 2011

Instructor: Michele Merler

http://www1.cs.columbia.edu/~mmerler/comsw1003-1.html

Lecture 22

1

C

Today

2

• Quicksort

• Pointers to functions, implementation of
qsort()

• HW4 solution

C

Review – Bubble Sort

3

1. Start with the first two elements

2. If first element > second element

• Swap

3. Iterate for all following pairs

4. Repeat steps 1 to 3 until no swaps are necessary

Complexity = O(n2)
Count number of
comparisons and swaps

C

Review - Selection Sort

4

• Smarter algorithm, but same complexity
(worst case)

1. Find smallest unsorted element

2. Swap with first unsorted element

3. Repeat steps 1 and 2 until no more unsorted
elements

Complexity = O(n2)

C

Review - Merge Sort

5

• One of the fastest algorithms, divide and conquer principle

• Uses recursion

• Sorting small sets is faster than sorting large sets

• Merging 2 sets into a sorted union is faster if the sets are already
sorted

1. If set H has 1 element, stop

2. else

– Split set into 2 halves H1 and H2 of (approximately) same size

– Sort H1 and H2 with merge sort

– Merge the sorted H1 and H2 into a sorted set

Complexity = O(n log(n))

recursion

C

Review - Counting sort

6

• Intuition: exploit range k of values in set

• Efficient if k is not much larger than n

1. Find biggest and smallest values in the set
(k = maxVal – minVal+1)

2. Create an array C of k elements

3. Count occurrences C(i) of each value i in the set

4. Fill ordered set by inserting C(i) elements of value i, for
each value in range k

Complexity = O(n + k)

C

Quicksort

7

• Divide and conquer idea (similar to merge sort)

• In real world cases, on average it is as fast or faster than

O(n log(n)) algorithms

1. Choose an element in the array called pivot P and remove it from
the array (common choice is median of first, middle and last
element)

2. For each element x in the array (minus pivot)
if(x < pivot)

insert x in set S of elements smaller than pivot
else

insert x in set G of elements greater than pivot

3. return(concatenate(quicksort(S), P , quicksort(G)));

Recursive call!

Complexity = O(n2)

C

Quicksort

8

9 5 1 7 2

1

5 9 7

1 2 5 7 9

Pivot = median(9,1,2) = 2

S G2 9 5 7

GS

7 9

P

P

GP

empty

S empty

7 9

5 7 9

C

Pointers to functions

9

C

Pointers to functions

10

• It is occasionally useful to use pointers to
functions

• Since functions are stored in memory, we can
reason about their addresses too

• This allows us to say, “run the function at
address N on these arguments”

• Useful for being truly general, e.g. stdlib qsort

C

Pointers to functions

11

int (*f_ptr)(int, int); // pointer to a function

int greater_than(int a, int b); // function declaration

f_ptr = greater_than;

int (*f_ptr)(); // pointer to function that returns an int

Parentheses are important! Without parentheses,
f_ptr looks like it returns a pointer to an int.

C

Pointers to functions

12

int (*f_ptr)(int, int);

int greater_than(int a, int b);

f_ptr = greater_than;

int (*f_ptr)(); // pointer to function that returns an int

Parentheses are important! Without parentheses,
f_ptr looks like it returns a pointer to an int.

int *ptr;

int x[2];

ptr = x;

C

qsort

13

• qsort() is a general sorting function, defined in stdlib.h

• Sort an array of any type, using any comparison
criterion

• Define that comparison as a function pointer

void qsort(void *base, size_t n, size_t size,
int (*cmp)(const void *, const void *));

Depending on what function cmp points to,
qsort uses a different criterion to sort the data

C

qsort

14

The compare function should take two entries x and y, and
return

+1 if x > y

-1 if x < y

0 if x == y

void qsort(void *base, size_t n, size_t size,
int (*cmp)(const void *, const void *));

Depending on what function cmp points to,
qsort uses a different criterion to sort the data

sorting.c

