
C

COMSW 1003-1

Introduction to Computer
Programming in C

Spring 2011

Instructor: Michele Merler

http://www1.cs.columbia.edu/~mmerler/comsw1003-1.html

Lecture 21

1

C

Big–O : Relationship among common cases

2

Example : big-O when a function is the sum of several statements

O(1) < O(log n) < O(n) < O(n log n) < O(n2) < O(n3) < O(an)

int i=0;

for(i=0 ; i < n; i++){

for(j=0 ; j < n; j++){

if((i!=j) && arr[i] == arr[j])

dup[i][j] = 1;

}

}

RT = O(4n2+n) = O(n2)

increment i
increment j
check i!=j
check arr[i]==arr[j]
dup[i][j] = 1

Longest operation dominates (worst case)

C

Sorting

3

C

Sorting

4

• Given a set of N elements, put them in order according to some
criteria (alphabetical, relevance, date, smallest to largest, etc.)

• One of the most studied problems in Computer Science

• Everybody uses it every day

Columbia University

Michele

C

Sorting

5

• Given a set of N elements, put them in order according to
some criteria

• Compare pairs of elements

• Many algorithms, some of the most famous are:

– Bubble sort

– Selection sort

– Insertion sort

– Merge sort

– Counting sort

• In following examples, we’ll see smallest to biggest sorting

C

Bubble Sort

6

1. Start with the first two elements

2. If first element > second element

• Swap

3. Iterate for all following pairs

4. Repeat steps 1 to 3 until no swaps are necessary

Complexity = O(n2)
Count number of
comparisons and swaps

C

Bubble Sort

7

9 5 1 7 2

5 9 1 7 2

5 1 9 7 2

5 1 7 9 2

5 1 7 2 9

1 5 7 2 9

1 5 7 2 9

1 5 2 7 9

1 5 2 7 9

1 2 5 7 9

1 5 2 7 9

C

5 9 1 7 2

5 1 9 7 2

5 1 7 9 2

5 1 7 2 9

1 5 7 2 9

1 5 7 2 9

1 5 2 7 9

1 5 2 7 9

1 2 5 7 9

1 5 2 7 9

Bubble Sort

8

9 5 1 7 2

n-1
checks

n-1
checks

. . .

C

Selection Sort

9

• Smarter algorithm, but same complexity
(worst case)

1. Find smallest unsorted element

2. Swap with first unsorted element

3. Repeat steps 1 and 2 until no more unsorted
elements

Complexity = O(n2)

C

Selection Sort

10

9 5 1 7 2

1 5 9 7 2

1 2 9 7 5

1 2 5 7 9

First unsorted element

1 2 5 7 9

n-1
checks

n-2
checks

n checks
to find
minimum

. . .

C

Insertion Sort

11

• Main idea: keep 2 separate sets (one sorted, one unsorted),
and move elements from unsorted to sorted set one at a time

• Better performance in case many elements are already sorted,
quadratic in worst case

1) Initialize 2 sets
– One set of sorted elements (contains only first element in the

array)
– One set of unsorted elements (all the other elements in the

array)

2) A) Take first element in unsorted set and
B) Insert it into sorted set at proper position

3) Repeat steps 2A) and 2B) until unsorted set is empty

Complexity = O(n2)

C 12

9 5 3 4 1

5 9 3 4 1

Unsorted setSorted set

5 3 9 4 1

3 4 5 9 1

1 3 4 5 9

3 5 9 4 1

5 9 3 4 1

3 5 9 4 1

3 5 4 9 1

3 4 5 9 1

. . .

9 5 3 4 1

Insertion sort

1)

2A)

2B)

2A)

2A)

2A)

2B)

2B)

2B)

1 check
1 swap

2 checks
2 swaps

n-2 checks
n-3 swaps

n-1 checks
n-1 swaps

C

Merge Sort

13

• One of the fastest algorithms, divide and conquer principle

• Uses recursion

• Sorting small sets is faster than sorting large sets

• Merging 2 sets into a sorted union is faster if the sets are already
sorted

1. If set H has 1 element, stop

2. else

– Split set into 2 halves H1 and H2 of (approximately) same size

– Sort H1 and H2 with merge sort

– Merge the sorted H1 and H2 into a sorted set

Complexity = O(n log(n))

recursion

C

Merge Sort

14

9 5 1 7 2

7 25 9 1

15 9 7 2

5 9
2 7

5 9

1 5 9

1 2 5 7 9

C

Merge Sort

15

9 5 1 7 2

7 25 9 1

15 9 7 2

5 9
2 7

5 9

1 5 9

1 2 5 7 9

Similar to trees, we perform log2(n) splits and merges

Each merge takes O(n) in the worst case

C

Merge Sort

16

2 71 5 9

1 2 5 7 9

int c1=0, c2=0;
for (i=0; i<n; i++){

if((c1<n1) && ((H1[c1] < H2[c2]) || (c2==n2))){
H[i] = H1[c1];
c1++;

}
else{

H[i] = H2[c2];
c2++;

}
}

Similar to trees, we perform log2(n) splits
and merges
Each merge takes O(n) in the worst case

Merge routine:

Given H1 and H2 of size n1 and n2 respectively, create H of length n = n1 + n2

C

Counting sort

17

• Intuition: exploit range k of values in set

• Efficient if k is not much larger than n

1. Find biggest and smallest values in the set
(k = maxVal – minVal+1)

2. Create an array C of k elements

3. Count occurrences C(i) of each value i in the set

4. Fill ordered set by inserting C(i) elements of value i, for
each value in range k

Complexity = O(n + k)

C

Counting sort

18

2 5 1 1 2 2 5

Example: range of values in set is [1, 5], k = 5

2 3 0 0 2C

i = 1 2 3 4 5

O(n)

1 1 2 2 2 5 5

1)

2-3)

4)

O(k) + O(n)

O(n)

To create C

C

Homework 4 Solution

19

