CS

CU
COMsW 1003-1
Introduction to Computer
Programming in G
Lecture 18 Spring 2011

Instructor: Michele Merler

c http://www1.cs.columbia.edu/~mmerler/comsw1003-1.html

Modular Programming

Review - Header files

* Header files are fundamentally libraries

 Their extension is .h

* They contain function definitions, variables

declarations, macros

* In order to use them, the preprocessor uses the

following code

#include <nameOfHeader.h>

#include “nameOfHeader.h”

——> For standard C libraries

——> For user defined headers

* So far, we have used predefined C header files,
but we can create our own! (more on this next

c week)

Modular Programming

* So far we have seen only small programs, in
one single file

 What about bigger programs? Need to keep
them organized, especially if multiple people
work on the same project

* They are organized in multiple, organized
parts : MODULES

Modules

A module is “a collection of functions that perform
related tasks” [pcpchis)

A module is basically a user defined library

* Two parts:

— Public: tells the user how to use the functions in the
module. Contains declaration of data structures and
functions

— Private : implements the functions in the module

Modules

* Two parts:

— Public : tells the user how to use the functions in the module.

Contains definition of data structures and functions

— Private : implements the functions in the module

myProgram. cC

myModule.h

e

#include “myModule.h”

HEADER

e

myModuJe.c

Public

Private

Header

* A header should contain:
— A section describing what the module does
— Common constants
— Common structures
— Public functions declarations
— Extern declarations for public variables

Function Declaration vs. Definition

e Allidentifiers in C need to be declared before they are
used, including functions

 Function declaration needs to be done before the first call
of the function

 The declaration (or prototype) includes
— return type
— number and type of the arguments

* The function definition is the actual implementation of
the function

* Function definition can be used as implicit declaration

mainProgram.c

calculator.h
MOd U |€S calculator.c

mainProgram.c

calculator.h

#include “calculator.h”

Call to function operator()

e

function

operator() Public
declaration

calcul@tor . C Private

function
operator ()
definition

Compile modules together

* We need a way to “glue” the modules
together

* We need to compile not only the main
program file, but also the user defined
modules that the program uses

e Solution : makefile

Makefile

* make routine offered in UNIX (but also in
other environments)

* make looks at the file named Makefile in
the same folder and invokes the compiler
according to the rules in Makefile

Makefile — Single file

...
Makefile for UNIX system

using a GNU C compiler (gcc)

this 1s a comment

oldCalculator: oldCalculator.c
gcc —Wall -o oldCalculator oldCalculator.c

12

Makefile — Single file

...
Makefile for UNIX system

using a GNU C compiler (gcc)

this is a comment —> Comments start with a # sign

oldCalculator: oldCalculator.c
gcc —Wall -o oldCalculator oldCalculator.c

Rule: gcc command we are used to

The second statement MUST
start with a TAB!

13

Makefile — Single file

Makefile for UNIX system

using a GNU C compiler (gcc)

CC=gcc

CFLAGS=-Wall

oldCalculator: oldCalculator.c
$(CC) $(CFLAGS) -o oldCalculator oldCalculator.c

Makefile — Single file

i I I I I C LI SR I IC I C N SR IC IR IC A #
Makefile for UNIX system
using a GNU C compiler (gcc)
e I #
CC=gcc

—
CFLAGS=-Wall Macros

oldCalculator: oldCalculator.c
$(CC) $(CFLAGS) -o oldCalculator oldCalculator.c

l

Rule: gcc command we are used to

The second statement MUST
start with a TAB!

15

Makefile

* Macros
name=data Whenever S(name) is found, it gets
$ (name) —>data substituted with data
Same as object-type macros for
Preprocessor
* Rules
target: source [source?2] [sourced]
command
command?
commandd

UNIX compiles target from source using command
Default commandis $ (CC) $(CFLAGS) -c source

Predefined by make

Makefile — Single file

...
Makefile for UNIX system

using a GNU C compiler (gcc)

CC=gcc

CFLAGS=-Wall

oldCalculator: oldCalculator.c
$(CC) $(CFLAGS) -0 oldCalculator oldCalculator.c

clean:
rm -f oldCalculator

17

Makefile — Single file

T T I #
Makefile for UNIX system
using a GNU C compiler (gcc)
R T e i #
CC=gcc

—
CFLAGS=-Wall Macros

oldCalculator: oldCalculator.c
$(CC) $(CFLAGS) -0 oldCalculator oldCalculator.c

clean: l

rm -f oldCalculator Rule: gcc command we are used to

l The second statement MUST
start with a TAB!

Rule: Clean up files

c 18

Makefile

* If | have multiple rules, | can use the name of
the target to execute only the rule | want

* By default, make executes only the first rule

Example

$make clean

Makefile — Multiple Modules

R T i #
Makefile for UNIX system
using a GNU C compiler (gcc)
T I RN #
CC=gcc

CFLAGS=-Wall

mainCalc : mainProgram.c calculator.o
$(CC) $(CFLAGS) -o mainCalc mainProgram.c calculator.o

calculator.o : calculator.c calculator.h
$(CC) $(CFLAGS) -c calculator.c

clean:
rm -f calculator.o mainProgram

Makefile — Multiple Modules

R T i #
Makefile for UNIX system
using a GNU C compiler (gcc)
T I RN #
CC=gcc

CFLAGS=-Wall

mainCalc : mainProgram.c calculator.o
$(CC) $(CFLAGS) -o mainCalc mainProgram.c calculator.o

calculator.o : calculator.c calculator.h
$(CC) $(CFLAGS) calculator.c

We must use the —c option
to compile a module instead
of an executable!

c 21

clean:
rm -f calculator.o mainCalc

Makefile

Rules
target: source [source2] [sourced]
command
command?

command3

UNIX compiles target from source using command
Default commandis $(CC) $(CFLAGS) —-c source

make is smart: it compiles only modules that need it

If target has already been compiled and source did not
change, make will skip this rule

target: This rule instead is ALWAYS
command executed by the compiler,
because source is not

specified in the first line

calculator.h
calculator.c

Extern/Static Variables

e Extern is used to specify that a variable or function
is defined outside the current file

When same variable is used by different modules,

extern is a way to declare a global variable which can
be used in all modules

e Static isused to specify that a variable is local to
the current file (for global variables)

Remember the use for local variables (Lec7): local static
means permanent

