
C

COMSW 1003-1

Introduction to Computer
Programming in C

Spring 2011

Instructor: Michele Merler

http://www1.cs.columbia.edu/~mmerler/comsw1003-1.html

Lecture 17

1

C

Review - Arrays of strings

2

• An array Arr of 3 strings of variable length

• An array Arr of 3 strings of maximum length = 15

char *Arr[3]={ “Hello”, ”World”, ”Wonderful” };

Arr[2] = Arr+2 // ”Wondeful”

char Arr2[3][15] = { “Hello2”, ”World2”, ”Wonderful2” };

Arr2[0] = Arr2 // ”Hello2”

Arr2[1] = Arr2+1 // ”World2”

C

Program’s Inputs

3

• When we run a program, sometimes we want to pass
some input arguments to it

• This can be done by writing them in the command line,
immediately after the program name

• The program’s inputs must be separated by spaces

Example
The program sumTwoNumbers sums two numbers.

We can pass the two input numbers directly when we invoke the program’s
executable (instead of the usual I/O operations, such as printing to command
line the message “please insert two numbers:”, followed by fgets() etc.)

./sumTwoNumbers 3 5

C

Command Line Arguments

4

• Input parameters of the function main()

• argc, argv

int main(int argc, char* argv[])

argc

argv

• Integer

• Specifies the number of arguments on the command
line (including the program name)

• Array of strings

• Contains the actual arguments on the command line

• First element is the name of the program

Clarguments.c

C

Command line arguments

5

It is a good habit, especially when a program takes input
arguments, to specify in a header on the top of the main file:

• Program name and purpose

• Program usage: syntax to use to invoke (run) the program

with input arguments

• Description of input arguments

• Description of output from the program

It is common to add a –help option to print the relevant
information about program usage and input arguments

C

Command line arguments

6

Example

Program calculator, reads two numbers, the operator, and
prints the result

calculator.c

C

Linux Wildcard Characters

7

* all items (directories and files) - with or without a suffix

r* items beginning with the letter "r"

boot* items beginning with "boot"

mem all items contain "mem" anywhere in the name

*.png items having the suffix of ".png" - that end in ".png"

We must be very careful when we use wildcard characters as input,
because argc and argv recognize them!

Linux has a series of wildcard characters * ? []

* Represents strings of arbitrary length containing any possible character

C

Linux Wildcard Characters

8

We must be very careful when we use wildcard characters as input,
because argc and argv recognize them!

Linux has a series of wildcard characters * ? []

?.txt items starting with only one character and ending in ".txt"
Examples: b.txt and 3.txt

memo?.sxw items beginning with "memo", having a single character after "memo",
and having the suffix of ".sxw"
Examples: memo1.sxw and memoh.sxw - not memo23.sxw

memo??.sxw items beginning with "memo", having a two characters (only) after
"memo", and having the suffix of ".sxw"
Examples: memo21.sxw and memok9.sxw - not memos.sxw

? Represents one single character which has any possible value

C

Linux Wildcard Characters

9

We must be very careful when we use wildcard characters as input,
because argc and argv recognize them!

Linux has a series of wildcard characters * ? []

[a-z]* items that begin with any lower case letter and end in any other characters

[A-Z]-list.dat items that begin with any upper case letter and end in "-list.dat"

[a-zA-Z]report.sxc items that begin with any lower case or upper case letter and end in
"report.sxc“

[e-t].c items that begin with any lower case letter between ‘e’ and ‘t’ and end in “.c”

[] Represents intervals of characters values

C

Homework 3 Solution

10

