
C

COMsW 1003-1

Introduction to Computer
Programming in C

Spring 2011

Instructor: Michele Merler

http://www1.cs.columbia.edu/~mmerler/comsw1003-1.html

Lecture 13

1

C

Today

2

• Finish pointers (from Lecture 12)

• FILE I/O

C

Pointers of pointers

3

float A[2] = { 1, 2 };
float B[3] = { 7, 1, 5};

float *p1[2];
p1[0] = A;
p1[1] = B;

float **p2;
p2[0] = A;
p2[1] = B;
p2[3] = A;

float f1 = p2[0][2]; // f1 = A[2] =
float f2 = p2[1][2]; // f2 = B[2] = 5
float f3 = p2[2][1]; // f3 = A[1] = 2

B

A
A[0]

A[1]

B[0]

B[1]

B[2]

C

Pointers of pointers

4

float A[2] = { 1, 2 };
float B[3] = { 7, 1, 5};

float *p = B;float *p1[2];
p1[0] = A;
p1[1] = B;

float **p2;
p2[0] = A;
p2[1] = B;
p2[3] = A;

float f1 = p2[0][2]; // f1 = A[2] =
float f2 = p2[1][2]; // f2 = B[2] = 5
float f3 = p2[2][1]; // f3 = A[1] = 2

B

A
A[0]

A[1]

B[0]

B[1]

B[2]

p

C

Pointers of pointers

5

float A[2] = { 1, 2 };
float B[3] = { 7, 1, 5};

float *p = B;float

float *p1[2];
p1[0] = A; // p1[0] is a pointer to float
p1[1] = B; // p1[1] is a pointer to float

float **p2;
p2[0] = A;
p2[1] = B;
p2[3] = A;

float f1 = p2[0][2]; // f1 = A[2] =
float f2 = p2[1][2]; // f2 = B[2] = 5
float f3 = p2[2][1]; // f3 = A[1] = 2

B

A
A[0]

A[1]

B[0]

B[1]

B[2]

p1 p1[0]

p1[1]

p

C

Pointers of pointers

6

float A[2] = { 1, 2 };
float B[3] = { 7, 1, 5};

float *p = B;float

float *p1[2];
p1[0] = A; // p1[0] is a pointer to float
p1[1] = B; // p1[1] is a pointer to float

float **p2;
p2[0] = A;
p2[1] = B;
p2[3] = A;

float f1 = p2[0][2]; // f1 = A[2] =
float f2 = p2[1][2]; // f2 = B[2] = 5
float f3 = p2[2][1]; // f3 = A[1] = 2

B

A
A[0]

A[1]

B[0]

B[1]

B[2]

p1 p1[0]

p1[1]

p

C

Pointers of pointers

7

float A[2] = { 1, 2 };
float B[3] = { 7, 1, 5};

float *p = B;float

float *p1[2];
p1[0] = A;
p1[1] = B;

float **p2 = p1;

float f1 = p2[0][2]; // f1 = A[2] =
float f2 = p2[1][2]; // f2 = B[2] = 5
float f3 = p2[0][1]; // f3 = A[1] = 2

B

A
A[0]

A[1]

B[0]

B[1]

B[2]

p1

p2

p1[0]

p1[1]

p

C

Pointers of pointers

8

float A[2] = { 1, 2 };
float B[3] = { 7, 1, 5};

float *p = B;float

float *p1[2];
p1[0] = A;
p1[1] = B;

float **p2 = p1;

float f1 = p2[0][2]; // f1 = A[2] =
float f2 = p2[1][2]; // f2 = B[2] = 5
float f3 = p2[0][1]; // f3 = A[1] = 2

B

A
A[0]

A[1]

B[0]

B[1]

B[2]

p1

p2

p1[0]

p1[1]

p

C

Files Input/Output

9

C

Files I/O

10

• So far we have seen functions to read/write to
command line (standard input/output)

• The same functions can be used to read/write to files

• (f)printf(), (f)scanf(), fgets()

• All those functions are included in the <stdio.h>
library

C

Files I/O Pipeline

11

• Files have a special type of variable associated with them:
FILE *

• In order to read/write to a file, we must first OPEN it

• After we are done, we must CLOSE the file

Create file variable

Open file Read/write Close file

C

Files I/O

12

FILE *fVar;

fVar = fopen(fileName, mode);

/* read, write or append */

fclose(fVar);

• Files have a special type of variable associated with them:
FILE *

• In order to read/write to a file, we must first OPEN it

• After we are done, we must CLOSE the file

Create file variable

Open file

Read/write

Close file

C

fopen()

13

FILE * fopen(char *fileName, char *mode);

• fileName is a regular string with the name of the file

• mode determines the type of I/O we want to do

• “r” : read

• “w” : write, fileName is created if it did not exist

• “a” : append, write to existing file, starting at the end

• “b” : file is binary (associated with other modes, for example “wb”

means write binary, “rb” read binary, etc.)

• “r+” : read and write

• “w+” : read and write , fileName is created if it did not exist

• In case of failure (for example trying to read from a non-existing file)

fopen() returns NULL

C

fclose()

14

int fclose(FILE *fVar);

• fVar is a file variable (type FILE *)

• fclose() returns

• 0 on success

• non-zero for error

C

Stdin, stdout, stderr

15

• C provides 3 files (or filestreams) which are always open:

– stdin : standard input, read from command line

– stdout : standard output, write to command line

– stderr : standard error, write to command line

• They are used as default values for various I/O functions

C

Read Functions

16

• fgetc() : read a single character

• fgets() : read a string, one line at a time

int fgetc(FILE *fVar)

Returns the special flag EOF if it has reached the end of
the file

char* fgets(char* string, size_t size, FILE *fVar)

Returns string if successful, NULL is error or found EOF

inOut.c

C

Read Functions

17

• fscanf() : read a formatted line

int fscanf(FILE *fVar,“format1 … formatN”, &var1,…,&varN)

Reads one line from a file

Returns the number of variables successfully converted

inOut.c

C

Write Functions

18

• fputc() : write a single character

• fputs() : write a string

int fputc(char ch, FILE *fVar)

Returns ch if successful , the special flag EOF if there is an error

int fputs (const char *string, FILE *fVar)

Returns a nonzero number if successful, EOF if there is an error

inOut.c

C

Write Functions

19

• fprintf() : print to file a formatted line

int fprintf(FILE *fVar,“format1 … formatN”, var1,…,varN)

Prints one line to a file

Returns the number of variables successfully converted

inOut.c

C

Read/Write to Files

20

• C has an internal pointer to the current
position in the opened file

• After each read/write operation the
pointer is updated

this is a file to read\n
can we do it?\n
2 * 3\n

this is a file to read\n
can we do it?\n
2 * 3\n

inOut.c

data.txt

data.txt

FILE *inFile = fopen("data.txt","r");

int ch = fgetc(inFile);

ch = ‘t’

C

feof()

21

• feof() checks if we reached the end of a file,
without having to use fget(), fscanf() etc.

int feof(FILE *fVar)

Returns a value different from zero if reached end of file ,
zero otherwise

while(1) {

int ch = fgetc(inFile);

if(ch == EOF){
break;

}
}

while(!feof(inFile)) {

int ch = fgetc(inFile);

}

FILE *inFile = fopen(“data.txt”,”r”);

C

Summary of Functions

22

Name Input Output

fprintf() formatted text + args file

printf() formatted text + args stdout

sprintf() formatted text + args string

fputc(), fputs() char,string file

fscanf() file formatted text + args

scanf() stdin formatted text + args

sscanf() string formatted text + args

fgetc(), fgets() file (char) int, string

C

Buffered Output

23

• The OS does not write directly to a file stream

• For efficiency, it first prints to a buffer (= local place-
holder in main memory)

• When the buffer is full, it prints it all to the file stream

• If we want to write in a specific moment, without
buffering, we can us the function fflush()

int fflush(FILE *fVar)

Returns 0 if successful, EOF in the case of error

C

Buffered Output

24

printf(“starting\n”);

do_step1();
printf(“done with 1\n”);

do_step2();
printf(“done with 2\n”);

do_step3();
printf(“done with 3\n”);

printf(“starting\n”);
fflush(stdout);

do_step1();
printf(“done with 1\n”);
fflush(stdout);

do_step2();
printf(“done with 2\n”);
fflush(stdout);

do_step3();
printf(“done with 3\n”);
fflush(stdout);

Prints to buffer, after last
printf() prints to stdout

After each printf() prints to
stdout

C

File Formatting

25

• It is a good habit to create data files with HEADERS,
especially when dealing with large amount of data

• HEADERS are one or two lines at the beginning of a file
specifying the size of the data and some other info

• With headers, a program knows how to properly read a
file

VectorTable
cols 7
rows 3
0 2 5 7 8 22 16
10 66 52 7 8 82 6
99 1 34 34 87 22 97

C

File Formatting

26

• It is a good habit to create data files with HEADERS,
especially when dealing with large amount of data

• HEADERS are one or two lines at the beginning of a file
specifying the size of the data and some other info

• With headers, a program knows how to properly read a
file

VectorTable
cols 7
rows 3
0 2 5 7 8 22 16
10 66 52 7 8 82 6
99 1 34 34 87 22 97

header

C

File Formatting

27

• Ideally, format should be readable by humans and by
computer programs

• Computer programs are not very robust, so must be
specific (i.e. tab versus spaces)

• When you have huge amounts of data, you can give up
on human-readability and use BINARY format for
efficiency

• Example: color_histogram table

C

Binary Files

28

size_t fread(void *ptr, size_t s, size_t n, FILE *f);

size_t fwrite(const void *ptr, size_t s, size_t n, FILE *f);

In order to read/write to binary files, we must use the “rb” /
“wb” flags in the option of fopen()

size_t is a C type to indicate the size (in bytes) of an element . You
can think of it as a special integer.
For example, sizeof() returns a variable of type size_t

• ptr = (pointer) array where we want to store the data we read/
we want to write

• s = size of each element in the array ptr
• n = number of elements in the array ptr
• f = file to read from/write to

