CS

CU
COMsW 1003-1
Introduction to Computer
Programming in G
Lecture 13 Spring 2011

Instructor: Michele Merler

c http://www1.cs.columbia.edu/~mmerler/comsw1003-1.html

Today

* Finish pointers (from Lecture 12)

* FILEI/O

Pointers of pointers

float A[2]={1,2};
float B[3]={7, 1, 5};

A[0] -

Al1] 5

B[O] -

B[1] 5

B[2] <

<« A

Pointers of pointers

float A[2]={1,2};
float B[3]={7, 1, 5};

float *» = B;

A[0] -

Al1] 5

B[O] -

B[1] 5

B[2] <

<« A

Pointers of pointers

float A[2]={1,2};
float B[3]={7, 1, 5};

float *» = B; P

float *p1[2];

A[0] -

Al1] 5

p1[0]
pl1[1]

B[O] -

B[1] 5

B[2] <

Pointers of pointers

A[0] -
float A[2] ={1, 2} A[1] =
float B[3]={7, 1, 5};
float *» = B; p1 p1[O]

p1[1]

float *p1[2];
pl[0] = A; // pl[0] is a pointer to float
pl[1] = B; // p1[1] is a pointer to float

B[O] -

B[1] -

B[2] <

Pointers of pointers

A[0] -
float A[2] ={1, 2} A[1] =
float B[3]={7, 1, 5};
float *» = B; pl p1[0]

p1[1]
float *p1[2];
p1[0] = A; p2
p1[1] = B;

float **p2 = p1;

B[O] -

B[1] -

B[2] <

Pointers of pointers

A[0] -
float A[2] ={1, 2} A[1] =
float B[3]={7, 1, 5};
float *» = B; pl p1[0]

p1[1]
float *p1[2];
p1[0] = A; p2
p1[1] = B;

float **p2 = p1;

float f1 = p2[0][2]; // f1 = A[2] =
float f2 = p2[1][2]; // f2 =B[2] =5 B[0] -
float f3 = p2[0][1]; // f3 = A[1] = 2

B[1] -

B[2] <

Files Input/Output

Files 1/0

So far we have seen functions to read/write to
command line (standard input/output)

The same functions can be used to read/write to files
(f)printf(), (f)scanf(), fgets()

All those functions are included in the <stdio. h>
library

Files 1/O Pipeline

* Files have a special type of variable associated with them:
FILE *

* |n order to read/write to a file, we must first OPEN it

e After we are done, we must CLOSE the file

[Create file variable}

Files 1/0

* Files have a special type of variable associated with them:
FILE *

* |n order to read/write to a file, we must first OPEN it

* After we are done, we must CLOSE the file

[Create file variable} FILE *fVar;

,

-

Open file fVar = fopen(fileName, mode) ;

I' |
P ' . :
I Read/write :
| |
: |
\

Close file fclose(fVar) ;
C -+

/* read, write or append */

-

fopen()

FILE * fopen(char *fileName, char *mode) ;

« fileName is aregular string with the name of the file

* mode determines the type of I/O we want to do

[

e “v" :read

o 14

 “w” :write, fileName is created if it did not exist

 “@” :append, write to existing file, starting at the end

e “b” :fileis binary (associated with other modes, for example “wb”
means write binary, “rb” read binary, etc.)

o

e “r+” : read and write

o

* “w+” :read and write, £ileName is created if it did not exist

* In case of failure (for example trying to read from a non-existing file)

c fopen() returns NULL

fclose()

int fclose(FILE *fVar);

 fVar isa file variable (type FILE *)

 fclose() returns
* 0 on success

* non-zero for error

14

Stdin, stdout, stderr

* Cprovides 3 files (or filestreams) which are always open:

— stdin :standardinput, read from command line
— stdout : standard output, write to command line

— stderr : standard error, write to command line

* They are used as default values for various 1/O functions

inOut.c

Read Functions

e fgetc() : read a single character

int fgetc(FILE *fVar)

Returns the special flag EOF if it has reached the end of
the file

* fgets() : read a string, one line at a time

char* fgets(char* string, size_t size, FILE *fVar)

Returns string if successful, NULL is error or found EOF

inOut.c

Read Functions

e fscanf() : read a formatted line

int fscanf(FILE *fVar,“formatl1 .. formatN”, &varl,..,&varN)

Reads one line from a file

Returns the number of variables successfully converted

inOut.c

Write Functions

e fputc() : write a single character

int fputc(char ch, FILE *fVar)

Returns ch if successful , the special flag EOF if there is an error

e fputs() : write a string
int fputs (const char *string, FILE *fVar)

Returns a nonzero number if successful, EOF if there is an error

inOut.c

Write Functions

e fprintf() : print to file a formatted line

int fprintf(FILE *fVar,“format!l .. formatN”, wvar1,..,varN)

Prints one line to a file

Returns the number of variables successfully converted

inOut.c

Read/Write to Files

 Chas an internal pointer to the current
position in the opened file

» After each read/write operation the
pointer is updated

this is a file to read\n
FILE *1inFile = fopen("data.txt","r"); can we do it?\n data.txt

2 *3\n

!

. L this is a file to read\n
1int ch = fgetc(inFile); i s ao B

2 * 3\n
Ch — ltl

data.txt

feof()

* feof() checks if we reached the end of a file,
without having to use fget(), fscanf() etc.

int feof(FILE *fVar)

Returns a value different from zero if reached end of file ,
zero otherwise

FILE *inFile = fopen(“data.txt” ., r);
while(1) { while(!feof(inFile)) {
int ch = fgetc(inFile); int ch = fgetc(inFile);
1f(ch = EOF){)
break;
]
]

Summary of Functions

fprintf() formatted text + args file

printf() formatted text + args stdout

sprintf() formatted text + args string

fputc(), fputs() char,string file

fscanf() file formatted text + args
scanf() stdin formatted text + args
sscanf() string formatted text + args
fgetc(), fgets() file (char) int, string

c 22

Buffered Output

The OS does not write directly to a file stream

For efficiency, it first prints to a buffer (= local place-
holder in main memory)

When the buffer is full, it prints it all to the file stream

If we want to write in a specific moment, without
buffering, we can us the function fflush()

int f£fflush(FILE *fVar)

Returns O if successful, EOF in the case of error

Buffered Output

printf(Y“starting\n”); printf(Y“starting\n”) ;
fflush(stdout)

do_stepl1(); do_stepl1();
printf(“done with 1\n”); printf(“done with 1\n”);
fflush(stdout):

do_step2() ; do_step2();
printf(“done with 2\n”); printf(“done with 2\n”);
fflush(stdout):

do_step3 () ; do_step3 ().
printf (“done with 3\n”); printf(“done with 3\n”);
fflush(stdout) ;

4 4
Prints to buffer, after last After each printf() prints to
printf() prints to stdout stdout

File Formatting

It is a good habit to create data files with HEADERS,
especially when dealing with large amount of data

HEADERS are one or two lines at the beginning of a file
specifying the size of the data and some other info

With headers, a program knows how to properly read a
file

VectorTable

cols 7

rows 3

0 2 5 7 8 22 16
10 66 52 7 8 82 6

99 1 34 34 87 22 97

File Formatting

It is a good habit to create data files with HEADERS,
especially when dealing with large amount of data

HEADERS are one or two lines at the beginning of a file
specifying the size of the data and some other info

With headers, a program knows how to properly read a
file

k//header
VectorTable
cols 7
rows 3
0 2 5 7 8 22 16
10 66 52 7 8 82 6
99 1 34 34 87 22 97

File Formatting

|deally, format should be readable by humans and by
computer programs

Computer programs are not very robust, so must be
specific (i.e. tab versus spaces)

When you have huge amounts of data, you can give up
on human-readability and use BINARY format for
efficiency

Example: color _histogram table

Binary Files

In order to read/write to binary files, we must use the “rb” /
“wb” flags in the option of fopen()

size_t fread(void *ptr, size t s, size t n, FILE *f);

size_t fwrite(const void *ptr, size_ t s, size_ t n, FILE *f);

* ptr = (pointer) array where we want to store the data we read/
we want to write

* s = size of each element in the array ptr

* n=number of elements in the array ptr

e f=file to read from/write to

si1ze_tisa Ctype to indicate the size (in bytes) of an element . You
can think of it as a special integer.
c For example, sizeof() returns avariable of type size t

