CS

CU
COMsW 1003-1
Introduction to Computer
Programming in G
Lecture 12 Spring 2011

Instructor: Michele Merler

c http://www1.cs.columbia.edu/~mmerler/comsw1003-1.html

Announcements

Homework 3 is out

* Due on Monday, 03/21/11 at the beginning of class,
no exceptions

Midterm

* In class on Wednesday, 03/09/11
* Will cover everything up to Lecture 13 (included)

* Open books, open notes
* Closed electronic devices

Today

e Passing arguments to function by value vs.
by reference (from Lec 11)

* Functions returning pointers

* Pointers of pointers

Functions Returning Pointers

Naturally, a function can return a pointer

* Thisis a way to return an array, but must be careful
about what has been allocated in memory

returnType * functionName(parmeters)

NOTE

NULL is the equivalent of zero for pointers

splitString.c

Functions Returning Pointers

Example: using pointers to return a string

Given a string of the type “firstNAme/lastName”
We want to split it into two separate entities to print

splitString.c

Functions Returning Pointers

POINT 1 Fﬂﬂﬂﬂﬂﬂﬂﬂ

firstName

POINT 2 Fﬂﬂﬂﬂﬂﬂﬂﬂ

firstName lastName

POINT 3 annnmnmm

firstName lastName

POINT 4 Fﬂﬂﬂ?ﬂﬂﬂﬂ

firstName lastName

Const pointers point.c

const type *

When we try to declare a pointer to be a constant like this, it means
that the value at the address in memory it points cannot be modified

This does NOT mean that the pointer is constant, it can be changed!

int x =7, y=23;

const int *ptr = &x;

* e M
ptr = 11; & ptr —> | 0000 | 0000 | 0000 | 0111 | X
0000 | 0000 | 0000 | 0011 | Y

Const pointers point.c

const type *

When we try to declare a pointer to be a constant like this, it means
that the value at the address in memory it points cannot be modified

This does NOT mean that the pointer is constant, it can be changed!

int x =7, y=23;

*
O
(_'.
=
Il

ptr —> | 0000 | 0000 | 0000 | 1000 | X
0000 | 0000 | 0000 | 0011 | VY

Const pointers point.c

const type *

When we try to declare a pointer to be a constant like this, it means
that the value at the address in memory it points cannot be modified

This does NOT mean that the pointer is constant, it can be changed!

int x =7, y=23;

*
O
(_'.
=
Il

0000 | 0000 | 0000 | 1000 | X
—> | 0000 | 0000 | 0000 | 0011
ptr = ay; \/ ptr y

Const pointers point.c

const type *

When we try to declare a pointer to be a constant like this, it means
that the value at the address in memory it points cannot be modified

This does NOT mean that the pointer is constant, it can be changed!

int x =7, y=23;

*
O
(_'.
=
Il

0000 | 0000 | 0000 | 1000 | X

ptr = &y, V ptr _) 0011 |y
*ptr = 9;:;1:

printf(’x = %d, y = %d\n”,x,*ptr);

10

Const pointers point.c

type * const

This is the declaration of a constant pointer. In this case, the pointer is
fixed, but the value at the address it points to can be modified

int x =7, v =23;

int * const ptr2 = &x;

rper2 = 91\ o2 — | won | owo oom | 01 |
ptr2++;

ptr2 = &y, S

printf(”’x = %d, x = %d\n”, x, *ptr2):;

11

stringArrays.c

Arrays of strings

* An array Arr of 3 strings of variable length

char *Arr[3]={ “Hello”, ”"World”, "Wonderful” };

Arr[2] €«<—> Arr+2 // "Wondeful”

* Arr is an array of 3 elements. Each element in Arr is
of type pointer to char.

AT P e

Arr[0] | char * -

Are[1] | char * +— [T TR I I R

Arr[2] | char * N

c \mnnnnnnn
12

stringArrays.c

Arrays of strings

* An array Arr of 3 strings of variable length

char *Arr[3]={ “Hello”, ”"World”, "Wonderful” };

Arr[2] €<«<—> Arr+2 // "Wondeful”

* An array Arr of 3 strings of maximum length = 15

char Arr2[(3]1[15]1 = { “Hello2”, "World2”, "Wonderful2” }.;
Arr2[0]€—> Arr2 // "Hello2”

Arr2[1] €e=—> Arr2+1 // "World2”

SR

2 lWl

Pointers of pointers

stringArrays.c

E3E

0

i EEa R A T =
1 2 3 4 5 6 7 3 9 10

11

12 13 14

14

stringArrays.c

Pointers of pointers

* A pointer can point to another pointer
* |Inasense, it’s the equivalent of matrices!

int x = 3;
int *p = &x;
int *¥p2 = &p;

X = 2, €—> *p = 2, €«<—> **p2 = 2;

char *Arr([3]={ “Hello”, ”World”, "Wonderful” };
char **ptr;

ptr = Arr;

stringArrays.c

Pointers of pointers

7 8 9

A jﬂﬂ““ﬂ
ot +1 — KRR REETE
e w0 L L e e L A

a2 —o KRR
1 [A A N A S

2 [| e e e e e e e

0 1 2 3 4 5 6 7 3 9 10

11 12 13 14

c 16

Pointers of pointers

stringArrays.c

char *Arr[3]={ “Hello”, "World”, ”"Wonderful” };
char **ptr;
ptr = Arr;

((ptr+1)+2) P

Pointers of pointers [stringaraysc

char *Arr([3]={ “Hello”, "World”, "Wonderful” };
char **ptr;
ptr = Arr,

((ptr+1)+2)

1. ptr+l 7 8 9

0 1 2 3 4 5 6
- o IR EAEE KIS
ptr+1 points to
the whole line Ptr+1 mnnnn
: MRS

2. *(ptr+1) 7 8 9

0 1 2 3 4 5 6
_— o EAEKEEERE
points to the | *(ptr + 1) —-SaL 00 NCa Lo L R
first element
S e e e w | o | w | e [P w0
18

4

Pointers of pointers

stringArrays.c

char *Arr[3]
char **ptr;
ptr = Arr,

={ “Hello”, "World”,

"Wonderful” };

((ptr+1)+2)

3. *(ptr+1)+2

0 1 2 3 4 5 6
o KRR

*(ptr+1)+2
points to the
third element
of the line

*(ptr + 1)+2 - I R K R

2. *(*(ptr+1)+2)

Now we get
the value
stored at the
address we
pint

0 1 2 3 4 5 6
o I EEEEEAE
((ptr+1)+2) —- P e BT

7 8 9

e w0 L L e e L A

7 8 9

e w | o L L e e L A
19

Pointers of pointers [stingaraysc

char *Arr([3]={ “Hello”, "World”, "Wonderful” };
char **ptr;
ptr = Arr,

((ptr+1)+2) <—— Avoid this notation!
ptr[1][2] is much better!

0 1 2 3 4 5 6 7 8 9
. EARAEAEATEE]

Yoo v
o | e v v

20

Pointers vs. Arrays

Arrays Pointers
1Darrayof 5int | int x[5]; —> int *xPtr;
2Darrayof6int | int y[27[3]; «——— 1int **yPtr;

2X3 matrix

2Darrayof4int | int* z[2]1={{1.2},{2,1}}; <> int **zPtr;
2x2 matrix

1D array of 5char| char c[] = “mike”; —— char *cPtr;
string |
[——
Space has been allocated in memory only for
Space has been , ,
: the pointers variables, NOT for the arrays they
allocated in memory _ _
will point to.

for the arrays
c The DIMENSIONS of the arrays are UNKNOWN

Multidimensional Arrays

2x3 matrix of double

double MO[2][3];

double *M1[2] =

double **M

double **

= MO;

double *

MO ;

M — M[0]——

M[1l] ——

M[0][O]

M[O][1]

M[O][2]

M[1][0]

M[1][1]

M[1][2]

double

Multidimensional Arrays

2x3 matrix of double

1 ;
double MO[2][3] The difference between M0, M1 and M
double *M1[2] = MO; isthat
M1 and M can have ANY SIZE !
double **M = MO;

M —— M[0] — M[0][0] | M[O][1] | M[O][2]

M[1] — M[1][0] | M[1][1] | M[1][2]

double ** double * double

