
C

COMsW 1003-1

Introduction to Computer
Programming in C

Spring 2011

Instructor: Michele Merler

http://www1.cs.columbia.edu/~mmerler/comsw1003-1.html

Lecture 11

1

C

Announcements

2

• Grades for Homework 1 posted on
Coursewors

• Homework 2 is due next Monday at the
beginning of class

• Bring the printout to class!

C

Pointers

3

C

Pointers

4

Remember what happens when we declare a variable:
the computer allocates memory for it.

int x; Main
memory

Address
033727FA88

4 bytes (=32 bits)

Value chosen by the
computer

C

Pointers

5

When we assign a value to a variable, the computer stores that
value at the address in memory that was previously allocated for
that variable.

int x;
x = 3;

Main memory

00000000 00000000 00000000 00000011Address
033727FA88

4 bytes (=32 bits)

x *= 3; // x = 9 Main memory

00000000 00000000 00000000 00001001

C

Pointers

6

Pointers are variables for memory addresses.

They are declared using the * operator.

They are called pointers because they point to the place in memory
where other variables are stored.

How can we know what the address in memory of a variable is?
The & operator.

int x;
x = 3;

int *y;

y = &x;

Main memory

00000000 00000000 00000000 00000011y

C

Pointers - Syntax

7

When we declare a pointer, we must specify the type of variable it will be
pointing to

type *ptrName;

y

int x;
x = 3;

int *y;

y = &x;

If we want to set a pointer to point to a variable, we must use the &
operator

ptrName = &varName;

Main memory

00000000 00000000 00000000 00000011

C

Pointers : operators * and &

8

ptr

int x = 3;

int *ptr;

ptr = &x;

*ptr = 5; // x = 5;

* dereference operator : gives the value in the memory pointed by a pointer
(returns a value)

& reference operator: gives the address in memory of a variable
(returns a pointer)

Make ptr point to
the address of x

Modify the
value in address
pointed by ptr

Main memory

00000000 00000000 00000000 00000011

C

Pointers : operators * and &

9

int x = 3;

int *ptr;

ptr = &x;

*ptr = 5; // x = 5;

* dereference operator : gives the value in the memory pointed by a pointer
(returns a value)

& reference operator: gives the address in memory of a variable
(returns a pointer)

Make ptr point to
the address of x

Modify the
value in address
pointed by ptr

Code Meaning

x Variable of type int

ptr Pointer to an element of
type int

&x Pointer to x

*ptr Variable of type int

C

Pointers : operators * and &

10

&ptr // pointer to a pointer

*x // x is not a pointer

* dereference operator : gives the value in the memory pointed by a pointer
(returns a value)

& reference operator: gives the address in memory of a variable
(returns a pointer)

int x;

int *ptr;

&x

*ptr

V

C

Pointers : operators * and &

11

&ptr // pointer to a pointer

*x // x is not a pointer

* dereference operator : gives the value in the memory pointed by a pointer
(returns a value)

& reference operator: gives the address in memory of a variable
(returns a pointer)

int x;

int *ptr;

&x

*ptr

V

This is weird but actually ok,
we will see its meaning later

C

Pointers

12

Multiple pointers can point to the same address

int x = 3, y = 2;

int *ptr = &x;

int *ptr2 = ptr;

*ptr = 7; // x = 7;
*ptr2 = *ptr2 + 1; // x = 8;

Main
memory

0000 0000 0000 0011ptr
ptr2

NOTE: first 4 bits
omitted to save space

x

0000 0000 0000 0010 y

C

Pointers

13

Multiple pointers can point to the same address

int x = 3, y = 2;

int *ptr = &x;

int *ptr2 = ptr;

*ptr = 7; // x = 7;

Main
memory

0000 0000 0000 0111ptr
ptr2

NOTE: first 4 bits
omitted to save space

x

0000 0000 0000 0010 y

C

Pointers

14

Multiple pointers can point to the same address

int x = 3, y = 2;

int *ptr = &x;

int *ptr2 = ptr;

*ptr = 7; // x = 7;
*ptr2 = *ptr2 + 1; // x = 8;

Main
memory

0000 0000 0000 1000ptr
ptr2

NOTE: first 4 bits
omitted to save space

x

0000 0000 0000 0010 y

C

Pointers

15

Multiple pointers can point to the same address

int x = 3, y;

int *ptr = &x;

int *ptr2 = ptr;

*ptr = 7; // x = 7;
*ptr2 = *ptr2 + 1; // x = 8;

ptr = &y;

*ptr2 = 10; // x = 10;

ptr

ptr2

Ptr2 is still pointing to x,
even if ptr changed

Main
memory

0000 0000 0000 1010 x

0000 0000 0000 0010 y

C

Pointers

16

Be careful when using incremental operators!

int x = 3;

int *ptr = &x;

*ptr++; // x = ?

Main
memory

0000 0000 0000 0011

ptr

In this case I am incrementing ptr, NOT the value
of the variable pointed by it!

C

Pointers

17

Be careful when using incremental operators!

int x = 3;

int *ptr = &x;

(*ptr)++; // x = 4;

Main
memory

0000 0000 0000 0100ptr

C

Pointers and Arrays

18

• When set a pointer to an array, the pointer points to the
first element in the array

• C automatically keeps pointer arithmetic in terms of the
size of the variable type being pointed to

float arr[3] = {1, 2, 5};
float *pa;

pa = arr;
pa = &arr[0];

arr[0] *pa
arr[1] *(pa+1)
arr[2] pa[2]

These two notations are equivalent

C

Pointers and Arrays

19

• When set a pointer to an array, the pointer points to the
first element in the array

• C automatically keeps pointer arithmetic in terms of the
size of the variable type being pointed to

float arr[3] = {1, 2, 5};
float *pa;

pa = arr;
pa = &arr[0];

arr[0] *pa
arr[1] *(pa+1)
arr[2] pa[2]

These two notations are equivalent

Once we have set a pointer to the
beginning of one array, we can use it
as if it were the array itself!

C

Pointers and Arrays

20

When set a pointer to an array, the pointer points to the first
element in the array

float arr[3] = {1, 2, 5};

float *p = arr;

*p = 5; // arr[0] = 5;

Main
memory

0000 0000 0000 0001p

0010 0010 0000 0010

0000 0000 0000 0101

arr[0]

arr[1]

arr[2]

C

Pointers and Arrays

21

When set a pointer to an array, the pointer points to the first
element in the array

float arr[3] = {1, 2, 5};

float *p = arr;

*p = 5; // arr[0] = 5;

p++;

*p = 3; // arr[1] = 3;

Main
memory

0000 0000 0000 0001

p 0010 0010 0000 0011

0000 0000 0000 0101

arr[0]

arr[1]

arr[2]

C

Pointers and Arrays

22

When set a pointer to an array, the pointer points to the first
element in the array

float arr[3] = {1, 2, 5};

float *p = arr;

*p = 5; // arr[0] = 5;

p++;

*p = 3; // arr[1] = 3;

Note that for arrays, we do not
need the reference & operator

Main
memory

0000 0000 0000 0001

p 0010 0010 0000 0011

0000 0000 0000 0101

arr[0]

arr[1]

arr[2]Remember: an array is a set of
elements of the same type allocated
contiguously in memory!

p jumps in memory a block
of 4 bytes (size of a float)

C

Pointers and Arrays

23

char *wPtrStart = word;
char *wPtrEnd = wPtrStart + strlen(word)-1;

for(i=0 ; (i < strlen(word)/2) && (flag == 1) ; i++){

if(*wPtrStart != *wPtrEnd){
flag = 0;

}

wPtrStart++;
wPtrEnd--;

}

palindrome.c

word ‘R’ ‘A’ ‘D’ ‘A’ ‘R’ ‘\0’

wPtrStart wPtrEnd

word[0] word[1] word[2] word[3] word[4] word[5]

wPtrStart
+1

wPtrStart
+2

C

Pointers and Arrays

24

char *wPtrStart = word;
char *wPtrEnd = wPtrStart + strlen(word)-1;

for(i=0 ; (i < strlen(word)/2) && (flag == 1) ; i++){

if(*wPtrStart != *wPtrEnd){
flag = 0;

}

wPtrStart++;
wPtrEnd--;

}

palindrome.c

word ‘R’ ‘A’ ‘D’ ‘A’ ‘R’ ‘\0’

wPtrStart wPtrEnd

word[0] word[1] word[2] word[3] word[4] word[5]

wPtrStart
+1

wPtrStart
+2

When we increment or decrement,
the pointers move by 1 byte
(pointers to char)

C

Pointers : operators * and &

25

Now we know exactly what happens in sscanf !

sscanf(string, “format”, &var1, …, &varN);

Pointers to the addresses in memory
where var1,..,varN are stored !

C

Functions
Passing arguments by value/reference

26

• Pass by value (what we have seen so far): the value of the
variable used at invocation time is copied into a local
variable inside the function

• Pass by reference : a pointer to the variable used at
invocation time is passed to the function. We can modify
the variable’s value inside the function

C

Functions
Passing arguments by value/reference

27

• Pass by value (what we have seen so far): the value of the
variable used at invocation time is copied into a local
variable inside the function

double computeCirc(double rad){

rad = 2;

return(2 * rad * 3.14);

}

int main(){

double r = 5, circ;

circ = computeCirc(r);

return 0;

}

5

C

Functions
Passing arguments by value/reference

28

• Pass by value (what we have seen so far): the value of the
variable used at invocation time is copied into a local
variable inside the function

double computeCirc(double rad){

rad = 2;

return(2 * rad * 3.14);

}

int main(){

double r = 5, circ;

circ = computeCirc(r);

return 0;

}

r is not affected by
anything we do inside
the function

C

Functions
Passing arguments by value/reference

29

• Pass by reference : a pointer to the variable used at
invocation time is passed to the function. We can modify
the variable’s value inside the function

double computeCirc(double *rad){

*rad = 2;

return(2 * (*rad) * 3.14);

}

int main(){

double r = 5, circ;

circ = computeCirc(&r);

return 0;

}

Address of r

C

Functions
Passing arguments by value/reference

30

• Pass by reference : a pointer to the variable used at
invocation time is passed to the function. We can modify
the variable’s value inside the function

double computeCirc(double *rad){

*rad = 2;

return(2 * (*rad) * 3.14);

}

int main(){

double r = 5, circ;

circ = computeCirc(&r);

return 0;

}

r has been modified!

circPointer.c

