CS

CU
COMsW 1003-1
Introduction to Computer
Programming in G
Lecture 11 Spring 2011

Instructor: Michele Merler

c http://www1.cs.columbia.edu/~mmerler/comsw1003-1.html

Announcements

* Grades for Homework 1 posted on
Coursewors

e Homework 2 is due next Monday at the
beginning of class

* Bring the printout to class!

Pointers

Pointers

Remember what happens when we declare a variable:
the computer allocates memory for it.

int x;

Address —>
1— 033727FA88

4 bytes (=32 bits)

Value chosen by the
computer

Pointers

When we assign a value to a variable, the computer stores that
value at the address in memory that was previously allocated for
that variable.

int x;
x = 3;

Address —>
033727FA88

=—> | 00000000 | 00000000 | 00000000 | 00001001

Pointers

Pointers are variables for memory addresses.
They are declared using the * operator.

They are called pointers because they point to the place in memory
where other variables are stored.

How can we know what the address in memory of a variable is?
The & operator.

int *y; /y —> | 00000000 | 00000000 | 00000000 | 00000011

Pointers - Syntax

When we declare a pointer, we must specify the type of variable it will be
pointing to

type *ptrName;

If we want to set a pointer to point to a variable, we must use the &
operator

ptrName = &varName;

int x;
X = 3;

int *vy; 00000000 | 00000000 | OOOOO000 | 00000011

Pointers : operators * and &

* dereference operator : gives the value in the memory pointed by a pointer
(returns a value)

& reference operator: gives the address in memory of a variable
(returns a pointer)

int x = 3;

int *ptr;

Make ptr point to B _
theaddressofx | T &

Modify the *ptr = 5;
value in address
pointed by ptr

c 8

Pointers : operators * and &

* dereference operator : gives the value in the memory pointed by a pointer
(returns a value)

& reference operator: gives the address in memory of a variable
(returns a pointer)

int *ptr; X Variable of type int
Mak it t ptr Pointer to an element of
28 R ROlLIC ptr = &x; type int
the address of x _
&x Pointer to x

Modify the *ptr = 5; /) x = 5; *ptr Variable of type int

value in address

pointed by ptr

c 9

Pointers : operators * and &

* dereference operator : gives the value in the memory pointed by a pointer

(returns a value)

& reference operator: gives the address in memory of a variable

(returns a pointer)
int x;

int *ptr;

&x

*ptr

><

&ptr // pointer to a pointer

* x // X 1s not a pointer

Pointers : operators * and &

* dereference operator : gives the value in the memory pointed by a pointer
(returns a value)

& reference operator: gives the address in memory of a variable
(returns a pointer)
int x; . :
This is weird but actually ok,

int *ptr; we will see its meaning later

Vv ><

&x // pointer to a pointer

*ptr *x // X 1s not a pointer

Pointers

Multiple pointers can point to the same address

int x =3, y = 2;

int *ptr = &x;

ptr —> | 0000 | 0000 | 0000 | 0011 | X
. « _ .
int *ptr2 = ptr; pUZ’/,

0000 | 0000 | 0000 | 0010 | Y

NOTE: first 4 bits
omitted to save space

12

Pointers

Multiple pointers can point to the same address

int x =3, y = 2;

int *ptr = &x;
ptr —>

o000 | 0000 | 0000 | o111 | X
int *ptr2 = ptr; ptr2
%k = ’ = ,
prr =75 /) x =T o000 | 0000 | 0000 | cono |

NOTE: first 4 bits
omitted to save space

13

Pointers

Multiple pointers can point to the same address

int x =3, y = 2;

int *ptr = &x;
ptr —>

o o om0
int *ptr2 = ptr; ptr2
* — . — .
ptr = 7; /) x = 7;
0000 | 0000 | 0000 | 0010

NOTE: first 4 bits
omitted to save space

14

Pointers

Multiple pointers can point to the same address

int x = 3, v,

int *ptr = &x;

0000 | 0000 | 0000 m X

int *ptr2 = ptr; pUZ//,

* — . — .
ptr = 7; /) x = 7;

tr =—>| 0000 | 0000 | 0000 | 0010
*ptr2 = *ptr2 + 1, //x=8;p --- Y
ptr = &y,

Ptr2 is still pointing to x,

*ptr2 = 10; x = 10; .
e // even if ptr changed

15

Pointers

Be careful when using incremental operators!

int x = 3;

int *ptr = &x;

0000 | 0000 | 0000 | 0011

*ptri++; // x =1

In this case | am incrementing ptr, NOT the value
of the variable pointed by it!

16

Pointers

Be careful when using incremental operators!

int x = 3;

int *ptr = &x;

0000 | 0000 | 0000 | 0100

(*ptr)++; // x = 4;

17

Pointers and Arrays

* When set a pointer to an array, the pointer points to the
first element in the array

float arr[3] = {1, 2, 5};
float *pa;

arr;
&arr[0];

pa

pa :I» These two notations are equivalent

* Cautomatically keeps pointer arithmetic in terms of the
size of the variable type being pointed to

arr[0] <€—> *pa
arr[1] <€—> *(pa+1)
arr[2] €«—>» pal2]

Pointers

and Arrays

* When set a pointer to an array, the pointer points to the
first element in the array

float arr([3] = {1, 2,

float *pa;

pa = arr;
pa = &arr[0];

5},

:I- These two notations are equivalent

* Cautomatically keeps pointer arithmetic in terms of the
size of the variable type being pointed to

arr[0] <€—> *pa
arr[1] &> *(Pa+1)
arr[2] e—» pal2]

—> Once we have set a pointer to the
beginning of one array, we can use it
as if it were the array itself!

19

Pointers and Arrays

When set a pointer to an array, the pointer points to the first
element in the array

float arr[3] = {1, 2, 5};
float *p = arr:;

*p = 5; // arr[0] = 5;

P —>| 0000 | 0000 | 0000 | 0001 | arr[0]

0010 | 0010 | 0000 | 0010 | arr[1]

0000 | 0000 | 0000 | 0101 | arr[2]

20

Pointers and Arrays

When set a pointer to an array, the pointer points to the first
element in the array

float arr[3] = {1, 2, 5};
float *p = arr:;

*p = 5; // arr[0]

I
o

p++

*p = 3, // arr[1] = 3;
0000 | 0000 | 0000 | 0001 | arr[0]

P —>| 0010 | 0010 | 0000 | 0011 | arr[1]

0000 | 0000 | 0000 | 0101 | arr[2]

21

Pointers and Arrays

When set a pointer to an array, the pointer points to the first
elementin the array

float arr[3] = {1, 2, 5};

Note that for arrays, we do not
float *p = arr:; > Y

need the reference & operator
*p =\x // arr[0] = 5;

p jumps in memory a block
of 4 bytes (size of a float)

*p = 3; // arr(1] = 3;

p++;, >

0000 | 0000 | 0000 | 0001 arr[O]

P —>| 0010 | 0010 | 0000 | 0011 | arr[1]

: 0000 | 0000 | 0000 | 0101 2
Remember: an array is a set of arr(2]

elements of the same type allocated _

contiguously in memory!

22

palindrome.c

Pointers and Arrays

word[0] word[1] word[2] word[3] word[4] word[5]

word ““IF““

wPtrStart wPtrStart
+1 +2
wPtrStart wPtrEnd

char *wPtrStart = word;
char *wPtrEnd = wPtrStart + strlen(word)-1;

for(i=0 ; (i < strlen(word)/2) && (flag == 1) ; 1i++){
if(*wPtrStart != *wPtrEnd) {
flag = 0;
}
wPtrStart++,;

wPtrEnd- - ;

Pointers and Arrays

word[0] word[1] word[2] word[3] word[4] word[5]

word - [N IR

.P“

wPtrStart wPtrStart
+1 +2

wPtrStart

wPtrEnd

char *wPtrStart = word;
char *wPtrEnd = wPtrStart + strlen(word)-1;

for(i=0 ; (i < strlen(word)/2) && (flag ==
if(*wPtrStart != *wPtrEnd) {
flag = 0;
}
(o .
When we increment or decrement,
wPtrStart++, th int by 1 bvt
wPtTEnd- - : e pointers move by 1 byte

palindrome.c

R0

i++)|

(pointers to char)

Pointers : operators * and &

Now we know exactly what happens in sscanf !

sscanf(string, “format”, 8ivar‘l, SivarN);

Pointers to the addresses in memory
where varl,..,varN are stored !

Functions
Passing arguments by value/reference

e Pass by value (what we have seen so far): the value of the
variable used at invocation time is copied into a local
variable inside the function

e Pass by reference : a pointer to the variable used at
invocation time is passed to the function. We can modify
the variable’s value inside the function

Functions
Passing arguments by value/reference

Pass by value (what we have seen so far): the value of the
variable used at invocation time is copied into a local
variable inside the function

v
double computeCirc(double rad){

rad = 2;

return(2 * rad * 3.14);

int main() {

double r = 5, circ;

circ = computeCirc(r);

return 0;

Functions
Passing arguments by value/reference

Pass by value (what we have seen so far): the value of the
variable used at invocation time is copied into a local
variable inside the function

double computeCirc(double rad){

r is not affected by
rad = 2; : ..
anything we do inside

return(2 * rad * 3.14); the function

int main() {
double r = 5, circ;

circ = computeCirc(r);

return 0;

Functions

Passing arguments by value/reference

Pass by reference : a pointer to the variable used at

invocation time is passed to the function. We can modify

the variable’s value inside the function

v

double computeCirc(double *rad) {
*rad = 2;

return(2 * (*rad) * 3.14);

int main() {
double r = 5, circ;

circ = computeCirc(&r) ;

return 0;

Address of r

Fu nCt|OnS circPointer.c

Passing arguments by value/reference

Pass by reference : a pointer to the variable used at

invocation time is passed to the function. We can modify
the variable’s value inside the function

double computeCirc(double *rad) {

*rad = 2; r has been modified!

return(2 * (*rad) * 3.14);

int main() {
double r = 5, circ;

circ = computeCirc(&r)

return 0;

