
C

COMSW 1003-1

Introduction to Computer
Programming in C

Spring 2011

Instructor: Michele Merler

http://www1.cs.columbia.edu/~mmerler/comsw1003-1.html

Lecture 10

1

C

Announcements

2

Change in Office Hours this week

1 hour Wednesday, Feb 23rd, 12pm-1pm

1 hour Saturday, Feb 26th, 11am-12pm

C

Today

3

• Preprocessor (from Lecture 9)

• Advanced C Types

C

Advanced Types - Struct

4

• Arrays group variables of the same type
• Structs group variables of different types

struct structName {

fieldType fieldNameval1;
fieldType fieldNameval2;

fieldType fieldNamevalN;
};

Struct definition

Once we define the struct, we can use structName as if
were a type, to create variables!

. . .

students.c

C

Advanced Types - Struct

5

Example: we want to build a database with the name, age and grade
of the students in the class

Student 1
Name:
Age:
Grade:

Student 2
Name:
Age:
Grade:

Student N
Name:
Age:
Grade:

. . .

struct student {

char name[100];
int age;
double grade;

};

struct student st1;

st1 is a variable of
type struct!

C

Advanced Types - Struct

6

In order to access struct fields, we need to use the
. operator

struct student {

char name[100];
int age;
double grade;

};

struct student st1, st2;

st1.age = 3;
st2.age = st1.age – 10;

st1.age is a variable
of type int, I can
use it as a regular
variable !

C

Advanced Types - Struct

7

We can initialize a struct variable at declaration time,
just like with arrays

struct student {

char name[100];
int age;
double grade;

};

struct student st1 = {“mike”, 22, 77.4};

The initialization fields must
be consistent with the fields
types !

char int double

C

Advanced types - Typedef

8

typedef is used to define a new type

typedef type nameOfNewType;

typedef int myInt;

myInt c = 3;

typedef int myIntArray[7];

myIntArray arr;

for(c=0; c<7; c++){
arr[c] = 1;

}

C is of type myInt, which
is equivalent to int

arr is of type myIntArray,
which is equivalent to an array of
7 int

C

Advanced types - Typedef

9

typedef is used to define a new type

struct student {

char name[100];
int age;
double grade;

};

struct student st1, st2;

st1.age = 3;
st2.age = st1.age – 10;

struct student {

char name[100];
int age;
double grade;

};

typedef struct student stud;
stud st1, st2;

st1.age = 3;
st2.age = st1.age – 10;

C

Advanced Types - Union

10

• Similar to struct, but all fields share same memory

• Same location can be given many different field
names

struct value{

int iVal;
float fVal;

};

union value{

int iVal;
float fVal;

};

iVal

fVal

iVal / fVal

unions.c

We can use the fields of the
union only one at a time!

C

Advanced Types - Enum

11

• Designed for variables containing only a limited set of values

• Defines a set of named integer constants, starting from 0

enum name{ item1, item2, … , itemN};

enum dwarf { BASHFUL, DOC, DOPEY, GRUMPY, HAPPY, SLEEPY, SNEEZY};

enum dwarf myDwarf = SLEEPY;

myDwarf = 1 + HAPPY; // myDwarf = SLEEPY = 5;

int x = GRUMPY + 1; // x = 4;

printf("dwarf %d\n",BASHFUL); // ‘dwarf 0’

0 1 2 3 4 5 6

C

Advanced Types - Const

12

const defines a variable whose value cannot be changed

const double PI = 3.14;

double r = 5, circ;

circ = 2 * PI * r;

PI = 7;

circ.c

C

Advanced Types - Const

13

const defines a variable whose value cannot be changed

const double PI = 3.14;

double r = 5, circ;

circ = 2 * PI * r;

PI = 7; Once it’s initialized, a const
variable cannot change value

circ.c

C

Advanced Types - Const

14

const defines a variable whose value cannot be changed

double computeCirc(const double r, const double PI){

r++; PI++;

return(2 * r * PI);

}

/* main function */
int main(){

const double PI = 3.14;

double r = 5, circ, circ2;

circ = 2 * PI * r;
circ2 = computeCirc(r, PI);

return 0;

}

circ.c

C

Advanced Types - Const

15

const defines a variable whose value cannot be changed

double computeCirc(double r, const double PI){

r++;

PI++;

return(2 * r * PI);

}

/* main function */
int main(){

const double PI = 3.14;

double r = 5, circ, circ2;

circ = 2 * PI * r;
circ2 = computeCirc(r, PI);

return 0;

}

circ.c

V

C

Advanced Types - Const

16

const defines a variable whose value cannot be changed

double computeCirc(double r, double PI){

r++;

PI++;

return(2 * r * PI);

}

/* main function */
int main(){

const double PI = 3.14;

double r = 5, circ, circ2;

circ = 2 * PI * r;
circ2 = computeCirc(r, PI);

return 0;

}

circ.c

V
V

