Michele Merler

Advisor:
Prof. Serge Belongie



Outline
Motivations
Related Work
Grozi -120

Experiments
Conclusions

Future work



Motivations
Applications
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e Object recognition for
mobile robots

e.g: Semantic Robot
Vision Challenge @ CMU.
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Related work

Object recognition databases
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Related work
Object recognition databases
Improvements needed*:

® Multiple object class instances within
a single image

® Partial occlusion and truncation

® Sjze, viewpoint and orientation
variations

® High degree of intra-class variability

® Exclude pre-segmented objects

X J. Ponce et al. Dataset Issues in Object Recognition. Toward Category-Level Object
Recognition, Springer-Verlag Lecture Notes in Computer Science., 2006.
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Related work
Object recognition databases

Improvements needed*:

® Multiple object class instances within
a sinale imaage

raining and testing
data often come from
the same distribution

e High degree of intra-class variability

® Exclude pre-segmented objects

X J. Ponce et al. Dataset Issues in Object Recognition. Toward Category-Level Object
Recognition, Springer-Verlag Lecture Notes in Computer Science., 2006.



Related work

Object detection/recognition algorithms

e Color Histogram Matching
(Lab) [Swain & Ballard '91]

with Integral Histogram
[Porikli '06]

o SIFT Descriptor [Lowe '99]

e Boosted Haar-like Features
[Viola & Jones '01].




Grozi-120

e Multimedia database of 120 grocery products
e Objects vary in color, size, opacity, shape and
rigidity. They are found in different lighting
conditions and in presence of clutter and

occlusion
e In vitro and in situ image representations
(for training and testing data respectively)




Grozi-120

In vitro data

e [solated images
captured under ideal
imaging conditions
(e.g stock photography
studio or lab)

e They can be found in
the web (e.g Froogle,
Amazon, etc)



Grozi-120

In vitro data

e 6/6 training images
(average 6 images per
object)

e Obtained from the web
(Froogle, Shopwiki, Amazon
Groceries, Yahoo images)
using a list of 4000 UPC
codes

e Clear foreground-
background distinction via
binary mask (if desired)




Grozi-120

In situ data

Images from objects captured in
natural environments (real world)

They were shot inside a grocery
store, using a MiniDV camcorder
and includes every in vitro object

29 videos containing all products

Product location in coordinates
saved every 5 frames

A total of 11194 in situ images
(average 93 per product)

Size, viewpoint and orientation variations



Grozi-120

In situ data




Grozi-120

In situ data

Honey Nut Cheerios

Colgate plus
toothbrush

035000553003

GM HNY NUT
CHEERIOS CEREAL

Morton Salt, lodized

024600010030

036600813313




Grozi-120

In situ data

Multiple object class instances
within a single image

Ty

“ Objects from different
o classes within a single
" image

Partial occlusion

T e ki | FERILUHER N I
. :

’ ) al & -" I'rr'i




Grozi-120

In vitro data In situ data
Training




Grozi-120

In vitro data In situ data
Training




Grozi-120

In vitro data In situ data
Training Testing
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Big difference -

in quality!

e Illumination

e Deformations

e Clutter
. e Occlusion

e Truncation




Experiments

e Color histogram matching (CHM):
Histogram template (16 bins in ab from
Lab) + integral histogram + L1 distance

o SIFT: bag of features approach
One bag per object + L2 distance

e Boosted Haar-like features (BHaar):
Data + synthetic data + Haar-like
features + cascades (OpenCv)



Experiments

Recognition: r—
10 in vitro samples per object
for training (200 for BHaar)

10 /n situ images per object
for testing

Recogniton average ROC curves

40
False P

Recognition ROC curves Product 15

40 50
Falze Positive Rate

40 50
False Positive Rate




Experiments

L ocalization:

e 10 /n vitro samples per

object for training

(200 for BHaar)

e 14 jn situ frames per object

for true positives

e 100 frames with no product

on the database as true

negatives

CHM %Rec | %Pre | %TP | %FP
Mean 15 17 18 65
Std Dev 28 16 35 32
Best (20) | 71 82 100 4
Worst (32)| 0.7 0.2 0 100
SIFT %Rec | %Pre | %TP | %FP
Mean 72 18 22 62
Std Dev 20 17 26 28
Best (34) | 14 83 93 25
Worst (9) | 26 0.9 0 64
BHaar | %Rec | %Pre | %TP | %FP
Mean 15 17 18 65
Std Dev 13 (K] 19 24
Best (92) | 35 74 50 38
Worst (5) | 0.5 0.2 0 92

Rec = Overall Recall, Pre = Overall Precision




Experiments

Localization: CHM__ | %Rec | %Pre | %TP | %FP
e 10 /jn vitro samples per Mean | 15 [ 17 | 18 | 65
object for training y ;:t[();(\)/) S T
(200 for BHaar) Worst(32)] 0.7 | 02 | 0 | 100

SIFT %Rec | %Pre | %TP | %FP

0 8 I Sl isimiEs per @elyeer | TR

for true positives StdDev | 20 | 17 | 26 | 28

e 100 frames with no product |Best(34)| 14 | 8 | 93 | 25

Worst (9) | 26 0.9 0] 64
on the database as true BHaar | %Rec | %Pre | %TP | %FP

negatives Mean 15 17 18 | 65
NN | StdDev | 13 | 13 | 19 | 24

‘ e_—1 Best (92) | 35 74 50 38
Worst (5) | 0.5 0.2 0 92

Rec = Overall Recall, Pre = Overall Precision




Experiments

L ocalization:

e 10 /n vitro samples per
object for training

(200 for BHaar)

e 14 jn situ frames per object
for true positives

e 100 frames with no product
on the database as true
negatives

s Kleenax Tizsue REG

CHM %Rec | %Pre | %TP | %FP
Mean 15 17 18 65
Best (20) 71 82 100 4
Worst (32)| 0.7 0.2 0] 100
SIFT %Rec | %Pre | %TP | %FP
Mean 72 18 22 62
Best (34) 14 83 93 25
Worst (9) 26 0.9 0] 64
BHaar | %Rec | %Pre | %TP | %FP
Mean 15 17 18 65
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Worst (5) | 0.5 0.2 0 92

Rec = Overall Recall, Pre = Overall Precision




Experiments
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Conclusions

We presented:

e A new multimedia database for studying
object recognition in presence of in
vitro/in situ dichotomy

e Baseline performances for three widely
used algorithms

The results suggest the need of more precise
and elaborate recognition algorithms.
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e Use Shared features
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Future Work

Develop new algorithms that fuse these
different approaches in order to improve
results

Make use of context information based on
physical object proximity to improve i .
localization of objects in natural scenes -~

_ _ » Sprite detect
Use Shared features - — . -_,ﬁl}gppeefﬁgéctor

— —  — ~>Tide detector

Use temporal correlation (tracking)

Include more objects and grow the number of
samples per product
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